
P
os

te
d

on
A

ut
ho

re
a

24
A

pr
20

20
|C

C
B

Y
4.

0
|h

tt
ps

:/
/d

oi
.o

rg
/1

0.
22

54
1/

au
.1

58
77

56
71

.1
29

17
84

3
|T

hi
s

a
pr

ep
ri

nt
an

d
ha

s
no

t
be

en
pe

er
re

vi
ew

ed
.

D
at

a
m

ay
be

pr
el

im
in

ar
y.

Microbiome Analysis Enables Non-invasive Monitoring of Rocky
Mountain Elk Populations

Samuel Pannoni1, Kelly Proffitt2, and William Holben3

1University of Montana System
2Montana Fish Wildlife and Parks
3University of Montana Missoula Division of Biological Sciences

April 28, 2020

Abstract

Rocky Mountain elk (Cervus elaphus nelsoni) seasonal migration, body-condition and sex ratios are important parameters for
characterizing elk populations but have thus far been outside the scope of non-invasive methods. Fecal microbiomes can be
surveyed non-invasively from scat samples and are associated with changes in diet, stress, age, disease and physical condition of
the host, as well as differences between sexes. With this in mind, we surveyed the fecal microbiome of Montana elk that varied
geographically (i.e. populations), by body condition, age and by sex. Our goal was to explore an approach for evaluating linkages
between the host animal and its microbiome composition, and to develop bioinformatic techniques useful for characterizing host
categories and population parameters based on microbiome analysis. We built a supervised-machine learning classifier based
on bacterial taxa with cross validation to predict each fecal microbiome’s affiliation to known host categories. The microbiome
classifier predicted host population, sex, age and body-condition with promising cross validation results. Monitoring wildlife
microbiomes represents a breakthrough for non-invasive conservation biology, and we provide proof of concept for obtaining low
cost, fine scale, management-relevant information from scat samples.
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Rocky Mountain elk (Cervus elaphus nelsoni ) seasonal migration, body-condition and sex ratios are impor-
tant parameters for characterizing elk populations but have thus far been outside the scope of non-invasive
methods. Fecal microbiomes can be surveyed non-invasively from scat samples and are associated with
changes in diet, stress, age, disease and physical condition of the host, as well as differences between sexes.
With this in mind, we surveyed the fecal microbiome of Montana elk that varied geographically (i.e. pop-
ulations), by body condition, age and by sex. Our goal was to explore an approach for evaluating linkages
between the host animal and its microbiome composition, and to develop bioinformatic techniques useful
for characterizing host categories and population parameters based on microbiome analysis. We built a
supervised-machine learning classifier based on bacterial taxa with cross validation to predict each fecal
microbiome’s affiliation to known host categories. The microbiome classifier predicted host population, sex,
age and body-condition with promising cross validation results. Monitoring wildlife microbiomes represents
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a breakthrough for non-invasive conservation biology, and we provide proof of concept for obtaining low cost,
fine scale, management-relevant information from scat samples.

INTRODUCTION

Wildlife species are threatened by numerous anthropogenic forces that erode the sustainability of popula-
tions, creating an increased reliance on management for species survival(Scott, Goble, Haines, Wiens, & Neel,
2010). However, methods for informing management practices are often invasive to the animal, sometimes
making sample collection limited or not feasible for financial, legal or ethical reasons, which can negatively
impact the value and quality of the results(Bissonette, 2017). Fortunately, breakthroughs in molecular and
genomic technologies have allowed culture-independent study of microbial communities (microbiomes; Fos-
ter, Schluter, Coyte, & Rakoff-Nahoum, 2017; Miller, Svanbäck, & Bohannan, 2018), leading to numerous
opportunities to improve our ability to understand animal populations through non-invasive sampling and
monitoring of wildlife fecal microbiomes(Lynch & Hsiao, 2019; U. G. Mueller & Sachs, 2015). These oppor-
tunities include the discovery that microbiomes reflect a myriad of interactions between the host organism
and its environment(Carroll, Threadgill, & Threadgill, 2009; Cho & Blaser, 2012; Hooper, Littman, & Mac-
pherson, 2012). Findings from other animal and human systems have expanded on this exciting potential,
describing associations between microbiomes and host sex(Bolnick et al., 2014; Vemuri et al., 2019), diet(De
Filippo et al., 2010; Muegge et al., 2011; Wu et al., 2011), stress(Rea, Dinan, & Cryan, 2016; Stothart et
al., 2016), age(S. Mueller et al., 2006; Yatsunenko et al., 2012), disease(Rausch et al., 2011; Round & Maz-
manian, 2009) and physical-condition(Kohl, Amaya, Passement, Dearing, & Mccue, 2014; Sonnenburg &
Sonnenburg, 2014; Turnbaugh et al., 2009). These studies provide an encouraging outlook for unobtrusively
determining health parameters of animals of interest in conservation biology and management by sampling
the fecal microbiome, rather than the animal itself.

