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Abstract

Serious disconnection among researches on individual physiological adaption, population genetic diversity and spatiotemporal
demography has obstructed us in the knowledge of plant population ecology. Here we develop an approach to integrate those
three research aspects by taking advantage of recent knowledge about DNA methylation and multivariate analysis. We show
that by using various epigenetic parameters corresponding to individual physiological metabolic reprogramming potential, gene
expression repression degree and physiological reaction characteristics, the contribution of various biotic and abiotic factors to
an individual state and population structure can be quantified. Furthermore, population dynamics can be narrowly estimated
by analysing DNA methylation of populations at different developmental stages. This study demonstrates an approach for the
overall analysis of plant populations and exploring the spatiotemporal dynamics and developmental mechanisms of a population
using Castanopsis chinensis as the model species.

Introduction

As the basic functional and assembly units of communities, populations play a critical role in ecological and
evolutionary research. Because individual heterogeneity is ubiquitous in natural populations, to accurately
assess population structure, status and destiny requires a basis in an integrative measure of differential
responses of different genotypic individuals in different life cycle stages to environmental changes (Valpine
et al ., 2014). By now, a robust body of literature has discussed the forming and maintenance mechanisms
of plant population (Crone et al ., 2011; Fabritius, Singer, Pennanen, & Snäll, 2019). These papers focus on
the genetic analysis of population structure, demographic analysis of population dynamics and physiological
analysis of individual adaptive mechanism (Collins & Gardner, 2009; Wang et al ., 2014; Quintana-Ascencio
et al ., 2018). However, different ecological definitions and scales among these three research aspects cut
off their mutual connections and hinders us in exploring the spatiotemporal dynamics and developmental
mechanisms of population, especially at the within-population level, although ecologists have tended to
evaluate the predictive capability of models by integrating more and more population information into
meta-matrix models (Crone et al ., 2011; Fabritius et al ., 2019; Plard et al., 2019).

First, although population genetic structure has been extensively studied, neutral molecular markers (e.g.,
microsatellites or RFLP) used in genetic diversity research have failed to respond to environmental change
(Andersen & Lubberstedt, 2003). Variation at marker loci is not an accurate predictor of genetic variation
at loci contributing to phenotype, that is, adaptive variation. Because of this, analysis of population ge-
netic structures focuses on seed and pollen dispersal and its effects on gene flow (Browne, Ottewell, Sork
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& Karubian, 2018). Both seed and pollen dispersal are only preliminary steps for population expansion.
The final population colonisation and expansion, as well as the formation of spatial distribution pattern, are
determined by the interactions between individuals and habitat selection (HilleRisLambers, Adler, Harpole,
Levine & Mayfield, 2012). Second, because of the lack of genetic diversity background of populations, exper-
imental individuals used in physiological analysis can maybe not represent the whole population well enough.
At the same time, physiological indicators, such as enzymes, products or substrates of biochemical reaction,
among others, only represent one aspect of individual physiological state. Because of the randomness of
individual and physiological parameter selection, population research results may be biased (Plard et al .,
2019). Third, in recent years, demographic population models have tried to address individual heterogeneity
due to age, size and so on (Plard et al ., 2019). However, those indicators are not correlative with individual
basic and instantaneous genetic physiological states. They are just the description of age-related cumulative
growth (Browne et al ., 2018, Hamel et al ., 2017; Plard et al ., 2019).

Our research is motivated by those disconnections among research on populations. A key to eliminate the
gap among different population research directions is to search for parameters that are definite, measurable
and directly related with environment and individual genetic background. Responding to environmental
variation, DNA methylation may trigger different gene expression patterns by blocking the promoters at
which activating transcription factors could bind and then controlling individual developmental recombina-
tion to produce different phenotypes (Suzuki & Bird, 2008; Schubeler 2015). DNA methylation has attracted
ecologists’ attention in recent years, but relevant research has surrounded the relationship between popu-
lation genetic structure and population DNA methylation-variable positions (MVPS) variation pattern and
the qualitative relationship between MVPS variation and environmental factors (Heer, Mounger, Boquete,
Richards & Opgenoorth, 2018; Moler et al ., 2018). The non-quantitative analysis and DNA methylation
parameters’ insufficiency makes it so DNA methylation in population research is still a largely unexplored
area.

