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Abstract

Amitraz is a broad-spectrum insecticide for the control of aphids, psyllids, ticks and mites. Current evidence suggests that ticks
and phytophagous mites have developed strong resistance to amitraz. Previous studies have shown that the I61F mutation in
the β-adrenergic octopamine receptor is related to amitraz resistance in ticks, but the mutation was not found in Panonychus

citri. We therefore used whole genome sequencing and bulked segregant analysis to identify the mechanism by which P. citri is

resistant to amitraz. High-quality assembly of the whole P. citri genome was completed, resulting in a genome of approximately

83.97 Mb and a contig N50 of approximately 1.81 Mb. Gene structure predictions revealed 11,577 genes, of which 10,940 genes

were annotated. Trait-associated regions in the genome were mapped with bulked segregant analysis and 38 candidate SNPs

were obtained, of which T752C had the strongest correlation with the resistant trait, located at the 5’ untranslated region

(UTR) of the β-2R adrenergic-like octopamine receptor gene. The mutation resulted in the creation of a short hairpin loop

structure in mRNA and gene expression was down-regulated by more than 50% in the amitraz-resistant strain. Validation of the

T752C mutation in field populations of P. citri found that the correlation between the resistance ratio and the base mutation

was 94.40%. Our results suggest that this 5’ UTR mutation of β-2R octopamine receptor gene confers amitraz resistance in P.

citri and different species may share different mechanisms of resitance to amitraz.

Introduction

The monitoring and management of citrus pest mites is a key issue for citrus production regions across the
world each year. Frequent outbreaks of the citrus red mite, Panonychus citri (McGregor) are particularly
prominent in China, contributing to significant difficulties for the citrus industry at large. The high frequency
of outbreaks is partially due to the reproductive and growth characteristics of the P. citri , which can
reproduce parthenogenetically, potentially leading to a large number of haploid male mites and setting the
foundation for a subsequent outbreak (Tuan et al., 2016). P. citri can attach to plants through spinning
and netting to establish a habitat that protects against rain erosion or predation. P. citri can also use
spider silk to sway in the wind in the orchard, providing a natural extension of their feeding range (Clotuche
et al., 2011). Moreover, because of improper application of acaricide, a broad-spectrum insecticide, mites
have gradually developed resistance to acaricides, thus presenting a formidable challenge for citrus farmers.
Worldwide reports of the development of resistance have suggested that P. citri has developed resistance to
many types of chemical acaricides, such as spirodiclofen (Hu et al., 2010; Ouyang et al., 2012), bifenazate
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(Van Leeuwen et al., 2011), hexythiazox (Yamamoto et al., 1996), pyridaben, abamectin, fenpropathrin (Pan
et al., 2019), and azocyclotin (Ran et al., 2009). As a result, citrus growers have searched for alternatives to
acaricides.

At present, the slow development of new minimally-toxic options in the pesticide market has not meet the
consistent demands of growers, which has led growers to turn to an older pesticide that is commonly used
to control animal parasites—amitraz. As a broad-spectrum insecticide, it has good performance against
aphids, psyllids, ticks, and mites. In recent years, it has also been used to control the P. citri . According
to the Insecticide Resistance Action Committee (IRAC) classification system, amitraz is an octopamine
receptor agonist that can stimulate pest mites to increase signaling through multiple excitatory pathways
(Van Leeuwen et al., 2015). Octopamine receptors are G protein-coupled receptors (GPCRs), located on the
cell membrane. After receiving a stimulus signal, they activate a sequential series of enzyme activity and
the production of second messengers (cAMP, Ca2+, IP3, etc.) (Broeck, 2001). The octopamine receptors
of the insects are divided into three major categories: α-adrenergic-like, β-adrenergic-like, and octopamine
/ tyramine (OCT / Tyr) receptors (Evans & Maqueira, 2005). Β-adrenergic-like octopamine receptors are
present at various growths stages of Plutella xylostella , and amitraz, octopamine, and tyramine can each
activate this receptor to cause an intracellular increase in cAMP (Huang et al., 2018). Amitraz is easily
metabolized and degraded, and produces semi-amitraz chloride (DMPF), N, N-Dimethylformamide (DMF)
and 1-Amino-2,4-dimethylbenzene (DMA) upon degradation. Compared to amitraz, DPMF is more likely
to activate α- and β-adrenergic-like octopamine receptors and increase the levels of cAMP and Ca2+ in cells
(Kita et al., 2017).