The host and its microbial complement are co-evolving entities, now considered to be a “holobiont”, that
collectively comprise a single evolutionary unit that selection acts upon(Bordenstein et al., 2015; Brooks et
al., 2016). It is now worthwhile to investigate wildlife species through this holobiont concept, capturing the
complex roles and interactions of the host, microbiome and ecosystem inside and out—and non-invasively—to
better conserve their place in our wildlands(Trevelline, Fontaine, Hartup, & Kohl, 2019; West et al., 2018).

To realize the conservation potential of the holobiont generally, we sought to further develop and apply bioin-
formatic tools utilizing host-related microbiome information in wild Rocky Mountain elk (Cervus e. nelsoni )
populations. Multiple competing interests make elk management a good first target for improved monitoring,
since populations are distributed broadly and animals can be both desirable (e.g. for hunting and eco-tourism)
and a nuisance (e.g. from overpopulation, crop damage and disease spread perspectives) depending on the
season and location. Elk and other large North American ungulates are an integral part of ecosystems and
can provide the majority of biomass in predator diets(Metz, Smith, Vucetich, Stahler, & Peterson, 2012;
Stewart, Bowyer, Ruess, Dick, & Kie, 2006). However, their distribution and abundance is threatened by
emergent diseases like Brucellosis, Chronic Wasting Disease (CWD) and Tuberculosis (TB)(Proffitt et al.,
2011). The importance of elk management strategies is thus both ecological and economic and, in elk as
in other species of concern, future success depends on developing and deploying more efficient means of
informing management and policy(Scott et al., 2010; Shafer et al., 2015).

In the current study, we performed a biogeographical survey of elk fecal microbiomes using 16S rRNA
gene sequencing across four discrete Montana populations. Bacterial presence and abundance in the fecal
microbiome was then compared to individual estimates of host ingesta-free body-fat (hereafter body-fat),
sex, age and population location using machine learning techniques. Our intent was to show the plausibility
of a non-invasive approach for studying these metrics based on the individual’s fecal microbiome.

Microbiome communities generally have large numbers of diverse bacterial taxa, and theory suggests that
specific community members are associated with vital host functions, with benefits provided to the host
and the endosymbiotic community through a “leaky” surplus or common goods(Boon et al., 2014; Morris,
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Lenski, & Zinser, 2012). This creates a highly linked endosymbiotic community. Since these microbial com-
munities are subject to genetic drift within and between elk in a herd, when the total microbiome is explored
with unsupervised pattern recognition techniques (e.g. with principal coordinates analysis, PCoA), only the
strongest community signals are captured from the data. When multiple elk populations are compared, this
diversity can be seen as biogeographic clustering likely due to unique drift, selection and horizontal transfer
of microbes among animals in a population, leaving other function-specific taxa shared among populations
masked in the microbiome (Supplemental Fig. 1). In light of this problem, we used a feature selection (FS)
algorithm to reduce the dimensionality of the microbiome to better explore bacteria associated with specific
host parameters including sex, age, body-fat and host population (Supplemental Table 1).. Reduced com-
munities were then used to train linear discriminate classifiers (FS-LDA) with leave-one-out cross validation
(CV) to predict each microbiome’s affiliation to known host body-fat categories, sex, age or population,
respectively. Using this combination of supervised and unsupervised machine learning approaches allowed us
to recognize and separate the complex pattern responses and host states in the microbiome and also provided
validation of the models (through CV). This method can be further refined for non-invasive classification
into the future, allowing management-relevant information to be gained for individuals with more ease and
efficiency than with animal capture-based techniques.