DNA methylation includes full-methylation and hemi-methylation. Full-methylation was proved to inhibit
gene expression in a large body of evidence (Heard & Martienssen, 2014). However, hemi-methylation
can either activate or repress gene expression, and activation seems to be more common than repression
(Couldrey, Brauning, Henderson, & Mcewan, 2015; Fang et al ., 2016). Hemi-methylated CpG sites were
proven to be enriched at core pluripotency loci, and DNA demethylation was enriched in these loci, which
promoted somatic cell reprogramming (Heet al ., 2019). Therefore, the DNA hemi-methylation rate is closely
related to development reprogramming potential (Liu et al ., 2013; Heard & Martienssen, 2014; Couldrey et
al ., 2015; Schubeler, 2015; Fang et al ., 2016; Harrison et al ., 2016; Heer et al ., 2018; Moler et al ., 2018; He
et al ., 2019). Genome-wide MVPS variation at is a rounded description of individual physiological reaction
(Couldrey et al ., 2015). By appropriately using various epigenetic parameters, DNA methylation can
completely represent individual physiological information and then the population spatiotemporal dynamic
(Baubec et al ., 2015; Schubeler, 2015).

Here, we use Castanopsis chinensis populations in Dinghu Mountain (DHS) as a model to demonstrate an
approach in which we explore the spatiotemporal dynamics and developmental mechanisms of population
by integrating various information on population with DNA methylation.C. chinensis is one of the most
important constructive species widely distributed from South China to Vietnam. C. chinensispopulations in
DHS are in two different development stages. One population has been conserved since it was cut down more
than 60 years ago (hereafter, the recovering population). The other population has never been disturbed as
it is protected by the nearby Qinyun Temple for over 400 years (hereafter, the native population) (Chen,
Rui, Zhou, Ye & Liu, 2016). These populations were studied for their population genetic structures (Wang
et al ., 2014), demographic dynamics (Wang et al ., 2014; Chen et al ., 2016), habitat conditions (Chen et
al ., 2016) and physiological adaptions. Now, integrating these various studies on C. chinensis population
is much-needed for us to narrowly estimate population spatiotemporal dynamics.

Materials and Methods

Material, sample site and micro-environmental
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A 20-hectare plot was selected in an evergreen broad-leaved forest located in DHS National Nature Reserve
(112deg30’ 39"–112° 33’ 41" E, 23° 09’ 21"–23° 11’ 30" N). This forest is characterised by a south subtropical
monsoon climate. This choice plot was divided into 500 20×20 m smaller plots and one C. chinensis
individual in each small plot was selected randomly. We collected 308 individuals in recovering stands and
73 individuals in native stands (Fig. 1a-b). From each individual, 3–5 new completely spread leaves were
collected and mixed to extract DNA using the CTAB method. For individual variables, we recorded diameter
at breast height (DBH) and 14 environmental variables including soil water content (SWC), soil bulk density
(BD), soil pH values, soil organic matter (SOM), available potassium (AK), available phosphorus (AP),
available nitrogen (AN), total nitrogen (TN), total phosphorus (TP), total potassium (TK), altitude, aspect,
slope, and convexity as described by Chen et al . (2016). C. chinensisis a wind-pollinated plant, and seeds
are dispersed by animals (Peng & Xu, 2005). The general information about the soil and topography of the
two stands is given (Fig. 1c).

MSAP and SSR

SSR data were extracted from published SSR experimental results ofC. chinensis in DHS (Wang et al ., 2014).
Methylation sensitive amplified polymorphism (MSAP) is widely used in studies of population epigenetic
variation for its being simple and relatively inexpensive (Latiff, 2009). MSAP in this paper follows the way
described by Schulzet al . (2014). A set gradient parameters method and orthogonal experiment method
was used to optimise the optimal reaction system and adapter sequences (see supporting information: The
optimal reaction system, Table S1). First, 128 primers were randomly combined based on the EcoR I and Hap
II/Msp I universal primers. After polymorphic amplifying, the products were electrophoresed and screened
by ABI 3730XL DNA. Based on the visualised peak figure, six primers that could amplify clear, complete
and high polymorphism bands were selected (Table S2). GS500 was used as the DNA standard. To ensure
that the data were credible, using GeneMarker version 2.2.0 (SoftGenetics), 25–30 well-defined sites were
selected from ~100–500 bp fragments for each primer in later research. The fragment statistic also followed
Schulz’s way (Schulz et al ., 2014).