For the sensitive P. citri in our laboratory, the median lethal dose (LC50) of amitraz was 29.03 mg/L.
A 2009 field resistance monitoring report found a resistance ratio of 5.5, suggesting that field populations
have moderate resistance to amitraz (Ran et al., 2009). Indeed, given the large-scale use of this pesticide,
there is a high risk for the development of resistance by P. citri . Therefore, further investigations of the
mechanisms by which P. citri can become resistant to amitraz may help guide its rational use in the field.
However, the focus of research to date has primarily been on ticks, and there have been no reports on P. citri.
In a previous study, the octopamine receptor gene ofRhipicephalus microplus was cloned with the goal of
clarifying the target of amitraz. Analysis of those sequencing results revealed that there is a nonsynonymous
mutation in the OCT / Tyr receptor in the Brazilian and Mexican strains that are highly resistant to amitraz
(T8P and L22S), but there was no subsequent functional analysis or mutation frequency detection in that
study (Chen et al., 2007). However, studies that did measure SNP frequency calculations on these two
mutation sites confirmed the correlation between the mutation sites and the development of resistance to
amitraz (Baron et al., 2015). In addition to the OCT / Tyr receptors, non-synonymous mutations were also
found in the β-adrenergic octopamine receptor gene of R. microplus . Through a correlation analysis of the
mutation frequency and the phenotypic traits, the I61F site mutation was confirmed to be related to amitraz
resistance (Corley et al., 2013). Besides the octopamine receptors, ATP-binding cassette transporters (ABC
transporters) have also been shown to be involved in the detoxification and transport of amitraz metabolites.
Through immunolocalization and RNAi analysis, it was previously found that ABCB10 of R. microplus
can transport and detoxify amitraz in midgut cells (Lara et al., 2015); subsequent analysis of differential
gene expression confirmed the function of this transporter (Koh-Tan et al., 2016). After treating Ixodes
ricinus cells with amitraz, the stability of the cells was significantly affected, and the expression of ABC
transporters was either increased or decreased to varying degrees (Mangia et al., 2018). Follow-up studies
have suggested multiple possible mechanisms for the development of tick resistance to amitraz, including
mutations in the β-adrenergic octopamine receptor or mutations in the octopamine/tyramine receptor and
changes in the activity of enzymes such as monoamine oxidases (MO) or ATP binding cassette transporter
(ABC transporters) (Jonsson et al., 2018).

Previously, we cloned octopamine receptor-related genes from the amitraz-sensitive and -resistant strains of
P. citri but found no nonsynonymous mutations in the open reading frame (data not yet published). Genomic
resequencing technologies, such as bulked segregant analysis (BSA), can help screen trait-determining genes
step by step at the omics level. This technology has been widely used in plant population genetics. In 2012,
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Van Leeuwen et al. first used BSA to screen for mite resistance mutant genes. In that work, it was found that
the I1017F mutation in the chitin synthase 1 gene (TuCHS1 ) ofTetranychus urticae determines its resistance
to etoxazole (Van Leeuwen et al., 2012). In theory, BSA can only be used to locate single gene recessive
traits, but the method can also provide clues for the location of candidate sites responsible for complex
polygenic traits. BSA can be used on a sample of many mites to obtain better quality candidate sites, but
this would first require the acquisition of high-quality whole-genome sequences of species (Van Leeuwen et
al., 2016). Therefore, before investigating the genetic determiners of the resistance of P. citri to amitraz,
we used second- and third-generation sequencing technologies to assemble the genome of P. citri . Then,
we performed resistance-sensitive mite hybridization and segregated the traits of the offspring to obtain the
population DNA pool, used BSA to locate trait sites, and screened for SNPs related to amitraz resistance.
As a result, we found a single SNP that was predicative of amitraz resistance, providing a molecular basis
for the identification and management of resistance in mites.

Methods

Source of mites

The initial population of P . citri was collected from unmanaged wild citrange in 2005 and raised in isolation
without contact with pesticides until the present study. This original population was considered the acaricide-
sensitive strain (SS); the amitraz resistant strain (RR) was developed from the SS strain by spraying 200
mg/L of amitraz (diluted from 200 g/L, Arysta LifeScience, America) on a regular basis for several years.
The resistance of the RR strain was 81.35-fold higher than the SS strain in 2019.

Genomic extraction

P. citri were randomly taken from the sensitive population and placed in four 1.5 mL enzyme-free tubes. The
volume of mites in each tube was 0.5 mL. DNA was extracted from the 4 samples using the Mollusc DNA Kit
(Omega Bio-Tek, GA, America) and collected using a single adsorption column. The purity, concentration,
and integrity of genomic DNA were quantified by NanoDrop2000, Qubit Fluorometric Quantitation, and
0.35% agarose gel electrophoresis.

Library Construction and Sequencing

The genome was sequenced using the Illumina Hiseq and the third generation Oxford Nanopore Technologies
(ONT) platforms. The Illumina Hiseq platform method was carried out as follows: (1) Ultrasound treatment
reduced genomic DNA to the target fragment size (350 bp), which was then used to construct a small
fragment sequencing library through steps such as end repair, adding adenine, adding adapters, selecting
target fragments, and PCR; (2) An Agilent 2100 bioanalyzer and qPCR were used to detect library fragment
size and library quantification to determine whether the library met the sequencing standards; (3) The
library was fixed to the sequencing chip by bridge PCR; (4) A Hiseq sequencer was used for double-end bp
(PE 150) sequencing. The data generated by sequencing was used for the next step of information analysis
after quality control. Double-end sequencing data was evaluated (GC distribution statistics, quality values
Q20, Q30 evaluation) and filtered to obtain high-quality data (clean reads) for genome size assessment,
genome assembly, GC content estimation, determination of heterozygosity rate and the evaluation after
assembly. The ONT platform method was applied as follows: (1) The genomic DNA was randomly cut
after the sample was qualified; magnetic beads were used to enrich and purify large pieces of DNA, which
were cut, and then large fragments were recovered to construct a Nanopore library; (2) End repair for both
ends of DNA fragments, followed by a ligation reaction with adding adenine; (3) Accurate quantitative
detection of DNA libraries with Qubit Fluorometric Quantitation; (4) Addition of DNA libraries of a known
concentration and volume into a Flow cell, and transfer of that Flow cell to the PromethION sequencer

3



P
os

te
d

on
A

u
th

or
ea

28
A

p
r

20
20

—
C

C
B

Y
4.

