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Abstract

Diatoms (Bacillariophyceae) are widely used as bioindicators of present and past water quality because they inhabit the vast

majority of aquatic ecosystems, are very diverse, highly sensitive to a variety of environmental conditions, and are characterized

by silicified cell walls that favor their long-term preservation in sediments. Alongside with traditional morphological analyses,

metabarcoding has become a valuable tool to study the community structures of various organisms, including diatoms. Here,

we aimed to test whether the quantity of sediment sample used for DNA extraction is affecting the results obtained from

high-throughput sequencing (metabarcoding) of the diatom rbcL region by isolating DNA from 10 g and 0.5 g (wet weight)

of lake surface sediment samples. Because bioinformatics processing of metabarcoding data may affect the outcome, we also

tested the consistency of the results from three different pipelines. Additionally, the agreement between metabarcoding data

and morphological inventories of corresponding samples were compared. Our results demonstrate highly uniform patterns

between the diatom rbcL amplicons from 10 g and 0.5 g of DNA extracts (HTS 10 and HTS 0.5, respectively). Furthermore,

metabarcoding results were highly consistent among the data sets produced by different bioinformatics pipelines. Comparing

results from metabarcoding and microscopy, we identified some taxonomic mismatches, which are related to the common issue

of incompleteness of the sequence databases, but also to inconsistencies in diatom taxonomy in general and potential dissolution

effects of diatom valves caused by high alkalinity of the investigated lake waters. Nevertheless, multivariate community analysis

demonstrated highly similar results between data sets identified by microscopy and metabarcoding, further confirming that

metabarcoding is a viable alternative for identifying diatom-environment relationships.

Introduction

Diatoms (Bacillariophyceae) rank among the most important components of aquatic food webs and play an
important role in carbon fixation (Mann 1999). Because of their fast response and narrow optima for mul-
tiple environmental variables, diatoms are excellent indicators of ecosystem health (Dixit, Smol, Kingston
& Charles 1992; Pan, Stevenson, Hill, Herlihy & Collins 1996), and may provide early warning signals for
aquatic ecosystem changes in face of anthropogenic pressures such as eutrophication (Wang et al. 2012)
or heavy metal contamination (Chen et al. 2015). The standard methods for assessing diatom communi-
ties rely on counting and identifying their silicified cell walls (valves) using mostly light microscopy (e.g.
European-Committee-for-Standardization 2014). But with the rapid development and continuously decreas-
ing costs of high-throughput sequencing (HTS) technologies, the metabarcoding approach, allowing simulta-
neous identification of multiple species from environmental samples, has become an alternative tool for fast
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biodiversity assessment (Ruppert, Kline & Rahman 2019). Because morphological analyses of diatoms (and
other microorganisms) are labor-intensive, require expertise and are prone to inter-investigator variation,
metabarcoding, referred to as ‘Biomonitoring 2.0’ (Baird & Hajibabaei 2012), may have the potential to
outperform the traditional, low throughput, monitoring methods.

Metabarcoding-based biodiversity studies, however, may face various difficulties, starting from DNA extrac-
tion to data processing in complex bioinformatics pipelines (Sinha et al. 2017; Anslan et al.2018; Hardge
et al. 2018). Therefore, the suitability of metabarcoding approach for assessing diatom communities have
been the research focus for several studies. Although the DNA barcoding library for accurate species level
detection is still incomplete for diatoms, metabarcoding is a promising tool for biomonitoring of community
assemblages of these organisms as it has been shown to produce similar results compared with morphological
analyses (Zimmermann, Glöckner, Jahn, Enke & Gemeinholzer 2015; Apotheloz-Perret-Gentil et al.2017;
Vasselon, Rimet, Tapolczai & Bouchez 2017; Keck, Vasselon, Rimet, Bouchez & Kahlert 2018; Rimet et al.
2018; Rimet, Vasselon, Barbara & Bouchez 2018; Rivera et al. 2018). The majority of diatom community
studies are applied to biofilms of epilithic diatom species from rivers and lakes, with the goal of assessing
current-state water quality. Because diatom silicified valves are usually well preserved in sediments, they
also constitute important indicators for inferring paleo-environmental conditions such as water pH, nutrient
dynamics, and temperature (Douglas & Smol 2010). However, only few studies have estimated the suitabi-
lity of metabarcoding for identifying diatom communities directly from sediment samples and have assessed
its consistency with microscopy (Dulias, Stoof-Leichsenring, Pestryakova & Herzschuh 2017; Piredda et al.
2017). Although morphological and metabarcoding data sets from these studies have demonstrated highly
correlated results, it is not clear how this pattern is related to the quantity of sediment used for DNA ex-
traction or affected by the use of different bioinformatics pipelines. The quantity of sediment used strongly
depends on the approach taken for DNA extraction; it is common to use DNA isolation kits which allow
input of ‘large’ quantities (usually up to 10 g) of environmental sample, to potentially capture the complete
community represented in the sample. However, DNA extraction methods, for example the ‘universal’ Power
Soil Kit (Hermans, Buckley & Lear 2018), which process much less material and thus use less chemicals, cost
only a fractional amount and may represent attractive alternatives for DNA metabarcoding of large numbers
of samples. Multiple publicly available tools exist for bioinformatics processing of large sets of sequencing
data, amongst which QIIME (Caporaso et al.2010) and mothur (Schloss et al. 2009) are the most commonly
used, but some studies have highlighted that an inappropriate choice of software and settings may heavily
affect the final results (Majaneva, Hyytiäinen, Varvio, Nagai & Blomster 2015; Anslan et al. 2018). Also
for diatom communities, recent studies have suggested that the choice of bioinformatics pipelines may affect
the outcome of metabarcoding studies (Tapolczai, Keck, Bouchez, Rimet & Vasselon 2019; Rivera, Vasselon,
Bouchez & Rimet 2020). Here, we investigate diatom communities from Nam Co, a saline lake on the Tibetan
Plateau, and from nearby ponds and tributaries. Our aim is to explore whether the characterization of diatom
community structure via metabarcoding is dependent on the quantity of sediment used for DNA extraction
by comparing the two most commonly used DNA isolation kits, PowerMax Soil and Power Soil (Qiagen,
Germany), and by applying those to 10 g and 0.5 g (wet weight) of surface sediment samples, respectively.
We further tested the consistency of the metabarcoding results obtained via three different bioinformatics
pipelines by applying exact sequence variants (ESV) and two OTU clustering approaches. In addition, we
assess how the metabarcoding data sets (from 10 g vs . 0.5 g of sediments) compare with the morphological
analyses of diatoms from the same samples, and how these datasets relate with environmental variables.