A controversial defect in MSAP is that scoring of MSAP data may lead to ambiguous interpretation of
MSAP data because a cytosine in any sequence context can be methylated with decreased frequency for
CG, CHG and CHH motifs (H = A or T or C) (Fulneček & Kovař́ık, 2014). In addition, full methylation of
external cytosines (mCCGG) cannot be detected by MSAP (Xia, Zou, Zhang, Feng & Wang, 2014). However,
a screening of literature revealed that, for quantification of genome-wide cytosine methylation, methylation
sites assayed by MSAP was greater than those obtained by high-performance liquid chromatography, which
is recommended because of its global assessment, accuracy and reproducibility (Alonso, Pérez, Bazaga,
Medrano & Herrera, 2016). Furthermore, full-methylation and hemi-methylation show clear distinction in
MSAP analysis.

Data analysis

General statistical analysis

Before elucidating the relationships among the methylation states, environmental factors and individual
characteristics, we used the Kolmogorov-Smirnov test to detect whether the assumptions of normality were
satisfied. If not, a non-parametric test was employed. All statistical tests were performed in R v. 3.1.0.
The spatial analysis, multiple regressions on distance matrices analysis (MRM) and multivariate variation
partitioning were performed as has been shown before (Chen et al ., 2016). The details are as follows.

Spatial analysis

Individual methylation rate and epigenetic variation may be associated with geographical distance. We used
principle components of neighbourhood matrices (PCNM) implemented in the R package “vegan” (Oksa-
nen, 2015) to model those relationships. Moran’s eigenvector mapping(MEM)was used to calculate spatial
variables with R. Before calculating the semivariance, polynomial trend-surface regressions on each variable
were performed using the method described in Chen (Chenet al ., 2016). Residuals from the trend-surface

3
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regressions were used to generate the semivariograms and the confidence envelopes in spatial autocorrelation
analyses. In short, in each lag class, sample values were randomly selected and a semivariogram was calcu-
lated based on the selected data in 10,000 randomisations. A 95% confidence envelope was then obtained by
calculating the 2.5 and 97.5 percentiles of the randomly generated semivariance values in each lag class.

The relative contribution of edaphic, topography, DBH and spatial to methylation rate

Variation-partitioning is a method using tables of various variables. By adjusting the coefficient of deter-
mination, partitioning provides an unbiased estimate in both multiple regression and canonical redundancy
analysis on the variation of methylation level data table that is explained by the various tables of explanatory
variables. In here, the multivariate variation-partitioning approach was conducted by using the R package
“varpart” to quantify the relative contributions of microhabitat, individual life stage and spatial attributes,
as well as their potential intersections, to the variation of methylation rate. Before the variation partition-
ing analysis, the variables most significantly influential to methylation level were chosen by permutational
forward model selection by using the method developed previously (Chen et al ., 2016) with the R package
“packfor”.

Statistical estimation the effect of edaphic, topography, DBH, genetic variation and spatial on
MVPS

The relative influence of microhabitat, individual life stage, genetic variation and spatial attributes on MVPS
were determined by using MRM in R 3.1.0 with the “ecodist” packages (Goslee & Urban, 2007). MRM,
an extension of partial Mantel analysis, can employ non-parametric or non-linear multiple regression. In
this study, independent variables increasing one by one from single edaphic variables to multiple variables,
such as edaphic, topography, spatial, individual life stage and genetic variation were used to construct
five MRM models. We first used Spearman correlations to assess the relationships between environmental
distance matrices and the MVPS matrix; then the significant explanatory variables were identified using a
forward-selection procedure; finally, the significance of MRM models was tested with 1,000 permutations
on the objects of the response distance matrix. The r2 from MRM analyses was used to assess MVPS
variation explained by these significant environmental variables, and the significantly correlated variables
were excluded within each group of variables (edaphic, topography, individual life stage, genetic variation
and spatial variables). The relationship between DBH and methylation level was also analysed with MRM.