METHODS

Sample Collection

For our study, we received fecal pellet samples from wild Montana elk from four populations, namely the
Bitterroot Mountains, Sapphire Mountains, Black’s Ford area of the Madison River, and the Tobacco Root
Mountains (Supplemental Fig. 3). Collection of scat samples, body-condition data and radio-collaring of elk
were conducted in February 2014 by MTFWP. body-fat data was not collected for males (N=19) since these
measurements are not informative for bull elk. The sampling used currently available and accepted invasive
methods for wildlife immobilization, measurements of body-fat, sex classification and age(R. C. Cook et al.,
2001, 2010).

Sample Preparation, DNA extraction and sequencing.

Frozen elk fecal pellets (-20° C) were prepared for DNA extractions by separating a standard weight (250 mg)
from one randomly selected pellet per individual using a sterile petri dish (10 cm) and sterile safety razor blade
for each sample. This fraction was placed into the designated sample tube from the Qiagen PowerSoil DNA
extraction kit (Qiagen Inc., Germantown, MD) and processed further using the manufacturer’s recommended
protocol. Resulting purified metagenomic DNA was eluted with PCR-grade water and stored at -20° C.

To assess the bacterial community present in the fecal DNA extraction, we used a generally conserved (i.e.
“universal”) 16S/18S barcoded primer set and PCR focusing on V4 & V5 variable regions of the rRNA gene.
The barcoded rRNA gene primers were 536F and 907R(Holben, Feris, & Kettunen, 2004). Once amplified, the
samples were gel purified using the QIAGEN Gel Purification kit (QIAGEN, Germantown, MD) following the
manufacturer’s recommended protocol for downstream direct sequencing. This gel purification step removed
any 18S eukaryotic DNA amplicons and artifactual PCR artifacts, thereby isolating and purifying the desired
~400bp 16S bacterial amplicons for sequencing. Illumina MiSeq 300 base-pair (bp) paired-end sequencing
was conducted for all sampled individuals using the v3 reagent kit.

Sequence analysis.

Primers from the MiSeq paired end reads were trimmed using cutadapt(Martin, 2011). The DADA2 package
was used in R to quality filter and trim, merge reads, call amplicon sequence variants (ASVs) and assign
taxonomy to the ASVs(Callahan et al., 2016). ASVs were taxonomically assigned with DADA2 instance of
the NaiveBayes classifier using the Ribosomal Database Project II release(Cole, Wang, Cardenas, & Fish,
2009). An ASV matrix was produced containing counts corresponding to the abundance of each ASV present
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in each elk sample and its taxonomic classification. The Phyloseq package was used to summarize ASV tables
into taxonomic bar plots(McMurdie & Holmes, 2014).

Feature Selection and Cross Validation

Metagenomic and 16S studies produce large amounts of data because of the need to sample microbial
communities as deeply and completely as possible, but not all taxa have predictive power during statistical
analysis for determining host states. We used a form of the Sequential Forward Floating Search algorithm
(i.e. Feature Selection—FS) to select for informative genera from the elk microbiome(Pudil, Novovičová,
& Kittler, 1994). This algorithm selects a subset of genera from the total pool using a heuristic method
that maintains (or minimally reduces) the performance of the complete data set. The complete data matrix
contains “noisy” genera that obscured the biological patterns present. FS avoids nesting issues where features
(in this case bacterial taxa) are falsely fixed early in the selection process (an issue with other feature selection
methods which results in reduced performance)(Saeys, Inza, & Larrañaga, 2007). By allowing all features to
be added or subtracted as the algorithm progresses (essentially “floating” the selections), features are allowed
to interact to produce dynamic and unbiased performance results not dependent on starting conditions. The
FS algorithm employed herein uses J3 scores, a form of scatter matrices that rewards close clustering within
groups of data points and rewards increased distance between groups of data points using Euclidean distances
in multidimensional space. We produced tables of FS taxa sequentially with 2 through 30 features. For each
feature table, a linear discriminate classifier was created and tested with CV, which uses a leave-one-out
method of training and testing to reduce over-fitting the model to the training data set(Liu, Chen, Sheng, &
Liu, 2014; Saeys et al., 2007). This method removes a sample from the training data, builds the model with
remaining samples then tries to predict the classification of the removed sample. This leave-one-out method
is iterated over all samples (N-1) to calculate the CV accuracy by summing the number of CV events in the
denominator and summing the successful classification events in the numerator (e.g. 25/26 = 96.15% percent
correct). The intent of training the model in this way is to allow it to function on future data sets of similar
character with very little optimization necessary, potentially producing an optimized model for determining
these associations blindly from non-invasive scat samples.