Materials and Methods

Sample collection

Surface sediment samples were collected in Nam Co using an Ekman-Birge bottom sampler from water
depths ranging between 0.2 m to 56 m (Table S1). A spatula was used to sample the oxygenized layer of
sediments, i.e. about top 2 cm. Additional samples from shallow water sites such as rivers and lagoons were
collected randomly from sandy substrate by using a hand-shovel and scraping the upper 2 cm. Approximate
wet weight of a sample was 200 grams, which was mixed, split in half, and these two batches were then
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transferred to Whirl-Pak bags for metabarcoding and morphological identification of diatoms. Limnological
parameters were measured at each sampling site using a multi parameter probe WTW 3630 (Table S1). Water
anions and cations were measured using ion chromatography (IC) and inductively coupled plasma optical
emission spectrometry (ICP-OES), respectively, at the Institute of Geographical Sciences, Freie Universität
Berlin (Table S1). The research permit was obtained via the Institute of Tibetan Plateau Research, Chinese
Academy of Sciences from the Tibet Autonomous Region Government.

In the field, laboratory samples for the morphological identification of diatoms were stored at 4 °C. Samples
for metabarcoding analyses were sieved through 2 mm sieves to remove coarser sediment components. Tap
water was used for sieving, and therefore also as negative extraction (and PCR) control for metabarcoding
analysis. Approximately, 50 g of sediment were divided between three 50 ml tubes and filled with 96% ethanol
(4:1 ethanol:sediment ratio). All used equipment was bleached (10% sodium hypochlorite solution) after each
step to avoid cross-contamination. All samples were stored and transported in a freezer (-20 ºC). The study
design is illustrated in Figure 1.

Molecular analysis

Sediment samples were centrifuged at 4000 rpm for 10 minutes, supernatant was removed and subsamples
were mixed. Wet samples were weighted to 10 g (in the following referred to as metabarcoding treatment
HTS 10) and 0.5 g (HTS 0.5), and DNA was extracted using DNeasy PowerMax Soil Kit and DNeasy
PowerSoil Kit (Qiagen, Germany), respectively (three samples that were processed with PowerMax Kit had
< 10 g input, see Table S1). Except for the amount of chemicals, these kits use identical chemistry and
protocols. To enhance the cell lysis, we modified the initial step by adding Proteinase K (10 mg/ml) and
1M DTT (dithiothreitol) together with the C1 solution from the extraction kits. For the PowerMax Kit (10
g of sediments) 60 μl of Proteinase K and 100 μl of DTT, and for the PowerSoil Kit (0.5 g of sediments), 4
μl of Proteinase K and 25 μl of DTT was added, respectively; following overnight incubation at 56 ºC. For
potentially higher DNA yield, the elution was performed twice by adding half of the recommended amount
of the buffer onto a spin column membrane and incubated at room temperature for 3 minutes. The rest of
the steps were performed following manufacturer’s instructions.

PCRs were performed using uniquely tagged primers rbcL-646F (5’-ATG CGT TGG AGA GAR CGT TTC-
3’) and rbcL-998R (5’-GAT CAC CTT CTA ATT TAC CWA CAA CTG-3’), which amplify 331 base pairs
(bp) of the large subunit of the ribulose-bisphosphate carboxylase/oxygenase (rbcL) gene (Kellyet al. 2018)
(Table S2). We also tested the primers of Diat rbcL 708F and R3 (Vasselon, Rimet, Tapolczai & Bouchez
2017), which amplify a shorter fragment (312 bp) of the same region. However, the PCR results were visually
superior for rbcL-646F and rbcL-998R primer pair (data not shown), thus here, we decided to proceed only
with the latter primers. The 25 μl PCR mix consisted of 5 μl of Hot Start FirePol Master Mix (Solis BioDyne,
Estonia), 0.5 μl forward and reverse primer, and 1-3 μl of template DNA. The rest of the volume was filled
with nuclease-free water. PCR conditions were as follows: 95 ºC for 15 minutes (hot start), 32-35 cycles of
95 ºC for 20 s, 55 ºC for 45 s, 72 ºC for 60 s, and final extension at 72 ºC for 5 minutes. Three replicate
PCRs were performed per sample, following sample pooling and checking the yield of PCR products during
gel electrophoresis by pipetting 5 μl PCR product on 1% agarose gel. Amplicons per sample were pooled as
based on their relative quantity and purified using Favor-Prep Gel/PCR Purification Kit (Favorgen-Biotech
Corp., Austria), following the manufacturer’s instructions. Steps of DNA extraction, PCR and sequencing
included both negative and positive controls. Sample preparations, as well as DNA isolations, were conducted
under laminar flow clean bench, using 30 min UV sterilization prior analyses. Sequencing was performed on
the Illumina MiSeq (2x250) using MiSeq Reagent Kit v2.