Results

The environment, demographic and epigenetic difference between two stands

There are significant difference between two populations in habitat condition and demography (Fig. 1a–
e). Except for available phosphorus, other measured edaphic elements are higher in native stand than
in recovering stand (Fig. 1c). The proportion of large diameter C. chinensis individuals (DBH>40 cm)
changes from less than 15% in recovering forests to more than 75% in native forests (Fig. 1d–e). The mean
methylation ratios in recovering and native C. chinensis populations were 19.94% and 20.06%, and there
was no significant difference between them (p>0.05). However, the h- and f-type methylations in recovering
populations were 1.135 and 0.91 times those in native populations (Fig. 1f).

Effects of environment and DBH on individual methylation level

Spatial variable, edaphic variables, topographic variables and DBH can explain over 40% of various methyla-
tion rate variations in recovering stands but less than 30% in native stands (Fig. 2a–g). Their contribution
models were different in two populations. Contribution of soil factors (including alone and jointly with
spatial factors and topography) to total methylation rate variation in two stands declined slowly, by 28.4%
and 23.2% in recovering and native stands, respectively (Fig. 2d, 2g). However, the contribution of spatial
factors changed greatly in different stands. Pure contribution and joint contribution of spatial factors to
total methylation rate variation were 21.8% and 20.1% in recovering stands, but declined to 6.2% and 15.3%,
respectively, in native stands. Contribution of topography to methylation increased from 3.2% in recovering
stands to 13% in native stands.
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For special edaphic factors, in recovering stands, most edaphic factors provided various degrees of contribu-
tion to full-methylation level variation (Fig. 2b), but only soil bulk density (BD), total nitrogen (TN), total
phosphorus (TP), available phosphorus (AP) and elevation showed significant correlation with the variation
of hemi-methylation levels (Fig. 2c). In native stands, the edaphic contribution to full-methylation level
variation was mainly provided by total potassium (TK), TP, BD and elevation (Fig. 2e), and only TK and
elevation had significant correlation with the level of hemi-methylation variation (Fig. 2f).

DBH did not have independent contribution to methylation rate in either recovering or native stands (Fig.
2b–g). However, in native stands, together with soil, topography and spatial factors affected 8.3% of the
full-methylation rate variation, which was over one-third of all full-methylation variation interpreted by all
four variables (Fig. 2e). Multiple regressions on distance matrices analysis (MRM) showed that DBH had a
negative correlation with the hemi-methylation rate and positive correlation with the full-methylation rate
(Fig. 3a). DBH also showed a significant inverse relationship with individual relative growth rates (Fig. 3b).

Effects of biotic and abiotic factors on the MVPS variation

The contributions of edaphic, topography and spatial factors to the variation of MVPS are similar to their
contributions to the variation of methylation rates. In the recovering forest, soil, topography and spatial
factors showed significant contribution to the variation of MVPS via BD, P, mean elevation, convex and
spatial distance, respectively, but DBH and individual genetic background did not show significant effects
on MVPS (Table 1). In native forests, only the aspect of topographic factors showed significant effects
on MVPS (Table 1). Therefore, an individual reactive mechanism in recovering forests has a significant
relationship with soil and spatial factors, but in native forest, this relationship disappears. MVPS variation
in the recovering stand is negatively correlated with TP and AP and was significantly positively correlated
with BD.

Epigenetic spatial autocorrelation analysis showed that only among DBH<40 cm individuals in recovering
stands is there a significant positive spatial autocorrelation in the 140 m range and a significant negative
correlation in the range of 220–440 m (Fig. 4a). For other subpopulations, there was no significant spatial
autocorrelation (Fig. 4b, c, d). C. chinensis populations did not show significant genetic spatial autocorre-
lation in all four individual sets (Fig. 4e–h).

Discussion

The analysis on C. chinensis shows that the contributions of various biotic and abiotic factors to individ-
ual physiological states and population structure can be quantified by integrating various information on
population with DNA methylation analysis, and then the population dynamics can be narrowly estimated.

