Construction of mutant heparinase I with significantly increased specific activity.

Anna Kalinina ${ }^{1}$, Larisa Borshchevskaya ${ }^{1}$, Elena Patrusheva ${ }^{1}$, Tatiana Gordeeva ${ }^{2}$, and Sergey Sineoky ${ }^{1}$
${ }^{1}$ NRC "Kurchatov Institute"
${ }^{2}$ NRC "Kurchatov Institute" - GosNIIgenetika, Genomic Center

April 28, 2020

Abstract

The cleavage of heparin by heparin lyases showed great potential as a cost-effective and innoxious method for producing heparin with low molecular weight (LMWH). One of the most studied and sought heparin lyase is heparinase I (HepI). However, the industrial use of HepI was largely hampered by its low specific activity and thermal stability. In this article we describe increasing in specific heparinase I activity by stepwise site-directed mutagenesis. Thus after two cycles of mutagenesis, we obtained mutant heparinase I Flavobacterium heparinum with significantly increased specific activity (25%).

Hosted file

article+.doc available at https://authorea.com/users/313756/articles/444202-construction-of-mutant-heparinase-i-with-significantly-increased-specific-activity

	■	
FH	MKKQILYLIVLQQLFICSAYAQQKKSGNIPYRVNVQADSAKKKAIIDNKWVAVGINKEY	60
BT	-----MLTAQTKNTQTLMPLTERVNVQADSARINQI IDGCWVAVGTNKPHA	46
FH	LGYDDKLRENGKPSYRFELKAEDNSLEGYA AEETKGRTELSYSYATTNDEKKFEPSVYQN	120
BT	RDFTNLEDGKPSYREELKTEDNTLEGYAKGETKGRAEDSYCYATSDDERGLPADVYCK	106
FH	AOKLKTVYHYGKGICEOGSSRSYTFSVYIPSSFPD AATTIFAOWHCAESRTLVATPEGEI	180
BT	AOITKTVYHHGKGACPQSSSDYEESVYIPSSLDSEVSTIFAQWHGMEDRTLVQTPQGEV	166
	- ${ }^{\text {a }}$	
FH		232
BT	KKLTVDEEVELEKTTREKKNVGHEKVARLDKQGNPVKDKNGKPVYKAGKPNGWLVEQGGY	226
FH	LAFGESKGY EYIKANSDEQWLTDKADFNNANPENSEVMKEYSSEYKTSTIAYKMPFAQ	292
BT	LAFGESGGLEY IKANSDRKWLTDKDDFCNANEGKTPVMKELTSEYKASTIAYKLPEAD	286
FH	FPKDCWITEDVAIDWTKYGKEANTILKPGKLDVM TYTKNKKPQKAHIVNQQEILIGRND	352
BT	FPKDCWITERVHIDWTVYGKEAETIVKPGMLDVRMDYQEQGKKVSKHIVDNEKILIGRND	346
FH	DDGYYFKFGIYRVGNSTVPVTYNLSGYSETAR	384
BT	EDGYYFKFGIYRVGDSTVPVCYNLAGYSER--	376

MKKQILYLIVLQQLFLCSAYAQQKKSGNIPYRVNVQADSAKQSEIIDNKWVAVGINKPY ALQYDDKLRFNGKPSYRFELKAEDNSLEGYAAGETKGRIELSYSYATTNDFKKFPPSVY QNAQKLKTVYHYGKGICEQGSSRSYTFSVYIPSSFPDNATTIFAQWHGAPSRTLVATPEG EIKTLSIEEFLALYDRMIFKKNIAHDKVEKKDKDGKITYVAGKPNGWKVEQGGYPPLAF GFSKGYFYIKANSDRQWLTDKADRNNANPENSEVMKPYSSEYKTSTIAYKMPFAQFPK DCWITFDVAIDWTKYGKEANTILKPGKLDVMMTYTKNKKPQKAHIVNQQEILIGRNDD DGYYFKFGIYRVGNSTVPVTYNLSGYSETAR