Bioinformatics

Three different bioinformatics workflows (pipelines) were used to process raw paired-end Illumina data: 1)
ESVs (exact sequence variants) pipeline as implemented in DADA2 (Callahan et al. 2016); 2) 95% OTUs
(operational taxonomic units) pipeline, where OTUs are clustered at 95% sequence identity; and 3) a pipeline
based on OTUs clustered at 97% identity. The processing of sequencing data to generate ESVs and 95% OTUs
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followed the workflows as described in Tapolczai, Keck, Bouchez, Rimet and Vasselon (2019) and Rivera,
Vasselon, Bouchez and Rimet (2020), respectively, except that taxonomy assignment of the representative
sequences was performed using blastn algorithm (instead of Näıve Bayesian classifier) (Camacho et al. 2009)
with e-value = 0.001, word size = 7, reward = 1, penalty = -1, gap open = 1 and gap extend = 2 (against
R-Syst v.7.2 diatom database (Rimet et al.2016)). Based on our positive and negative controls, the 95%
OTUs data set was further filtered to exclude low occurrence ([?] 3) reads per OTU per sample to alleviate
to ‘tag-switching’ error. The latter was not performed for the ESVs data set as no sequences were observed
in the negative controls and no ‘read-leakage’ from the positive control sample. Singleton ESVs/OTUs were
discarded from the data sets (i.e. ESVs/OTUs that had only one read across samples).

To generate 97% OTUs, raw paired-end Illumina sequencing data was processed in PipeCraft (Anslan,
Bahram, Hiiesalu & Tedersoo 2017), which incorporates all the following tools (except LULU). Reads were
assembled and quality filtered using vsearch (fastq minoverlen 15, maxdiffs 45, fastq minmergelen 200, fastq -
maxee 1, fastq maxns 0, fastq truncqual 5, fastq allowmergestagger) (Rognes, Flouri, Nichols, Quince &
Mahe 2016). Chimera filtering step included vsearch uchime denovo algorithm with options id 0.97 and
abskew 2. The filtered sequences were clustered using UPARSE (Edgar 2013) with 97% similarity threshold
and minimum cluster size of 2 (i.e. singletons excluded). The obtained OTU table was further curated with
post-clustering algorithms as implemented in LULU (Froslev et al. 2017) to merge consistently co-occurring
‘daughter’ OTUs (minimum ratio = 1, minimum ratio type = “avg”, minimum relative cooccurence = 0.8,
minimum match = 96.97). Potential tag-switching errors were also corrected based on negative and positive
controls based on relative abundances of sequences in the control samples (Taberlet, Bonin, Coissac &
Zinger 2018). To account for unequal sequencing depth, we rarefied samples to common depth of 7000
sequences using the mothur software (Schloss et al. 2009). The latter removed five samples from the data
set. Representative sequences per OTU were compared against R-Syst v.7.2 diatom database using blasn as
stated above.

The used primers (rbcl-646F and rbcL-998R) amplify DNA also from other algae and bacteria (especially
Proteobacteria and Cyanobacteria). To exclude the non-target taxa, only OTUs that demonstrated the
match coverage and identity of [?] 90% against a reference database, were considered as diatom OTUs
and included in the final tables produced by each pipeline. According to additional blastn search against
NCBI database (Geer et al. 2009), the above threshold was confirmed to include only diatom taxa into the
final OTU table. OTUs with lower thresholds to reference diatom sequences (in R-Syst) were often more
closely related (based on e-value, sequence similarity and coverage) to other micro-algae (e.g. taxa from
Mischococcales, Tribonematales, Eustigmatophyceae), thus excluded from the downstream analyses.

Because of the uncertainty of the most adequate species-level sequence similarity threshold for diatoms,
the taxonomic composition comparisons between metabarcoding treatments (HTS 10 and HTS 0.5) and
microscopy was performed on genus level. Reliable genus level classification of the OTUs in the HTS data
set was here defined when sequence similarity and coverage was [?] 95% against a reference sequence in
the R-Syst database. OTUs that displayed lower values against the R-Syst database sequences were blastn-
searched against the NCBI database to check for additional genus-level annotations. Synonym names for
genera were also explored in the case of mismatches between microscopy and metabarcoding data sets.

Morphological analysis

Sediment samples for morphological diatom analyses were treated and examined using standard methods
(Battarbee et al. 2001). Specifically, approximately 0.1 g of dry sediment (freeze dried) for each sample
was treated with 30 % hydrogen peroxide (H2O2) and 10 % hydrochloric acid (HCl) for 2-3 hours to remove
organic matter and carbonates, respectively. The resulting slurries were then washed repeatedly with distilled
water until a neutral pH was reached and strewed onto glass coverslips to dry at room temperature. The
dry samples were then fixed onto microscope slides with Naphrax(r), a highly refractive mountant. At
least 400 valves were identified (range 400-407) and enumerated along transects using a light microscope
(Leica DM6B, magnification x1000) with oil immersion objective. Diatom identification and taxonomy were
based primarily on general floras such as Krammer and Lange-Bertalot (1986-1991) and Lange-Bertalot,
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Hofmann, Werum, Cantonati and Kelly (2017). We also used specific taxonomic publications to aid with
the identification of difficult groups of diatoms, such as Mohan et al. (2018) forLindavia biswashanti , and
Pavlov, Levkov, Williams and Edlund (2013) for species belonging to the Hippodonta genus. To help further
with morphological identification, scanning electron microscope (SEM) photographs were taken using a Zeiss
MERLIN instrument at the Institute of Geology and Geophysics, CAS, Beijing.