During population development from expansion or early stage maturation (in the recovering stand) to the
top stage of maturation (in the native stand), accompanied by the change of habitat environment and
individual DBH range, relative contribution of soil and spatial factors to methylation decreased, and MVPS
variation spatial autocorrelation of low DBH subpopulations disappeared (Fig. 4a–d, Table 1). All of that
indicates that, following the development of C. chinensispopulation, the effects of soil and spatial factors on
individual development decline and population structure tends to disorder. The spatial epigenetic and genetic
autocorrelation represents the aggregation distribution of functional group and kin individuals, respectively
(Wang et al ., 2012; Huang et al ., 2015). The disappearance of epigenetic spatial autocorrelation, which
accompanied the decline in individual amount but increase in mean DBH (Fig. 1d-e), indicates a functional
self-thinning process. This functional self-thinning may result from the competitive exclusion between same
functional individuals, then a functional diversity distribution around high DBH individuals forms.

At an individual level, the positive and negative correlations of DBH with the full-methylation rate and hemi-
methylation rate are consistent with the result that the relative growth rates decline as the DBH increases in
C. chinensis (Fig. 3a,b), because full-methylation and hemi-methylations determine the repressed degree of
individual vitality and the potential of development reprogramming. Furthermore, following the increase of
edaphic N concentration and decrease of edaphic AP concentration from the recovering stand to the native
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stand, soil AP constraints aggravate (Fig. 1c) (Hou et al . 2014; Chenet al ., 2016; Turner, Brenes-Arguedas
& Condit, 2018). However, AP lost its significant effect on DNA methylation variation in the native stand,
in which over 75% individuals’ DBH is over 40 cm and the DBH effect on total full-methylation rate rises
to 8.3% through interactions with environmental factors (Fig. 2b–g, Table 1). DBH as an important plant
phenotypic indicator may affect individual physiological characteristics (Bustos-Segura et al ., 2017). The
transformation of plant nutritional needs provides a new way for us to redefine nutrient limitations during
primary succession of soil formation in subtropical forests (Fig. 2b–g, Table 1) (Turner et al ., 2018). The
temporal change on both from individual active to inactive and the transformation of plant nutritional needs
are favourable for population maintenance.

The presented approach has several advantages. First, the statistical data of genome-wide, methylation rates
that determine individual physiological state and the MVPS that determines the reaction model represent
individual characteristics well enough (Suzuki & Bird, 2008). In addition, because the variation of methyla-
tion rate and MVPS are direct-acting results of biotic and abiotic factors on individuals and are the direct
reason for individual physiological adjustment and population structure change (Schubeler, 2015), all anal-
yses do not create uncertainty because of indirect relationships between variables. Thus, the parsing results
and their variation trends of the contribution of various biotic and abiotic impact factors on individual DNA
methylation are the closest presentation for a logical and a time relationship of individual development fitness
to microhabitat. Similarly, epigenetic spatial autocorrelation analysis results are the intuitive description of
population functional group structure.

Second, both the MRM analysis and multivariate variation-partitioning analysis can be employed in non-
parametric or non-linear analysis, and their analytical precision can be improved by expanding the number of
explanatory matrices, allowing more environmental variables to be represented by their own distance matrices
(Goslee & Urban, 2007; Oksanen, 2015). For example, as a stable influencing factor, topography abidingly
affects surface runoff and the distribution of soil elements (Latiff, 2009) and also relates to light, humidity
and temperature in microhabitats. How topographic factors affect plant physiological characteristics can
be illuminated by adding those microenvironmental and microclimate factor matrices into analysis after
permutational forward model selection.

Third, DNA methylation contains both instantaneous and cumulative information (Suzuki & Bird, 2008;
Heard & Martienssen, 2014; Schubeler, 2015; Harrison et al ., 2016; Heer et al ., 2018; Moler et al ., 2018).
DNA methylation parameters in this research were obtained from leaf organisation, which renewed their
response mechanism to both the instantaneous environmental condition and age-related DBH indicator.
The implications of this bilayer extend the range of methylation research to individuals and populations on
time scales.