We balanced classifier performance with over-fitting by comparing the CV performance differences between
multiple numbers of features for signs of overfitting(Braga-Neto & Dougherty, 2004). We visualized this
relationship with box plots and linear discriminant analysis (LDA(Liu et al., 2014); Supplemental Fig. 4).
To help choose the optimal number of features for the visualizations, we computed a Pareto Front for multi-
parameter optimization including accuracy, number of features and variance (not shown). We have thus
named our workflow FS-LDA.

RESULTS

Study populations, field measurements and 16S survey.

We sampled 110 elk across 4 populations in Montana. Collection of scat samples, sex classification, age
estimation and body-condition data were conducted in February 2014 by Montana Fish, Wildlife and Parks
(MTFWP). Not all measurements were taken for all individuals. During the winter, elk body-condition is
highly relevant to cow elk survival since elk depend on stores of body-fat to supplement their energy demands,
especially in pregnant females(R. C. Cook et al., 2013). Body condition data was collected during capture by
MTFWP personnel using a portable ultrasound machine to estimate levels of ingesta-free body fat (body-fat;
see Methods). Female elk body-fat ranged from ~5% to ~13% (Supplemental Figure 5). Sequencing of partial
16S rRNA amplicons from each fecal sample provided a survey of bacterial presence and abundance in the
microbiome (Supplemental Fig. 2).

Classifier for elk population.

Elk populations included the Bitterroot Mountains, Sapphire Mountains, Black’s Ford area of the Madison
River, and the Tobacco Root Mountains (Supplemental Fig. 3). Analysis of feature-selected elk microbiome
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data (Fig. 1) and total elk microbiome data (Supplemental Fig. 1) showed strong patterns of elk population
structure (biogeography). These signals of biogeography in the microbiome will naturally be mixed with (or
potentially mask) other signals such as those of starvation, disease, and other unmeasured stresses affecting
the host and its microbes. Although the unsupervised clustering showed natural groupings of elk populations
(Supplemental Fig. 1), FS was found to further “denoise” the signal of biogeography by filtering non-associated
taxa from the analysis (Fig. 1), providing tighter clustering and an improved visualization overall. The elk
FS-LDA population classifier performed with 81 percent CV accuracy using 23 bacterial genera.

The strength of the relationship between biogeography and the microbiome is also supported by consistent
accuracy values across all FS dimensions from 2 to 30 (supplemental Fig. 4). This pattern suggests that the
predictive genera selected during FS vary in presence or abundance collectively by geographic location and
that this biogeographic relationship has low sensitivity to particular genera since many dimensions display
this relationship.

Classifier for body-fat.

Body-fat is a good predictor of survival and reproductive outcome in female elk(J. G. Cook, Cook, Davis,
& Irwin, 2016). FS-LDA was used to classify bacteria from female elk across three populations (body-fat
data was not collected for the Bitterroot population) and was trained on two classes, high ([?]8%) or low
(<8%) body-fat (Fig. 2, left panel). The performance of the classifier for 2 elk body-fat categories was
supported by low levels of overlap between clusters and by high CV accuracy (91%, where 50% would be
random). Classifier accuracy was high despite combining data from 3 elk populations, which included the
strong confounding signal of biogeography in the total microbiome. The results support a strong biological
connection between microbiomes and host body condition. When more-specific classes were used to train
the model (splitting the continuous distribution of body-fat into 3 and 4 bins), there was a strong trend in
the ordination plot, but lower overall CV accuracies were obtained (77.8% and 58.3% respectively; Fig. 2,
middle & right panel). This suggests that a finer-resolution biological pattern between the microbiome and
elk body-fat may exist, but FS-LDA may be suboptimal for the continuous structure of the body-fat data.
It is possible that more specific classification of microbiome-body-fat interactions could be achieved with
further exploration of continuously distributed data classifier methods.