Statistics

Differences in the ESVs/OTUs/morphospecies richness and correlation analysis between the three treatments
(HTS 10, HTS 0.5 and microscopy) were tested using Kruskal-Wallis Analysis of Variance (ANOVA) by
Ranks and Spearman Rank Order Correlations in STATISTICA 7 (StatSoft 2004). Permutational Analysis
of Variance (PERMANOVA, with 9999 permutations) and Principal Co-ordinate Analysis (PCoA) of Bray-
Curtis similarity matrices of log transformed data were performed in PRIMER v6 (Clarke & Gorley 2006).
The values of the PCoA first axis were selected as a response variable for Random Forest analysis to identify
most important environmental variables for diatom community assembly. The latter was performed in R
(R-Core-Team 2015), using the package ‘randomForest’ (Liaw & Wiener 2002). The variables included
for Random Forest analyses were maximum depth, conductivity, and concentration of zinc (Zn), calcium
(Ca), silica (Si), chromium (Cr), nitrate (NO3), copper (Cu), manganese (Mn), iron (Fe), strontium (Sr),
vanadium (V) (Table S1). Variables, selected by Random Forest model per treatment, were used in marginal
test analysis (with 9999 permutations), in PRIMER. Only variables with P-values < 0.05 were displayed as
vectors in the PCoA ordination plots.

Bray-Curtis similarity matrices of Hellinger-transformed data per treatment were compared with Mantel
tests (with 9999 permutations, method=”spear”) to assess the correlations between sample similarities as
implemented in the ‘vegan’ package (Oksanen et al. 2015). In addition, Procrustes analyses were used
to compare the similarity of PCoA ordinations between different treatments (in ‘vegan’). To examine the
presence of diatom OTUs that were consistently detected either by the HTS 10 or the HTS 0.5 treatment,
an indicator species analysis (with 9999 permutations) was performed using the ‘indicspecies’ package (De
Caceres, Jansen & De Caceres 2016).

The analyses for comparing metabarcoding treatments (HTS 10 and HTS 0.5) were performed for 20 cor-
responding samples. Because of smaller sample size for the microscopy data, analyses for HTS 10 vs .
microscopy and HTS 0.5 vs . microscopy were performed with 14 and 11 samples, respectively (see Table
S1).

Results

Richness and composition

The numbers of ESVs/OTUs/morphospecies per sample for metabarcoding and microscopy data are sum-
marized in Table 1. The numbers of ESVs/OTUs per sample between HTS 10 and HTS 0.5 treatments
demonstrated a strong positive correlation (Spearman R > 0.863; Fig. 2a-c; Fig. S1), and no significant
differences in the (ESV/OTU) richness (Fig. 2d). Accordingly, the intra-pipeline comparisons of HTS 10
and HTS 0.5 data (20 comparable samples; Table 1) demonstrated high proportions of shared ESVs/OTUs
(63.9-87%; Fig. 3). For the genus level comparisons across metabarcoding data sets, ESVs and OTUs were
annotated to genus level only when the similarity and coverage of the representative read of ESV/OTU was
[?] 95% against a reference sequence. Similarly, a large proportion of genera were shared between HTS
treatments (87.7-92.2%; Fig. 3). Interestingly, inter-pipeline comparisons revealed that higher proportion
of genera was shared between HTS 0.5 treatments compared with HTS 10 (87.7% vs . 76.4%; Fig. S2).
Compared to data generated with the OTUs pipelines, the data from the ESVs pipeline harbored a higher
number of different genera (67 vs . 62 for HTS 10 and 69vs . 65 for HTS 0.5; Fig. S2). For the HTS 10
data, the unique genera (8 genera; i.e. genera that were identified only in the corresponding data set) of the
ESVs data set represented a total of only 2.67% of sequences (range of <0.001% to 1.44%; Table S3). For
the HTS 0.5 data, the unique genera (4 genera) of the ESVs data set represented total of less than 0.1% of
sequences (range of < 0.001% to 0.016%; Table S3). The data set of 97% OTUs did not contain any unique
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genera, and there was only one unique genus for the 95% OTUs data (Sternimirus , sequence abundance <
1%; Fig. S2; Table S3).

Morphological examination of the sediment samples recovered a total of 189 diatom taxa from 11 surface
sediment samples (Table 1), which included 59 genera (Fig. 4; Table S3). Unlike the per sample richness
correlations observed between the metabarcoding treatments (Fig. 2a-c), correlations were not obvious
between richness values from the microscopy and metabarcoding data (P > 0.398 for all cases; Fig. S3).
Across treatments, detected species richness by microscopy differed significantly only from the ESVs data
(Fig. 2d). The detected composition of genera by microscopy were compared with metabarcoding data,
which harbored 54 different genera for the ESVs data, 49 and 50 genera for the 97% and 95% OTU data,
respectively. The genus level comparisons (among 11 corresponding samples) revealed that 50.7-54.3%
of genera were shared between microscopy and metabarcoding treatments (Fig. 4). Compared with the
metabarcoding inventories, the microscopy data set harbored larger proportion of unique genera (Fig. 4).
From these, the majority were represented in low abundances in the microscopy data set (< 9 counted valves
per sample). However, counts of the valves assigned to Pseudostaurosira , one of the most abundant genera
that were completely missing from metabarcoding data, was 519 (11.77%) across the microscopy data set.