Many studies on the relationship between genetic structure and epigenetic structure have reached different
conclusions (Herrera, Medrano, Monica & Bazaga, 2016; Heer et al ., 2018; Moleret al ., 2018). For different
spatial scales and different species, the contribution of genetic background to DNA methylation may be
different. Therefore, that contribution should always be a noted in research. On the other hand, C. chinensis
has many common characteristics of constructive species of a subtropical, evergreen, broad-leaved forest, such
as being perennial, outcrossing and occupying the top space of the community. All those characteristics may
reduce genetic diversity within the population, and then the relationship between genetic structure and
epigenetic structure (Herrera et al ., 2016; Moler et al ., 2018). Thus, the functional self-thinning and its
effect on population development and community construction, which appears in C. chinensis populations,
may provide enlightenment in within-population research of other subtropical constructive species.

The presented approach still has some room for improvement. First, DNA methylation analysis can join with
a next-generation sequencing platform (Xia et al ., 2014). The new method can eliminate constraints associ-
ated with the methylation-resolving power of the gel and explain adaptive variation at gene level. Secondly,
besides the three most distinctive DNA methylation indicators used in this study, other DNA methylation
indicators, such as epigenetic distance between individuals, also represent some detailed information on pop-
ulation function diversity (Herrera et al ., 2016). How to integrate more DNA methylation indicators into
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this presented approach is an interesting topic.

ACKNOWLEDGEMENTS

We are grateful to L. Wu for assistance in the field. We thank Proof-Reading-Service.com Ltd in Letchworth
Garden city for the helpful feedback on a previous draft of the manuscript. This study supported by
Strategic Priority Research Program of the Chinese Academy of Sciences (XDB31030000), the National Key
R&D Program of China (grand No. 2017YFC0505802), National Natural Science Foundation of China (No.
31370437), National Natural Science Foundation of China (No. 41371078) and Chinese Forest Biodiversity
Monitoring Network.

References

Alonso, C., Perez, R., Bazaga, P., Medrano, M., & Herrera, C. M. (2016). MSAP markers and global cytosine
methylation in plants: A literature survey and comparative analysis for a wild-growing species.Molecular
Ecology Resources , 16 (1), 80-90.

Andersen, J. R., & Lubberstedt, T. (2003). Functional markers in plants. Trends Plant Sci., 8 (11), 554–560.

Baubec, T., Colombo, D. F., Wirbelauer, C., Schmidt, J., Burger, L., Krebs, A. R., . . . Schubeler, D. (2015).
Genomic profiling of dna methyltransferases reveals a role for dnmt3b in genic methylation.Nature , 520 ,
243-247.

Browne, L., Ottewell, K., Sork, V. L., & Karubian, J. (2018). The relative contributions of seed and pollen
dispersal to gene flow and genetic diversity in seedlings of a tropical palm. Molecular Ecology, 27 (15), 3159–
3173.

Bustos-Segura, C., Poelman, E. H., Reichelt, M., Gershenzon, J., Gols, R., & Scherber, C. (2017). Intraspe-
cific chemical diversity among neighbouring plants correlates positively with plant size and herbivore load
but negatively with herbivore damage. Ecology Letters ,20 (1), 87-97.

Chen, J., Rui, Y., Zhou, X., Ye, W., & Liu, W. (2016). Determinants of the biodiversity patterns of
ammonia-oxidizing archaea community in two contrasting forest stands. Journal of Soils and Sediments,16
(3), 878-888.

Collins, S., & Gardner, A. (2009). Integrating physiological, ecological and evolutionary change: a Price
equation approach.Ecol. Lett., 12 (8), 744– 757.

Couldrey, C., Brauning, R., Henderson, H. V., & Mcewan, J. C. (2015). Genome-wide dna methylation
analysis: no evidence for stable hemimethylation in the sheep muscle genome. Animal Genetics ,46 (2),
185-189.

Crone, E. E., Menges, E. S., Ellis, M. M., Bell, T., Bierzychudek, P. , Ehrlen, J., . . . Williams, J. L. (2011).
How do plant ecologists use matrix population models?. Ecology Letters, 14 (1), 1-8.