0
—

h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
58

8
0
94

45
.5

03
14

15
0

—
T

h
is

a
p
re

p
ri

n
t

an
d

h
as

n
ot

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

at
a

m
ay

b
e

p
re

li
m

in
ar

y.

for real-time single molecule sequencing to obtain the original sequencing data. ONT sequencing data was
evaluated by preliminary analysis (output evaluation, quality evaluation), filtered low-quality reads, and then
sublinks were removed to obtain subreads. After further base correction, high-accuracy data was obtained
for genome assembly and evaluation of the assembly result.

Assembly and Evaluation

After filtering out the low-quality and short fragments from the Nanopore raw data, the Canu (Koren et al.,
2017) software package was used for error correction assembly, and then the WTDGB (https://github.com/ruanjue/wtdbg)
software packed was used to assemble the Canu error correction data. Finally, Quickmerge (Chakraborty et
al., 2016) software was used to integrate based on the results from Canu and WTDGB assembly. Calibration
was performed using Pilon (Walker et al., 2014) software on Hiseq sequencing data. The assembly results
were evaluated on the basis of three measures: (1) comparison ratio of second-generation sequencing reads;
(2) BUSCO integrity; and (3) CEGMA integrity.

Genome annotations

Annotation of the repeat sequence was carried out with the help of three software packages: LTR FINDER
v1.0.5 (Xu & Wang, 2007), RepeatScout v1.0.5 (Price et al., 2005), and PILER-DF v2.4 (Edgar & Myers,
2005). A genomic repeat sequence database was constructed on the basis of the principles of structural
prediction and ab initio prediction. The database was classified using PASTEClassifier (Wicker et al., 2007)
and then merged with the database of Repbase (Jurka et al., 2005) to create the final repeat sequence
database. RepeatMasker v4.0.6 (Tarailo-Graovac et al., 2009) was used to predict the repeat sequence of
the constructed repeat sequence database.

The prediction of gene structure in this work was the result of a combination of three different strategies: de
novo prediction, homologous species prediction, and Unigene prediction. The EVM v1.1.1 (Haas et al., 2008)
software package was used to integrate the prediction results. Genscan (Burge & Karlin, 1997), Augustus
v2.4 (Stanke & Waack, 2003), GlimmerHMM v3.0.4 (Majoros et al., 2004), GeneID v1.4 (Blanco et al., 2007),
and SNAP (version2006-07-28) (Korf, 2004) were used for homology-based gene prediction; GeMoMa v1.3.1
(Keilwagen et al., 2016) was used for same-based prediction of source species; Hisat v2.0.4 and Stringtie
v1.2.3 (Pertea et al., 2016) were used for assembly with reference transcripts, and gene prediction was
carried out using TransDecoder v2.0 (http://transdecoder.github.io) and GeneMarkS-T v5.1 (Tang et al.,
2015). Transcriptome-based Unigene sequences without reference assembly in the data were used to predict
the sequence using PASA v2.0.2 (Campbell et al., 2006). Finally, the prediction results obtained by the above
methods were integrated using EVM v1.1.1 and modified with PASA v2.0.2. The original transcriptome data
was compared with the genome in TopHat (Trapnell et al., 2009), and the number of bases in exon, intron,
and intergenic regions were compared to evaluate the gene prediction results.

Pulling data from the Rfam (Griffiths-jones, 2004) and miRBase (Griffiths-jones, 2006) databases, Infenal
1.1 (Nawrocki & Eddy, 2013) was used for rRNA and microRNA prediction. tRNAscan-SE v1.3.1 (Lowe &
Eddy, 1997 ) was used to identify tRNA.

GenBlastA v1.0.4 (She et al., 2008) alignment was used for the pseudogene annotation to find the homologous
gene sequence on the genome of the shielded true locus, and then GeneWise v2.4.1 (Birney, 2004) to find
the immature termination code and frameshift mutations in the gene sequence.

The predicted gene sequence was compared with functional databases such as NR (Marchler-Bauer et al.,
2011), KOG (Tatusov, 2001), GO (Dimmer et al., 2012), KEGG (Kanehisa, 2000), and TrEMBL (Boeck-
mann, 2003), and then compared with BLAST v2.2.31 (Altschul et al., 1990). Using InterProScan v5.8-49.0
(Zdobnov & Apweiler, 2001) software, through comparing with PROSITE (Bairroch, 1991), HAMAP (Lima
et al., 2009), Pfam (Finn, 2006), PRINTS (Attwood & Beck, 1994), ProDom (Bru, 2004), SMART (Letunic,
2004), TIGRFAMs (Haft, 2003), PIRSF (Wu, 2004), SUPERFAMILY (Gough, 2002), CATH -Gene3D (Lees

4



P
os

te
d

on
A

u
th

or
ea

28
A

p
r

20
20

—
C

C
B

Y
4.