Comparing the relative abundance of valves and sequences of the matching genera between microscopy
and metabarcoding data, revealed overall significant positive correlations (Spearman R > 0.317 and P <
0.023; except for 97% OTUs HTS 10 vs . microscopy data, where P = 0.067; Fig. S4). The outstanding
exceptions werePantocsekiella and Achnanthidium , which had high relative abundance in microscopy, but
low abundance in metabarcoding data (Fig. S4). Vice versa , Staurosira and Aulacoseira were found to
have high relative abundance in metabarcoding data, but low in microscopy data (Fig. S4).

Community analyses

Mantel test and Procrustes analyses revealed that the inter-sample community similarities between metabar-
coding treatments were greatly correlated (Fig. 5; Table 2). For all cases, the Mantel correlation (i.e. Mantel
R) between HTS 10 and HTS 0.5 was higher than 0.851 and P < 0.001 (Fig. 5). Among intra-pipeline treat-
ments (HTS 10vs . HTS 0.5), 95% OTUs exhibited highest correlation (Mantel R = 0.969; Table 2; Fig. 5).
Procrustes correlations, however, revealed highest values between ESVs treatments (HTS 10 vs . HTS 0.5;
Procrustes correlation = 0.969, P < 0.001; Table 1), but a much lower value between 95% OTUs treatments
(Procrustes correlation = 0.688; Table 1). The high community similarity among the metabarcoding data
sets was also demonstrated by PERMANOVA analyses using treatment as fixed variable (P > 0.999 for all
cases). Moreover, no group-specific indicator OTUs were assigned to neither HTS 10 nor HTS 0.5 treatments
by indicator species analysis for any of the metabarcoding data sets.

The inter-sample community similarities (Mantel correlations) and Procrustes analyses between microscopy
and HTS data also demonstrated highly correlated patterns (microscopy vs . all HTS treatments: Mantel R
[?] 0.800, P < 0.001; Procrustes correlations [?] 0.681, P [?] 0.001; Fig. 6, Table 1). Compared with other
treatments, the 95% OTUs data set demonstrated slightly higher Mantel correlations with microscopy data
(Table 1), whereas the highest Procrustes correlations were found for the ESVs HTS 0.5 data set (Table 1).
Based on Random Forest analysis, the diatom assemblages in all treatments were most strongly affected by
conductivity, water depth, Si, Ca, Sr, Mn and Fe, however, with different orders in variable importance (Fig.
S5). Marginal tests (the significance of an individual variable when considered alone and ignoring all other
variables) showed consistent patterns for the most important variables for all treatments (Table S4). The
highly correlated community structures were also demonstrated in the ordination plots (Fig. 7).

Discussion

In the current study, regardless of sample size (10 g, 0.5 g) and bioinformatics pipeline (ESVs, 97% OTUs,
95% OTUs) applied, we found highly comparable diatom community patterns between metabarcoding data
and microscopic inventories from lake sediment samples. This was especially pronounced between the
metabarcoding treatments, i.e., amplicons from 10 g and 0.5 g of DNA extracts (HTS 10 and HTS 0.5,
respectively). Although the per-sample diatom richness was not significantly correlated between microscopy
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and metabarcoding data, community analyses indicated consistent patterns of environmental variables shap-
ing the diatom community structures, irrespective of sample-size and bioinformatics pipeline used. This
further demonstrates that metabarcoding is a viable alternative to detect diatom-environment relationships.

Sample size

Although the DNA extraction method may have a strong impact on taxa recovery in metabarcoding studies
(Schiebelhut, Abboud, Gomez Daglio, Swift & Dawson 2017; Sinha et al. 2017), previous comparisons of
different DNA isolation kits for diatoms have demonstrated compatible patterns for diversity and community
assembly (Vasselon, Domaizon, Rimet, Kahlert & Bouchez 2017). The present study also shows that richness
and community structure of diatoms are highly correlated between metabarcoding data of 10 g vs . 0.5 g of
sediment samples. Interestingly, the correlations of relative abundances of matching diatom genera between
metabarcoding and microscopy data sets, resulted in higher correlation values for the HTS 0.5 data (Fig.
S4). However, other studies comparing metabarcoding results from DNA extracts of various amounts of
substrate have reported contrasting results. For example, Penton, Gupta, Yu and Tiedje (2016) reported
significant effects of sample size (in terms of input quantity) on the community structure of fungi and bacteria
from soil. Higher diversity estimates were associated with 10 g of soil DNA extracts compared with 5 g,
1 g and 0.25 g. Studying meiofaunal communities from marine sediment samples, Brannock and Halanych
(2015) found that different extraction quantities did not result in significantly different diversity estimates,
however, the OTU community compositions were different. Exploring various eukaryotes from sediment
samples, Nascimento, Lallias, Bik and Creer (2018) also found significantly different diversity metrics and
community compositions for various sample sizes. They suggested that larger volumes of sediment are
necessary to capture the representative metazoan communities compared to the non-metazoan eukaryotes.
Therefore, the choice of a quantity of sediment for DNA extraction may depend on the expected distribution
of the target groups in the substrate, where the detection of more patchily distributed metazoan communities
requires larger quantities of sediment for analyses. Although it could be hypothesized that sample size may
affect also the recovery of some microbial groups, here we demonstrate that this was not the case for diatoms
from lake sediment samples (when comparing sample size on 10 g vs . 0.5 g). The benefits of using only up
to 0.5 g of the sample include a more time- and cost-effective DNA extraction procedure, and the possibility
to conduct meaningful analyses when only a limited amount of sediment is available.