Fabritius, H., Singer, A., Pennanen, J., & Snall, T. (2019). Estimation of metapopulation colonization rates
from disturbance history and occurrence-pattern data. Ecology, 100 (10), 10.1002/ecy.2814.

Fang, J., Cheng, J., Wang, J., Zhang, Q., Liu, M., Gong, R., . . . Xu Y. (2016). Hemi-methylated dna opens
a closed conformation of uhrf1 to facilitate its histone recognition. Nature Communications , 7, 11197.
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Table 1. Different multiple regression models predicting the responses of MVPS variation to the variables.
Independent variables of models increased one by one from the single edaphic variables to include topography,
spatial, individual life stage, genetic variation and edaphic variables.

Stand Variables Coefficient* p r2 p

Recovering edaphic BD 84.116 0.002+ 0.043 0.001+

edaphic +topographic BD 82.723 0.002+ 0.054 0.001+

AP -2.359 0.043+

convex -0.641 0.01+

edaphic + topographic + geographical distance BD 37.945 0.05 0.089 0.001+

TP -118.108 0.026+

AP -2.781 0.032+

convex -0.535 0.024+

mean elevation -0.145 0.002+

Geographical Distance 0.079 0.001+

Native topographic aspect 0.090 0.017+ 0.070 0.244

* Coefficients of Spearman correlations, r2 (ranged 0–1), 10,000 permutations;+ p<0.05

BD soil bulk density, TP total phosphorus, AP available phosphorus,

Figure Legends
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Fig. 1. The difference between two populations in distribution, environment, demography and DNA methy-
lation rates. (a), (b):individual distribution in recovering stand and native stand.(c): environment of
two populations. (d), (e):Diameter at breast height (DBH) distribution of population in recovering stand
and native stand. (f): Methylation rates of two populations; data show averages (+ SD), and different
superscript letters indicate significant differences among different stands, P<0.05.

Fig. 2. Effects of biotic and abiotic factors on individual methylation rate. (a)–(g): Variation partitioning
of C. chinensismethylation rates variation in (b)–(d) , recover, and(e)–(g) , native stand. The number
is the significant interpretation rate; the residual is the unexplained part. (a):visualization outline (b),
(e): full methylation rate(c), (f): hemi-methylation rate (d), (g): total methylation rate. The significant
edaphic and topographic variables are presented in the table of each subgraph with the contributed variation.

Fig. 3. The relationships between DBH and methylation rates and relative growth rate. (a): MRM
correlation coefficients for the relationship between individual DBH and methylation rates. * Significant
at the 0.1 level. An edaphic, topography, spatial, DBH and genetic variable model was used in this MRM
analysis. (b): DBH distribution of relative growth rates(RGR) of all individuals ofC. chinensis in DHS.

Fig. 4. Spatial autocorrelation of populations. Epigenetic(a)–(d) and genetic (e)–(h) autocorrelation anal-
ysis of different diameter groups. (a), (e). DBH<40 cm individuals in recovering forests, (b), (f):DBH>40
cm individuals in recovering forests, (c), (g): DBH<40 cm individuals in native forests and (d), (h):
DBH>40 cm individuals in native forests, respectively. The solid line represents the autocorrelation coeffi-
cient R (with positive and negative deviations), and the dashed line represents the 95% confidence interval.

Hosted file

Fig1.docx available at https://authorea.com/users/314967/articles/445316-integrating-population-
information-using-dna-methylation-to-explore-the-spatiotemporal-dynamics-and-developmental-
mechanisms-of-populations

Hosted file

Fig2.docx available at https://authorea.com/users/314967/articles/445316-integrating-population-
information-using-dna-methylation-to-explore-the-spatiotemporal-dynamics-and-developmental-
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Hosted file

Fig3.docx available at https://authorea.com/users/314967/articles/445316-integrating-population-
information-using-dna-methylation-to-explore-the-spatiotemporal-dynamics-and-developmental-
mechanisms-of-populations

Hosted file

Fig4.docx available at https://authorea.com/users/314967/articles/445316-integrating-population-
information-using-dna-methylation-to-explore-the-spatiotemporal-dynamics-and-developmental-
mechanisms-of-populations
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