0
—

h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
58

8
0
94

45
.5

03
14

15
0

—
T

h
is

a
p
re

p
ri

n
t

an
d

h
as

n
ot

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

at
a

m
ay

b
e

p
re

li
m

in
ar

y.

et al., 2012), and PANTHER (Thomas et al., 2003) database alignment, we produced Motif annotations for
the amino acid sequence of the predicted gene.

Bulked segregant analysis

Crossing and character separation

First, we raised ˜200 sensitive P. citri (SS) on lemon leaves. The leaves were placed in a petri dish containing
sponges and were surrounded by wet cotton threads to prevent mites from escaping. The feeding device was
placed in a 28 °C incubator (L14: D10). Mites were reared for 3 days and then eggs were harvested. After
the eggs hatched, mites were cultured until the early mating period (resting period). We then selected about
200 amitraz resistant P. citri(RR) and obtained a sufficient number of male mites through parthenogenesis.
Approximately 500 pre-mating sensitive female mites (SS) and 600 amitraz resistant male mites (RR) were
mixed in a breeding device, and naturally crossed to obtain the F1 generation. After the F1 generation
hatched, the population was transferred to insect-free Fructus Aurantii and expanded and isolated for rearing.
After the F5 generation, the population was large enough that trait segregation had already occurred. On
the basis of resistance genetic analysis data (unpublished), 100 mg/L and 2,500 mg/L amitraz solutions were
used to distinguish between the sensitive mites (dead) and the resistant mites (live). Each phenotypic sample
was placed in a 1.5 ml centrifuge tube and numbered as F (SS) or F (RR). At the same time, phenotypic
samples of the parental generations were collected and numbered as P (SS) or P (RR).

Genomic Resequencing

DNA was extracted from P (SS), P (RR), F (SS), and F (RR) samples using the Mollusc DNA Kit. After
passing the quality test, the DNA was randomly broken into fragments of approximately 350 bp by ultrasonic
disruption. The DNA fragments underwent end repair, adenine was added to the 3’ end, a sequencing adapter
was added, samples were purified, and PCR amplification was performed to complete the construction of the
sequencing library. The library was re-sequenced by Illumina HiSeq after passing quality inspection. Base-
calling analysis was performed using the Illumina Casava 1.8 software package. The raw reads obtained
by sequencing were filtered, resulting in clean reads for subsequent information analysis. The bwa (Li &
Durbin, 2009) software package was used to place the obtained sequencing reads on the reference genome.
By comparing the positions of the clean reads to the reference genome, the sequencing depth and genome
coverage of each sample were counted, and mutations were detected.

SNP detection and annotation

SNPs were primarily detected using the GATK (Mckenna et al., 2010) software toolkit. According to the
positioning results of clean reads in the reference genome, Picard (http://sourceforge.net/projects/picard/)
was used to perform mark duplicates, GATK was used to perform local realignment, and base recalibration
and other pre-processing steps were used to ensure the accuracy of the detected SNP. Then, we used GATK
to detect Single Nucleotide Polymorphisms (SNPs), filtered the results, and thus obtained the final SNP
locus set. Small fragments of insertions and deletions between the sample and the reference genome (Small
InDel: 1-5bp) were detected according to the location of the sample’s clean reads on the reference genome.

SnpEff (Cingolani et al., 2012) software was used to annotate variation (SNP, Small InDel) and predict
the effect of variation. On the basis of the position of the mutation site on the reference genome and the
gene position information on the reference genome, the region where the mutation site appeared (e.g. in
the intergenic region, gene region, CDS region, etc.) and the effect of the mutation (synonymous mutation,
non-synonymous mutation, etc.) was determined.

Association Analysis

Prior to association analysis, we filtered out SNP sites with multiple genotypes and then filtered out SNP
sites with read support less than 4. Then, we filtered out SNP sites with consistent genotypes and mixed
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pooled genes between SNP loci that did not originate from the recessive parents, finally resulting in high-
quality credible SNP loci. The association analysis was comprehensively evaluated using two algorithms:
Euclidean Distance (ED) and SNP-index.

Euclidean distance algorithm: We used sequencing data to find markers with significant differences between
DNA pools and evaluated areas associated with different traits (Hill et al., 2013). A larger ED value indicates
a greater difference in the markers between the two pools. Differences in the extent of sequencing between
pools can lead to biased ED values. In order to eliminate this error, the frequency of each base at each point
was used instead of the absolute depth to calculate the ED value. At the same time, to eliminate background
noise, the original ED values were processed to the 5th power. We calculated the median value of all sites’
ED values plus 3 times of the standard deviation to determine the association threshold. We screened
out sites that exceeded the association threshold as candidate association sites and counted the number of
SNPs that differed between the two mixed pools on each contig and the number of candidates associated
sites. Then, we calculated the probability of associated sites on each contig using the following equation: :;
The Benjamini–Hochber method was used to perform multiple test corrections on the probabilities of the
associated sites. Finally, the contigs (FDR <0.01) containing the associated sites were screened.