Bioinformatics

Here, three different bioinformatics pipelines were used to analyze metabarcoding data. Combination of
analyses among metabarcoding data sets and between microscopy vs . metabarcoding data demonstrated
highly correlated patterns (Table 2, Fig. 3-7). Although the comparisons between microscopy and metabar-
coding data demonstrated highest Mantel correlation of the former with the 95% OTUs data set, Procrustes
correlation was highest with the ESVs data set (Table 2). Thus, the identification of the best performing
pipeline, in terms of consistency with microscopic inventories, may depend on the applied statistical method.
Nevertheless, considering the genus level comparisons from metabarcoding, the ESVs data set had the slightly
higher number of genus level identifications, and therefore a (marginally) higher match proportion with mi-
croscopy data. But interestingly, the ESVs data set harbored also one diatom taxon that is considered to
be purely marine,Trachyneis sp. (Fig. 4; Table S3). ESV assigned to the latter taxon, however, consisted
of only three reads across the whole data set. It is uncertain whether this low abundance ESV assigned
toTrachyneis sp. represents remaining sequencing errors or real occurrences, but raises caution in evaluating
data quality based on highest taxonomic richness alone. In any case, the differences between bioinformatics
workflows in this study were minor and indicated highly similar signals among all of them.

Although this study displayed an overall consistency of results obtained by different pipelines, several stud-
ies have demonstrated the influence of bioinformatics in metabarcoding studies targeting other organisms
(Majaneva, Hyytiainen, Varvio, Nagai & Blomster 2015; Sinha et al. 2017; Anslan et al. 2018; Pauvert et
al. 2019). The impacts may originate from inadequate error filtering processes (Edgar 2017), inaccurate
taxonomic annotation (Anslan et al. 2018) or inappropriate clustering methods in the specific case of di-
atoms (Tapolczai et al. 2019). Towards standardization of analyzing short (312 bp) rbcL metabarcoding
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data of diatoms for biomonitoring purposes, the studies of Tapolczai, Keck, Bouchez, Rimet and Vasselon
(2019) and Rivera, Vasselon, Bouchez and Rimet (2020) found that individual sequence units (ISU) approach
tend to outperform operational taxonomic units (OTU) based approaches. Nevertheless, furthest neighbor
OTU clustering and ESVs approach showed to perform equally well (Rivera, Vasselon, Bouchez & Rimet
2020). Our study also resulted in highly similar results across three applied pipelines (ESVs vs . two OTU
approaches), which demonstrates that the appropriate filtering of erroneous sequences and critical taxonomic
assignment of the target taxa may be a key step, with the potential of mitigating the otherwise considerable
effect of bioinformatics.

Taxonomic composition

Because different data sets in this study included ESVs, OTUs or morphospecies, the direct comparisons of
their taxonomic unity were performed at the genus level. In this study, metabarcoding results from 10 g
and 0.5 g of DNA extracts exhibited highly concurring taxonomic composition, with only few mismatched
taxa, which were represented by a low relative abundance of reads. In accordance with the community anal-
yses, this indicates sample-size independent patterns when detecting diatoms via metabarcoding from lake
sediments. However, comparisons between microscopy and metabarcoding data resulted in a higher number
of mismatched taxa (Fig. 4). Not completely matching identifications from microscopy vs . metabar-
coding have been reported in several previous diatom-related studies (e.g. Visco et al. 2015; Riveraet al.
2018; Tapolczai et al. 2019), with the possible reasons discussed within. One of the main reasons of such
mismatches is the incompleteness of the reference sequence databases, which consists of a limited number
of annotated taxa. For example, Sichuaniellalacustris , discovered only by morphological analyses, is the
unique representative of the genus Sichuaniella, which was originally described from Sichuan Province on the
southeastern Tibetan Plateau (Li, Lange-Bertalot & Metzeltin 2013) and has no genetic information in the
public databases. Therefore, the identity of this species in the metabarcoding data set cannot be confirmed.
Additionally, there are no reference sequences for genera such as Platessa ,Odontidium and Gomphosinica
in the public databases.Gomphosinica has been separated from Gomphonema and described as a new genus
based only on their morphological differences (Kociolek, You, Wang & Liu 2015). Thus, Gomphosinica in
the microscopy data set could potentially be represented asGomphonema in the metabarcoding data set.

The inter-investigator variation depending on changes in diatom taxonomy and the use of synonym names
could add additional layers for the mismatches between microscopy and metabarcoding data. In this study,
it is difficult to consistently separate Staurosirella andPseudostaurosira (missing from metabarcoding data)
fromStaurosira (present in metabarcoding data) under the light microscope and even with support from
SEM images. AlthoughPseudostaurosira was one of the most abundant genera in the microscopy data, it
was missing from the metabarcoding inventories, whereas the relative abundance of Staurosira was high in
latter data sets (Table S3). Medlin, Yang and Sato (2012) have pointed out that the molecular separation
of Pseudostaurosira andStaurosirella from Staurosira is arguable. On the other hand, in the few studies
that have attempted to merge morphological- and molecular-based phylogenies of the Fragilariaceae, the
morphological characterization is often poorly done (Morales et al. 2019). We speculate that morphologi-
cally identified Pseudostaurosira(especially Pseudostaurosira brevistriata ) corresponds toStaurosira in the
metabarcoding data, as their presence-absence patterns in our sediment samples correlates well (Table S3).
Furthermore, identification of Pseudostaurosira in the metabarcoding data sets was also limited due to a
fact that almost all originally named Pseudostaurosira were re-assigned toStaurosira in the curated R-Syst
diatom database (Rimet et al. 2016).

