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Abstract

Overland flow is the major contributor to soil erosion. To clarify the hydrodynamic characteristics of overland flow at small
Reynolds number, indoor experiments with fifteen unit-width flow discharges from 0.069 x 10-3 m2-s-1 to 2.5 X 10-3 m2-s-1,
five slope gradients from 5.23% to 25.88%, three surface roughnesses and two kinds of flow (80% glycerol and water mixed
flow and water flow) were systematically investigated. Results showed that mean depth and mean flow velocity can be good
predicted by unit-width flow discharge, slope gradient and surface roughness. Based on flow regime criterion of parameter m,
for 80% glycerol and water mixed flow, the flow regime was laminar flow. For water flow, it was between laminar flow and
turbulent flow. According to the transitional Fr of 1, the experimental flow state tended to subcritical laminar flow with the
increase of surface roughness. For 80% glycerol and water mixed flow, parameter K was 57. For water flow, parameter K was
increased with the increase of surface roughness and fluctuated as slope gradient increased. The resistance law of open channel
hydraulic for laminar flow (f = 96/Re) is not suitable for overland flow. In general, resistance coefficient had a good power
function with Re. Meanwhile, there was a high significant correlation between resistance coefficient and inundation ratio and
slope gradient. Resistance coefficient decreased as inundation ratio and slope gradient increased. For all flow regime in this study,
a more accurate resistance coefficient prediction model was established by multiple regression analysis. As for hydrodynamic
parameters, shear stress had a positive correlation with surface roughness. Meanwhile, stream power is not affected by increasing
surface roughness, while unit stream power was negative with surface roughness. The slope gradient played a more important

role in increasing the flow energy.
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Fig. 1 Schematic of the experimental setup



(a) 80% Glycerol and water mixed flow

0,007 0.007 0.008
k,=0.08 mm =018 mm k=038 mm
0.006 0.006
£ 0.006
<0005 £ oo0s £
= = =
= = =
20004 g
£ 20004 2 0.004
3 3 5
£0003 £ 0,003 =
2 3 g
= 0.002 = 0002 20002
0.001 0.001
0.000
0.000 0.001 0002 0.003 0.000 0.001 0.002 0.003 0,000 0.001 0.002 0.003
Unit-width flow discharge ¢ /1 Unit-width flow discharge ¢ / m*s” Unit-widih flow discharge ¢ / m*s"
(b) Water flow
0,005 0.006 0.007
k = 0.08 mm k,=0.18 mm k,=0.38 mm
N 0.006
E o004 e
= E E 0,005
= ol
E : 0.004 =
gooos g S 0.004
s S 0,003 3
= 0002 5 H 0.003
= 0.002 = 0.002
0.001
0.001 0.001
0.000 0.001 0.002 0.003 0.000 0.001 0.002 0,003 0.000 0.001 0002 0.003
Unit-width flow discharge ¢ / m*s" Unit-width flow discharge ¢ / m*s" Unit-width flow discharge ¢ / m*s’
® 00523 A J=0.1045 @ J=01564 v J=02079 & J=02588

Fig. 2 The mean depth



(a) 80% Glycerol and water mixed flow
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(a) 80% Glycerol and water mixed flow
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Fig. 4 The mean velocity versus mean depth
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Note: The dash line (/= 96/Re) represents the relationship between fand Re in open channel flow at laminar condition. The dash line

(f= 0.308/Re®?) represents the relationship between fand Re within 2,400 < Re < 20,000 (Savat, 1980).

Fig. 5 The relationship between fand Re
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Fig. 6 The relationship between f'and A (** represent the significance at p = 0.01)
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Fig. 8 Predicted resistance coefficient versus the measured value using Eq. (22)



(a) 80% Glycerol and water mixed flow
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Fig. 9 Summary estimation of the shear stress, stream power and unit stream power associated with three surface roughnesses
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(a) Predicted by Hirsch model (b) Evaluation of : 4 Re <1000
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Fig. 10 Evaluation of two widely used models based on experimental data of this study
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