6
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SNP-index algorithm: Correlation analysis was performed based on the difference in genotype frequency
between mixed pools (Abe). For Δ (SNP-index) statistics, the stronger the correlation between SNP and
traits, the closer Δ (SNP-index) is to 1. Because the reference genome was not assembled at the chromosome
level, the following strategy was used in association analysis: we first calculated the threshold value by
Permutation Test and screened out the sites that exceeded the association threshold. Next, the number
of different SNPs between the pools on each contig were counted, as well as the association sites. We
then calculated the probability of associated sites on each contig using the follow equation(, again, using
Benjamini–Hochber’s method to perform multiple test corrections for the probability of associated sites.
Finally, we selected contigs that contained associated sites (FDR <0.01).

The results obtained by the above two association analysis methods were used to obtain the intersection and
final candidate contigs.

Annotation of candidate regions

We annotated the types of SNP mutations in candidate regions, including SYNONYMOUS CODING, NON -
SYNONYMOUS CODING, and so on; BLAST (Altschul, 1997) was used to perform in-depth annotations
pulled from multiple databases (NR, Swiss-Prot, GO, KEGG, COG) on the coding genes in the candidate
interval.

Analysis of mRNA secondary structure and verification of mutant genes

The RNAfold WebServer (http://rna.tbi.univie.ac.at/cgi-bin/RNAWebSuite/RNAfold.cgi) was used to ana-
lyze the predicted secondary structure of the mRNA (minimum free energy method, MFE). The expression
of the target gene in the sensitive strain (SS) and resistant strain (RS) of P. citri was detected by real-
time fluorescent quantitative PCR as previously described (Yu et al., 2015). The specific primers were F:
TCAAGTGATTCGGGTTACGGG and R: CGGCACAGGCTAACGAGACAA. Candidate SNPs were ver-
ified by Sanger sequencing, and PCR amplification primers were designed using Primer Premier 6 software:
F: AACCTTCAGAATCAGTGTAATCATC; R: CTTCCATAGATTGTTGTTGTTGTTG. DNA templates
were prepared using a Tissue Ex-Amp PCR Kit (Applied Biological Materials Inc, Vancouver, Canada). The
method for preparing the DNA template of a single mite was as follows: We isolated ˜20 to 30 P. citri , and
each mite was placed in a 200 uL PCR tube. The sample was ground with a sterile toothpick, and 20 uL
of lysate was added and placed in a PCR instrument, where it was heated at 55 °C for 10 min followed by
95 °C for 5 min. Then, 2 uL of DNA template were aspirated and used for PCR amplification of the β-2R
octopamine receptor gene containing the SNP region with specific primers. The genotypes of SNPs were
analyzed and counted according to the sequencing results. The mutation frequency was calculated according
to the following equation:

7
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Results

Statistics of genome sequencing results

We constructed a 350 bp library and obtained 23.23 Gb of high-quality data after sequencing and filtering with
the Illumina Hiseq platform (SRA accession: PRJNA600040). The total sequencing depth was approximately
301×, the Q20 ratio of sequencing data was above 96.81%, and the Q30 ratio was above 91.25%. The GC
content of the genome was about 31.65%, as was roughly expected. (Table 1).

A total of 66.03 Gb of raw data was obtained by the third generation of Nanopore platform sequencer
(SRA accession: PRJNA600040). After filtering out short fragments and low-quality data through the use
of multiple filter adapters, a total of 25.23 Gb of clean data were obtained, of which the N50Len was 19,718
bp and MeanLen was 18,438 bp (Table 2).

In order to determine whether the extracted sample of DNA was contaminated, 10,000 single-ended reads
were randomly selected from the 350 bp library and compared with the NT database by BLAST. Of these,
4.83% of the reads could be matched to the NT library. Among the reads that were successfully matched,
reads corresponding to the P. citri and T. urticae gene data accounted for 36.85% and 35.19%, respectively
(Fig.1); 2,000 single-end reads were randomly selected from the three generations of clean reads. A total of
25 (1.25%) reads could be compared, of which 56% were matched to P. citri gene data (Fig. 1a). Together,
these results suggested relatively few unexpected matches to host plant DNA, so the sample sequencing data
was determined to be free of contamination.

In order to evaluate the cytoplasmic DNA content in the sequencing data, a 350 bp library was used to
perform a SOAP alignment with the mitochondrial sequence of P. citri (GeneBank ID: HM189212.1). The
number of reads on the double-ended ratio was 144,768, accounting for 0.09% of the total reads, and the
number of reads on the single-ended ratio was 190,764, accounting for 0.12% of the total reads, both of
which were lower than the empirical value of 5%. Therefore, these findings indicated that the extranuclear
DNA content of the sequencing data was very low and thus was not likely to affect the assembly of the later
genome.

The data from the 350 bp library were used to construct a Kmer distribution map of k=19, and the genome
size, repeat sequence ratio, and heterozygosity were evaluated. The kmer depth corresponding to the average
kmer depth (i.e., the primary peak) was 249 (Fig. 1b). Sequences with a Kmer depth of more than twice the
depth of the main peak (i.e. greater than 499) were repeated sequences. It was estimated that the content
due to repeated sequences was approximately 13.45%. There was no obvious heterozygous peak, and the
estimated heterozygosity was low (about 0.64%). Therefore, the obtained genome of this species belonged to
a simple genome which was conducive to the subsequent construction of detailed genomic maps.

Genome assembly and evaluation

The Canu and WTDBG software packages were used to correct and assemble Nanopore raw data, and
Quickmerge software was used for integration. Finally, the second-generation sequencing data was correc-
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ted by Pilon software. The final genome assembly size was about 83.97 Mb (GeneBank accession number:
JAAABK000000000), Contig N50 was about 1.81 Mb, and GC content was 31.33%, with a Gap total length
value of 0 (Table 3).