The majority of other missing genera from metabarcoding data sets were represented in very low abun-
dances in the microscopy data. Similarly, Kermarrec et al. (2013) reported that morphologically identified
low abundance taxa (< 1% from 450 valve counts) were often not detected in the DNA metabarcoding data
set. These low abundance taxa may indicate the transport of diatom valves with highly degraded DNA
from other locations (thus non-detectable with herein used primers). On the other hand, environmental
DNA could be carried along large distances (Deiner & Altermatt 2014), which also could contribute to the
observed ‘extra’ diatom taxa in metabarcoding data sets, which were not detected via microscopy. More-
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over, some of the diatom taxa with fragile and weakly silicified valves, such as Cylindrotheca ,Entomoneis ,
Fistulifera , Reimeria ,Seminavis , that were detected only in the metabarcoding data sets, might be sen-
sitive to the chemical treatment (e.g. HCl and H2O2) during sample preparation for microscopy. Based on
personal observations of water samples from Nam Co, we have confirmed the presence of several Entomoneis
andFistulifera species (data not shown), which further supports the assumption that valves of fragile diatom
species may be more prone to dissolution and therefore undetectable in sediment samples. Thus, incom-
pleteness of the reference databases, together with the continuously changing diatoms classification system
and DNA transportation characterizations contribute to at least some extent to the issue of non-matching
taxa between microscopy and metabarcoding results.

Perspectives

Assemblages of diatom communities reflect environmental parameters (Dixit, Smol, Kingston & Charles
1992), and therefore they are widely used as paleo-ecological indicators of lake ecosystems (Douglas & Smol
2010). We found that the diatom communities within sediment samples from Nam Co can be related to
the same environmental variables for both, the morphological and metabarcoding data sets, which is in
accordance with the study by Dulias, Stoof-Leichsenring, Pestryakova and Herzschuh (2017). This suggests
that inferring (paleo-) environmental characteristics via, for example, diatom-based transfer functions would
produce similar results using either method, where the high-throughput nature of metabarcoding analyses,
however, enables simultaneous processing of much larger numbers of samples in a time-effective manner.
Although not tested here, the additional ‘fine-tuning’ of the metabarcoding data with e.g. quantification
correction factors or including phylogeny of the OTUs has been suggested to further improve the (biomass)
correlations between microscopy and metabarcoding results (Vasselon et al. 2018; Mortagua et al. 2019) as
well as boost the applicability of the latter for biomonitoring purposes (Keck, Vasselon, Rimet, Bouchez &
Kahlert 2018). Because of the incompleteness of available DNA barcode databases, taxonomy-independent
methods for molecular taxa are another promising advancement towards the applicability of metabarcoding
in environmental surveys (Apotheloz-Perret-Gentil et al. 2017; Tapolczai et al.2019). Moreover, when the
preservation of diatom valves is poor, as for example in saline, high pH lakes with low sediment accumulation
rates (Flower 1993), DNA may still preserve in sediments as for example has been demonstrated by studying
‘non-fossilizing’ phytoplankton by means of sedimentary ancient DNA (Li et al. 2016). The strong similarity
of our metabarcoding results from 10 g and 0.5 g of DNA extracts implies that ‘small’ DNA isolation kits
(for ˜0.5 g) may serve as an alternative approach when the amount of sediments is limited in sedimentary
ancient DNA (sedaDNA) studies.
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Tables

Table 1 . Number of ESVs/OTUs/morphospecies per sample for metabarcoding and microscopy data.
TOTAL11 denotes the sum of ESVs/OTUs/species for 11 comparable samples of all data. TOTAL 20 denotes
the sum of ESVs/OTUs for 20 comparable samples of metabarcoding data. N.a denotes ‘not available’ data;
thus the last three samples were not included to HTS 10 vs . HTS 0.5 comparisons, and the analyses of
microscopy vs . HTS treatments were conducted using corresponding samples with available data.
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Sample ESVs (HTS10/HTS0.5) 95% OTUs (HTS10/HTS0.5) 97% OTUs (HTS10/HTS0.5) Microscopy

1 134/125 73/76 53/49 32
2 107/39 63/32 53/23 41
3 127/112 71/69 55/50 42
4 273/261 145/137 120/128 n.a
5 60/88 45/59 36/48 n.a
6 101/133 70/77 52/60 n.a
7 38/28 27/26 18/14 28
8 219/273 117/136 103/118 n.a
9 221/251 116/122 103/102 n.a
10 273/272 131/133 115/120 n.a
11 182/169 111/100 101/91 n.a
12 137/139 79/81 67/64 n.a
13 82/81 53/57 47/48 n.a
14 187/193 101/100 82/79 41
15 41/69 32/46 20/28 38
16 102/29 64/21 54/13 34
17 185/175 105/98 81/82 43
18 73/87 53/66 47/52 46
19 139/110 86/78 64/53 41
20 53/68 37/44 29/35 57
21 92/n.a 59/n.a 44/n.a 42
22 50/n.a 41/n.a 34/n.a 44
23 11/n.a 64/n.a 46/n.a 28
TOTAL 11 474/433 175/178 165/161 189
TOTAL 20 1011/1018 297/307 306/318 n.a

Table 2 . Mantel test and Procrustes analyses results between all treatments. HTS 10 and HTS 0.5 represent
metabarcoding data from 10 grams and 0.5 grams of sediments, respectively.