Classifier for sex determination

Male and female elk across the 4 Montana populations were included in this analysis (N=106). Due to
female elk being more abundant and prioritized during sampling (due to the polygynous mating system
of elk), the sample data was skewed toward females (87:19). This made classification difficult to interpret
due to unequally weighted classifier training groups. Nonetheless, microbiome clustering delineating sex was
obtained with high CV accuracy after normalizing bin sizes between males and females by either sampling
males with replacement (bootstrapping) up to 87 samples (Fig. 3, top panel), or by randomly rarefying
female samples to 19 individuals (Fig. 3, bottom panel). Bootstrapping produced ordination clustering by
sex with 90 percent CV accuracy. Multiple random bootstrap iterations were performed with little change
to the outcome of the classifier indicating the method was not sensitive to the random effects of sampling
with replacement (some data not shown). Random rarefaction produced similar results in the visualization,
with a comparable CV accuracy of 89 percent, which was qualitatively repeated across multiple random
rarefaction iterations (Fig. 3, bottom panel, iterative data not shown).

Classifier for age

Age information was collected by observing tooth eruption and wear patterns for female elk in the sapphire
population (N=34) and estimates ranged from 3-10 years(Hamlin, Pac, Sime, DeSimone, & Dusek, 2000).
The FS-LDA model was trained on 2 age bins. The model used 8 taxa and performed with 87% CV accuracy
(Fig. 4).
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DISCUSSION

This study illustrates the strong linkages between the host animal (elk), its microbiome (across individuals),
and the environment. Previous research in other model systems has shown the potential for both biogeo-
graphic structuring of the microbiome(Linnenbrink et al., 2013) and host-associated responses independent
of biogeography(Cho & Blaser, 2012) . Analyses of interactions of the host microbiome with more-subtle
variables like host health parameters are rarely conducted alongside a large geographical survey or on large
wild animals. Here, we have demonstrated that the elk microbiome contains bacterial taxa that respond to
both a strong correlate (population) and simultaneously occurring, but more subtle correlates (individual
body-fat, sex and age class). Thus, we have developed and described herein an approach that allows us to
disentangle microbiome responses to multiple host parameters of varying strength from the same bacterial
sequence data set. In this pilot study, elk fecal microbiome composition has been shown to associate with
body-fat, sex, age class and biogeography, an outcome that can guide the future use and development of
microbiome-based monitoring of wildlife populations. These findings illustrate the potential of using this
non-invasive, microbiome-based approach to monitor wildlife on the landscape and to potentially detect
other biologically important attributes such as zoonotic diseases, predation stress and resource competition
by observing effects on the intestinal microbiome.

Are differences in microbiome composition driven by host genetic differences or environmental factors?

Population genetic studies of nearby elk populations have shown limited female-specific gene flow and low
standing genetic diversity for both sexes (mitochondiral FST = 0.161; nuclear FST = 0.002)(Hand et al.,
2014). This observation supports the hypothesis that microbiome compositional differences seen between
populations of female elk across Montana are not due to host genetic differences between the populations
but are likely due to environmental factors and may be maintained by a lack of transmission between elk
groups due to limited female movement.

Can microbiome-based measurements meet or exceed information derived from traditional physical measure-
ments of the host?

Because measurements obtained by invasive sampling (e.g. immunological, endocrine, nutritional and
metabolic data) are an interdependent part of a larger physiological regulatory network in the host, these
traditional biomarkers are often correlated(Warne, Proudfoot, & Crespi, 2015). Host parameters are gen-
erally measured invasively or observed non-invasively (e.g. body-fat and age are invasively measured, and
predation is observed). Conversely, microbiome compositional analysis of a single, non-invasively obtained
fecal sample containing hundreds or thousands of interacting bacterial taxa can be used to associate a host’s
condition to its microbiome compositional response by applying the FS-LDA approach employed here. Once
these key taxa and patterns are identified, one can subsequently obtain temporal fluctuations and other
trends through multiple sampling events. Additionally, the microbiome can be used in direct conjunction
with measurement of these other biomarkers to produce a deeper understanding of host condition and re-
sponse when sampling is not limited (e.g. by pairing with blood or tissue sampling). To understand the
biological context of these markers and determine where covariance diverges, it is advisable to compare a
suite of markers (many hundreds of bacterial taxa) at once, across space and time for a given measurement,
since sensitivity and accuracy may vary under such conditions.