The second-generation sequencing data was used to compare the reads to the reference genome, and the
assembly quality was evaluated by comparison. The results showed that the number of clean reads mapped
to the reference genome accounted for 96.95% of all Clean Reads, and the value of Properly mapped (%) was
94.36% (Table 4), indicating that the quality of the genome assembly was intact. The BUSCO v2.0 (Simao
et al., 2015) and CEGMA v2.5 (Parra et al., 2007) software packages were used to assess the integrity
of the genome assembly, in combination with an arthropoda database containing 1,066 conserved genes
from arthropods. Among the genes we assembled, a total of 975 complete BUSCO genes were found, of
which 878 were single-copy genes, 24 were Fragmented BUSCO genes, and only 67 genes were not found
in the arthropoda library. Completeness of the genome, as assessed by BUSCO, was 91.46% (Table 4).
CEGMA contains 458 eukaryotic conserved genes. Among them, 448 sequences (97.82%) were identified in
the assembled genome, and 243 of the 248 highly conserved sequences (97.98%) were found in the assembled
genome (Table 4), suggesting that the assembled genome was complete.

Genome annotation analysis

Data analysis using repeat sequence prediction software yielded a repeat sequence of 52,069 treaties at 13.93
Mb, accounting for 16.6% of the final genome assembly (Table 5).

The gene structure was determined through a combination of three different strategies: de novo prediction,
homologous species prediction, and Unigene (RNAseq) prediction. Then, the prediction results were inte-
grated using EVM v1.1.1 software to finally obtain 11,577 genes. The average gene length was 3,942.13 bp,
the average exon length was 2,003.09 bp, and the average intron length was 1,921.04 bp (Table 6). The
transcriptome database of P. citrus was compared with the predicted genes of the genome, and the number
of bases in the exon, intron, and intergenic regions were statistically compared. Among them, the number of
bases determined as belonging to exons accounted for 82.98%, introns for 3.77%, and intergenic for 13.24%.
The total number of genes supported by homology prediction and Unigene prediction was 10,967 (Fig. 1c),
accounting for 94.7% of the predicted gene number (11,577). Combined, these data suggest that the quality
of genetic prediction was relatively high.

Non-coding RNAs include microRNAs, rRNAs, and tRNAs, which each have a diverse range of known
functions. Through prediction, 23 miRNAs, 49 rRNAs, and 117 tRNAs were identified, including 12, 4, and
20 RNA families, respectively. Pseudogenes have a similar sequence to functional genes but have lost their
original function due to mutations such as insertions and deletions. Through comparison and search analyses,
238 pseudogenes were predicted with an average length of 2,694.9 bp.

Through gene function annotation analysis, a total of 10,940 genes were annotated on the basis of 7 databases
such as NR (Table 7), accounting for 94.50% of the total number of predicted genes (11,577). There were
4,032 genes annotated and classified in the GO database and 5,999 GO terms belonged to the “cellular
component” category, 4,611 terms belonged to the “molecular function” category, and 9,208 terms belonged
to the “biological process” category. There were 7,849 genes annotated and classified in the KOG database,
of which 1,416 genes belonged to the “general function prediction only” category and 1,170 genes belonged
to the “signal transduction mechanisms” category. In the TrEMBL database, using the genome of T. urticae
as a control, 10,905 (94.20%) genes were annotated. A total of 5,668 genes were annotated in the KEGG
database representing genes from 268 pathways. The most commonly involved pathways were related to the
“lysosome” (ko04142), which had 177 genes. Motif annotation analysis was performed on the amino acid
sequences of all predicted genes, and 1,116 motif protein structures and 20,078 domain protein structures
were found.
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Screening of metabolism-related genes at the genome-wide level

When an exogenous compound enters a mite, it triggers a series of metabolic detoxification processes in-
tended to protect against toxicity. There are many proteins involved in this detoxification process in mites.
At present, the well studies detoxification elements include P450 monooxygenases (P450s), glutathione S-
transferases (GSTs), the carboxylesterase family, ATP-binding cassette transporters (ABC transporters),
major facilitator superfamily (MFS), lipocalins, uridine diphosphate glucuronyl transferases (UGTs), and
others, each of which play an important role in various processes of oxidation, hydrolysis, encapsulation, and
metabolite transport of heterologous compounds. Among the 10,940 annotated genes, we screened the above-
mentioned metabolic-related genes, performed phylogenetic analysis (Neighbor-Joining method, Bootstrap
replications = 2,000) using MEGA 7.0 software and performed subfamily classification. P450s are oxido-
reductases, and 54 P450s were found in the P. citri genome that were related to processing of exogenous
compounds. Among them, the representation of members of the CYP4 subfamily was particularly strong
(26 genes). In contrast, mitochondrial CYP had only 5 genes (Table 8). Phylogenetic analysis found that
genes of the same subfamily tended to be clustered together (Fig. 2a); 19 GSTs genes were retrieved from
P. citri , and the clusters were grouped into 5 subfamilies of mu, delta, omega, zeta, and kappa, of which
the mu and delta subfamily genes appeared to be dominant, with 9 and 7 genes, respectively (Fig. 2b).
Screening for carboxylesterase family genes in the Pfam database, 46 gene clusters were scattered, including
esterase, acetylcholinesterase, and carboxylate esterase, neuroligin, and others, of which esterase accounted
for more than half of the identified clusters. ABC transporters include 8 sub-families of A˜H, and 7 of the
A˜G sub-families have been found in the P. citri . No sub-family of H was found. The C and G sub-families
were the largest, with 32 and 38 genes, respectively. We also found 80 MFS transporters, 16 lipocalins, and
39 UGTs in the genome.