Treatment 1 Treatment 2 Mantel R Mantel P value Procrustes correlation Procrustes P value

95% OTUs HTS 10 95% OTUs HTS 0.5 0.9688 <0.001 0.688 <0.001
95% OTUs HTS 0.5 ESVs HTS 0.5 0.936 <0.001 0.933 <0.001
97% OTUs HTS 0.5 95% OTUs HTS 0.5 0.96 <0.001 0.831 <0.001
97% OTUs HTS 0.5 ESVs HTS 0.5 0.902 <0.001 0.888 <0.001
ESVs HTS 10 ESVs HTS 0.5 0.951 <0.001 0.969 <0.001
ESVs HTS 10 95% OTUs HTS 0.5 0.918 <0.001 0.929 <0.001
ESVs HTS 10 97% OTUs HTS 0.5 0.875 <0.001 0.821 <0.001
95% OTUs HTS 10 ESVs HTS 10 0.949 <0.001 0.777 <0.001
95% OTUs HTS 10 97% OTUs HTS 0.5 0.935 <0.001 0.689 <0.001
95% OTUs HTS 10 ESVs HTS 0.5 0.914 <0.001 0.705 <0.001
97% OTUs HTS 10 95% OTUs HTS 10 0.9686 <0.001 0.827 <0.001
97% OTUs HTS 10 97% OTUs HTS 0.5 0.937 <0.001 0.586 0.0015
97% OTUs HTS 10 95% OTUs HTS 0.5 0.934 <0.001 0.766 <0.001
97% OTUs HTS 10 ESVs HTS 10 0.901 <0.001 0.756 <0.001
97% OTUs HTS 10 ESVs HTS 0.5 0.852 <0.001 0.71 <0.001
Microscopy ESVs HTS 0.5 0.865 <0.001 0.818 0.003
Microscopy ESVs HTS 10 0.800 <0.001 0.777 0.001
Microscopy 95% OTUs HTS 0.5 0.889 <0.001 0.813 0.002
Microscopy 95% OTUs HTS 10 0.893 <0.001 0.681 0.007
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Treatment 1 Treatment 2 Mantel R Mantel P value Procrustes correlation Procrustes P value

Microscopy 97% OTUs HTS 0.5 0.879 <0.001 0.788 0.007
Microscopy 97% OTUs HTS 10 0.835 <0.001 0.684 0.008

Figure legends

Figure 1 . Illustration of the study design. HTS 10 and HTS 0.5 represent 10 g and 0.5 g (wet weight)
treatments for metabarcoding. Sequencing data from metabarcoding were subjected to three different bioin-
formatics pipelines. Morphological analyses of the diatoms included light microscopy (analyses of 400 valves)
and scanning electron microscopy (SEM).

Figure 2. a-c) scatterplots between per-sample richness of taxonomic units from HTS 10 and HTS 0.5
treatments. d) box plot for the number of ESVs/OTUs/morphospecies (log transformed) per treatment.
Different letters above the whiskers indicate significant differences according to Kruskal-Wallis pairwise test.

Figure 3. Venn diagrams of the diatom genera relations between HTS 10 and HTS 0.5 treatments (20
corresponding samples).

Figure 4. Venn diagrams of the diatom genera relations between treatments of HTS 10, HTS 0.5 and
microscopy (11 corresponding samples).

Figure 5. Mantel correlation plots between HTS 10 and HTS 0.5 treatments.

Figure 6. Mantel correlation plots between microscopy data and metabarcoding treatments (HTS 10 and
HTS0.5).

Figure 7. Ordination plots of diatom communities for all treatments. a-d) plots for corresponding 11
samples between microscopy and HTS 0.5 data; e-h) plots for corresponding 14 samples between microscopy
and HTS 10 data. Vectors on the plots denote most important variables as based on Random Forest modelling
and DistLM marginal tests. Length of the vector represents the importance of variable.

Supplementary material

Figure S1. Scatterplots between per-sample richness of taxonomic units from all metabarcoding treatments.

Figure S2. Venn diagrams of the diatom genera relations between pipelines (ESVs, 97% OTUs, 95% OTUs).

Figure S3 . Scatterplots between per-sample richness of taxonomic units from all metabarcoding treatments
and microscopy.

Figure S4 . Scatterplots between relative abundance of genera from metabarcoding treatments and mi-
croscopy. Relative abundance is calculated as based on the number of sequences and valves of the matching
genera between metabarcoding and microscopy data sets, respectively.

Figure S5 . Most important community assembly variables as selected by Random Forest analyses. Graphs
a-d) represent analyses results for 11 corresponding samples from microscopy and HTS 0.5 data sets. Graphs
from e) to h) represent 14 corresponding samples from microscopy and HTS 10 data sets.

Table S1. Sediment samples used in this study, and their measured environmental parameters.

Table S2. Primer used in this study. PCR primers = adapter+tag+pad+link+primer.

Table S3. ESV/OTU (and genus level) occurrence tables per samples for sequence data, and species
occurrence table for microscopy data.

Table S4. Marginal tests for all data sets. Included variables are the ones selected as most important by
Random Forest analyses.
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