In addition to direct host influence on microbiome composition, microbiome community structure can also
be interpreted as an emergent property of external environmental variables experienced by the host, such
as climatic variation, dietary composition and availability, and landscape heterogeneity. Some of these
variables have been shown to produce temporal and spatial variation in animal microbiomes(Kartzinel et
al., 2015; Linnenbrink et al., 2013). In the future, the combination of supervised and unsupervised machine
learning approaches may allow us to recognize associations between microbiome taxa and habitat type or
diet availability to produce insights to guide further investigation of these ecological interactions.

How can microbiome associations be used for animal conservation and population management?

6
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With this approach, information can be collected relatively inexpensively (and therefore population-wide)
on individual animals using the fecal microbiome. This increased scope of sampling may allow a more direct
management of animal health or may be used to identify and ameliorate disease by its ability to provide a
bigger “net” with simple field techniques and lower per-sample cost. The approach may be more relevant
in small genetically isolated populations or during planned translocations, where individual animals are
more impactful to population persistence, but individual-based wildlife management should become more
important as the threat of disease increases with climate change and other anthropogenic disturbances.

Although not specifically tested here, microbiome-derived, individual-based measurements could provide
data for individual-based population models incorporating survival, age and reproduction. The ability to
collect individual-based data has not been explored in many systems due to cost and logistical limitations,
which is why these measurements are often not collected and models are often simplified with a single
survival parameter estimate for an entire age class (when available). This simplification prevents the appli-
cation of individual-based modeling and may decrease our understanding of drivers of demographic change
and reduce confidence in predicting future population responses. Microbiome analysis may help overcome
these limitations by providing additional model information (e.g. individual population affiliation, age, sex,
and body condition) from the same non-invasive fecal sample conducted within a DNA mark-recapture
framework(Lukacs & Burnham, 2005; Marucco, Boitani, Pletscher, & Schwartz, 2011).

More recent population models have been evolving in complexity to include environmental variation affecting
population parameters, and these models have therefore become more accurate(Schaub & Abadi, 2011), but
also more data hungry. However, our limited understanding and ability to measure how local environmental
effects influence individual animals in the short term has caused this source of variation to remain largely
undefined in wildlife population modeling. As the relationships between environmental-animal-microbiome
feedbacks are delineated, the microbiome could function as a proxy for environment-animal interactions and
help in assessing species-specific environmental needs and monitoring goal-oriented habitat improvements.
Indeed, further understanding the connection between environment and animal health, and predicting its
effects using microbiome data can help resolve some of the general challenges inherent in measuring and
understanding demographic changes in wildlife populations.

Age and the microbiome.

We demonstrated that the elk age differences can be detected in the microbiome, which suggests its future
use in non-invasive population modeling or in augmenting invasive methods for age estimation. Age of
individuals has been difficult to measure in many wildlife scenarios where adults do not possess any physical
characteristics that can be passively observed after they near reproductive age. The relative ease of fecal
microbiome sampling may provide the means to investigate the age structure of populations.

Transition matrices are a vital component of many population models and require estimates of individuals
entering or leaving age-specific reproductive classes of the model system. As noted above, this is often the
most difficult information to acquire and the ability to readily obtain this data would greatly improve the
accuracy and applicability of modeling wild systems. Although we did not sample the ‘yearling’ age category
and therefore could not include it in the age model, we expect this early age class to be the most different
from the adult age class due to the more recent transition from milk to forage and the physiological changes
that occur in the rumen as an elk matures. This suggests that once this age class is included in the model,
a complete non-invasive method for grouping unknown samples into biologically relevant age classes may be
possible.

Population effects on microbiome composition.

The microbiome shows strong patterns of biogeography delineating different elk herds. These patterns
are consistent across most tested dimensions of the microbiome (2 taxa through 30 taxa), indicating that
biogeography is insensitive to which bacteria are selected in the LDA (Supplemental Fig. 4). This is
promising for understanding migratory animal herd affiliations and monitoring individual movement between
herds using the fecal microbiome. This pattern also suggests that environmental and site-specific effects are
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important in structuring fecal microbiome communities in elk.

Sex effects on the microbiome.