Genomic resequencing analysis

Statistics of Sequencing Data

By mapping the BSA traits to explore the molecular mechanisms of the development of amitraz resistance
in P. citri , we can accurately locate resistance-correlated SNPs. Genomic resequencing was performed on
the 4 DNA samples collected from the parents and offspring, and a total of 76.86 Gbp of data were obtained
(SRA accession: PRJNA600137). The clean reads obtained after filtering were a total of 76.12 Gbp, and
the Q30 was above 89% (Table 9). The average alignment efficiency between the sample and the reference
genome was 91.51%, the average coverage depth was 205.50×, and the genome coverage was 98.78% (with
at least one base of coverage).

SNP detection and annotation

The GATK toolkit was used to summarize all the different mutation sites between samples, including SNPs
and small fragment insertions and deletions (Small InDel: 1-5 bp). In the parents, there were 66,718 SNP loci
between sensitive P (SS) and resistant P (RR) strains, among which 3,775 SNPs caused non-synonymous
mutations in the gene; 35,090 Small InDel were also found, including 241 FRAME SHIFT, 238 CODON -
INSERTION, and 186 CODON DELETION (Fig. 3a). In the progeny pool, there were 68,285 SNP loci
between sensitive F (SS) and resistant F (RR), among which 3,857 SNPs caused non-synonymous mutations
in the gene; 35,615 Small InDel were also found, including 231 FRAME SHIFT, 240 CODON INSERTION,
and 183 CODON DELETION (Fig. 3b).

Association Analysis

The obtained SNPs were filtered to obtain 32,019 high-quality, reliable SNPs. Based on the Euclidean
Distance (ED) algorithm and the probability (P ) of enrichment of associated sites, 11 contigs containing
significantly enriched associated sites were finally selected. Based on the SNP-index algorithm and the
probability value P of enriched association sites (FDR <0.01), 14 contigs containing significantly enriched
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association sites were screened. The intersection of the two algorithms was taken, leading to the finding of
a total of 2 candidate regions: contig00002 and contig00033. The contig00002 region contained 289 SNPs,
of which the ED method was associated with 50 SNPs and the SNP-index method was associated with 182
SNPs. The contig00033 region contained 535 SNPs, of which the ED method was associated with 13 SNPs
and the SNP-index method was associated with 269 SNPs (Fig. 3c).

BLAST was used to perform an in-depth annotation using information from multiple databases (NR, Swiss-
Prot, GO, KEGG, COG) for the coding genes in the two candidate intervals, and a total of 222 genes were
annotated. In the COG annotation, the category with the most gene participation in candidate regions was
“R: General function prediction only” (28 genes), followed by “K: Transcription” (9 genes) (Fig. 3d). 86
genes were annotated in the GO database and distributed among 530 GO terms. Among the three GO
classifications given to these genes, the number of GO terms included in the category of “biological process”
was the largest (259 GO terms). Among the 34 GO subclasses, the top three genes with the most participation
in candidate regions were the “metabolic process” (44 genes), the “cellular process” (43 genes), and the”
single-organism process” (42 genes) (Fig. 3e). In the KEGG metabolic pathway, 5 genes were predicted to
participate in the Wnt signaling pathway and 4 genes each participated in the mTOR signaling pathway,
phagosome, inositol phosphate metabolism, and protein processing in the endoplasmic reticulum. The KEGG
pathway also predicted that 2 genes were important for ABC transporters (Fig. 3f).

Comparing the SNPs of resistant parents and sensitive parents, there were 91 NON SYNONYMOUS CO-
DING, 15 UTR 5 PRIME mutations, 3 STOP LOST, 1 STOP GAINED, and 1 START GAINED in the two
candidate regions. There were 78 NON SYNONYMOUS CODING, 15 UTR 5 PRIME mutations, 3 STOP -
LOST, 1 STOP GAINED, and 1 START GAINED mutations between the resistant and sensitive offspring.
Through SNP-index and ED association analysis, 38 SNPs (7 at contig00002, 31 at contig00033) were jointly
owned in “P (SS) VSP (RR)” and “F (SS) VS F (RR)”, including 29 NON SYNONYMOUS CODING and
9 UTR 5 PRIME (Fig. 4a). All the above SNPs mutation types may cause changes in phenotypic species
traits.