Delineating males from females using the feature selected fecal microbiome data can also be valuable to
conservation. When sampling fecal pellets non-invasively, it is often impossible to know the sex of the
animal without additional testing (e.g. PCR amplification of host markers such as the SRY gene). The
ability to readily assign sex to each fecal sample allows us to partition other microbiome-based findings by
sex at no additional cost, which can be desirable. Models for microbiome-based estimates of sex can also be
built or validated with PCR methods using a subset of the fecal samples when needed. This has implications
for future non-invasive fecal sampling, where these data can be used by managers to estimate sex ratios in a
population during a fecal sampling event, independently verifying ratios observed by observational counts,
or filling in gaps in information for populations where ‘sightability’ is low, such as within forest cover. In
addition, this approach when combined with microbiome-based population delineation, could potentially
be used to specifically monitor male and female elk movement independently between herds (e.g. monitor
so-called “satellite bulls” or female specific migration) as mentioned in the previous section.

Microbiome-based estimation of ingesta-free body-fat.

Unlike biogeographic and other data, which can accurately be represented as discrete variables (e.g. common
point locations, sex), body-fat data are typically distributed along a continuous gradient from low to high
(Supplemental Figure 5), and as such we expected overlap near the imposed categorical bins in the LDA. A
model for validating continuous data predictions is currently needed for body-fat data. The leave-one-out
CV approach applied here attempts to fit and test the model against body-fat categories, which leads to the
appearance of reduced model accuracy because body-fat values are continuous. We expect improved confi-
dence in body-fat model results once an appropriate validation scheme for continuous variables is developed,
such as a “fuzzy” boundary approach(Nguyen, 1997).

Although predictions of body-fat performed less well when using strict binning procedures compared to sex
and population, exploring associations of a set of taxa to a binned range of body-fat remains informative,
especially with repeated bin permutations. If the same taxa remain highly associated with a given biological
measurement regardless of the imposed binning, this provides support for those taxa having a role in the
functional phenomena behind the measurement (even if the direct function is unknown). We concede that FS-
LDA is probably not the best method for developing predictive biomarkers for continuous data as currently
presented, but our method does suggest the ability to discover associations that can be further developed
and tested for functional relevance. For example, the continuity in bacterial features selected by the model
across different numbers body-fat groups suggests biological relevance of the association of these bacteria
with host body-fat (Supplemental Fig. 5). This method provides proof of concept and encourages the use
and development of microbiome analyses for conservation science once statistical methods for continuous
data are discovered or constructed.

Conclusion.

The overarching goal of this research was to explore an approach for identifying host animal measurements as-
sociated with fecal microbiome composition and to develop bioinformatic techniques useful for their analysis.
Microbial biomarkers represent a less invasive alternative for acquiring information on wildlife populations
than traditional sampling methodologies and could augment or even outperform traditional methods once
strongly associating microbial taxa are identified and vetted for stability across population-space and time.
The research reported herein provides the foundation for continued development and expansion of microbial
biomarkers into a diverse range of wildlife species (including non-mammals) for monitoring and conservation.
The products of such efforts could eventually provide insights and novel solutions to current wildlife man-
agement issues in general and allow threatened and endangered species to be studied with less perturbation.
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Pudil, P., Novovičová, J., & Kittler, J. (1994). Floating search methods in feature selection. Pattern Reco-
gnition Letters . Retrieved from http://www.sciencedirect.com/science/article/pii/0167865594901279

Rausch, P., Rehman, A., Kunzel, S., Hasler, R., Ott, S. J., Schreiber, S., . . . Baines, J. F. (2011). Colonic
mucosa-associated microbiota is influenced by an interaction of Crohn disease and FUT2 (Secretor) genotype.
Proceedings of the National Academy of Sciences ,108 (47), 19030–19035. doi: 10.1073/pnas.1106408108

Rea, K., Dinan, T. G., & Cryan, J. F. (2016). The microbiome: A key regulator of stress and neuroinflam-
mation. Neurobiology of Stress , Vol. 4, pp. 23–33. doi: 10.1016/j.ynstr.2016.03.001

Round, J. L., & Mazmanian, S. K. (2009). The gut microbiota shapes intestinal immune responses during
health and disease. Nature Reviews. Immunology , 9 (5), 313–323. doi: 10.1038/nri2515
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SUPPLEMENTARY INFORMATION (separately attached)

Supplementary index:

S. Fig. 1 - PCoA of elk total microbiomes

S. Fig. 2 - Microbiome bar-plots of Genera

S. Fig. 3 - Sampling location map

S. Fig. 4 - CV box and whisker plots for population analysis

S. Fig. 5 - Body-fat of female elk

S. Table 1 - Bacteria used in each FS-LDA Classifier
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