The ΔSNP-index and ED values were used to evaluate the correlation between SNPs and traits. The larger
the ED value, the closer ΔSNP-index is to 1, indicating a stronger correlation between SNPs and traits. In
the contig00002 interval, the three sites with the highest evaluation of candidate SNPs were 309075, 309203,
and 310326, the ΔSNP-index values of all three were 1, the ED value were 1.41, and the three SNPs were
located on the EVM0003193 gene, However, the gene has not been annotated in any of the 7 databases used
in this study, so related gene information was not available (Fig. 4b). In the congtig00033 interval, the
SNP with the most relevant trait was located at the 797168 site (ΔSNP-index = 1, ED = 1.55), the gene
function annotation found that this site (at 752bp) is located in the 5’-untranslated region (5’ UTR) of the of
the β-2R octopamine receptor gene (GenBank accession numbers: MN928575 and MN928576). Here, the T
base mutated to the C base (T752C) (Fig. 4b). The β-2R octopamine receptor gene was not interrupted by
introns and had an open reading frame, but no SNPs were found in it; the sequence of the receptor protein
was not changed in resistant mites.

μΡΝΑ στρυςτυρε ανδ εξπρεσσιον λεvελ οφ β-2Ρ οςτοπαμινε ρεςεπτορ

The 5’ UTR base mutation does not affect the structure and function of the protein, but if the mutation
causes the secondary structure of the mRNA to change, it may affect the stability of the mRNA or hinder
the binding or migration of the ribosome, resulting in the inability to translate the mRNA to protein.
Therefore, we compared the predicted secondary structure of mRNA with and without this base mutation
using the RNAfold WebServer. Because the U base mutated to the C base, two consecutive CC bases
formed a complementary pair with two adjacent GG bases. The existence of this interaction forced the
local secondary structure of the mRNA to change from a long stem-loop structure to three short hairpin
structures (Fig. 4c). The free energy of the thermodynamic ensemble changed from the original -46.97
kcal/mol to a predicted -51.09 kcal/mol; the free energy decreased, and the secondary structure of mRNA
was predicted to be stable. After treatment of SS P. citri with amitraz (SS-induced), the relative expression
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of the β-2R octopamine receptor was 0.79 ± 0.03, significantly lower than the untreated sensitive control
group (SS) (P <0.05) (Fig. 4d). Without amitraz treatment, the relative expression in the RS was 0.42 ±
0.04; after amitraz treatment (RS-induced), the relative expression was 0.32 ± 0.02, indicating a significant
down-regulation (more than 50%) compared with control group. These findings suggest that the level of gene
expression in the amitraz-resistant strain of P. citri is lower than that of the sensitive strain.

SNP verification in field mite populations

P. citri were collected from different citrus producing areas in China (SC-MS, YN-NS, YN-XC, GX-YL, JX-
GZ) for the evaluations of resistance in these different populations. Virulence was evaluated as previously
described (Yu et al., 2016). Among these regions, the field population with the highest resistance to amitraz
was GX-YL, with a resistance multiple of 75.64, followed by YN-XC, with a resistance ratio of 51.05. The
populations with relatively low resistance were YN-NS and SC-MS, with resistance ratios of 7.55 and 10.56,
respectively (Table 10).

A comparison of mutation frequencies showed that, in the RR mites, the candidate sites were all C bases, but
in the SS line were all T bases; in the GX-YL population, which had the highest resistance ratio, the T752C
mutation frequency was 100%, with all isolated mites having a genotype that was the C/C homozygote.
The mutation frequency in the YN-XC population was 96.67%, however the YN-NS population, which had
lower resistance ratio, had a T752C mutation frequency of only 36.67%. Three genotypes (T/T, T/C, C/C)
were found in the YN-NS population using Sanger sequencing (Fig. 4e), and these three genotypes were also
found in the SC-MS population. The T752C mutation frequency was found to be 36.67%. The correlation
between the resistance multiplier and the mutation frequency was evaluated by Pearson correlation analysis.
The analysis found that the correlation between the two was 94.40%, indicating that the T752C mutation
was directly correlated with the development of resistance.

Discussion

In this study, we used the Illumina Hiseq and the Nanopore platforms to complete a high-quality assem-
bly and annotation of the genome of theP. citri . The contig N50 was about 1.81 Mb, sufficiently large
that it was not necessary to construct a scaffold assembly. The genome size of the P. citri was about
83.97 Mb. Multi-dimensional assembly quality assessments showed that the genome assembly was of good
quality. A total of 11,577 genes were assembled, of which 10,940 genes were annotated. As of now, in the
NCBI datebase, there are 22 entries for genomes of species belonging to the subclass Acari, such as T.
urticae , Dermanyssus gallinae, Dermatophagoides farinae ,Varroa jacobsoni , R. microplus , etc. (https: /
/www.ncbi.nlm.nih.gov/genome/?term=Acari), with genome sizes ranging from 40 Mb to 7,400 Mb. Among
the Tetranychoidea entries, the genomes of two species have been sequenced: T. urticae (Grbic et al., 2011)
and Brevipalpus yothersi (Navia et al., 2019), with genome sizes of 90.82 Mb and 71.16 Mb, respectively.
The genome size of the P. citri lies between the two, closest to the two-spotted spider mite, belonging to
Tetranychidae. The search for metabolism- and detoxification-related genes in P. citri resulted in 54 P450s,
19 GST, 46 carboxylesterase family genes, and 92 ABC transporter genes. The number of these genes in the
T. urticaegenome was 81, 31, 71 and 103, respectively (Van Leeuwen et al., 2016). The number of genes rela-
ted to metabolic detoxification was higher inT. urticae than the P. citri , potentially due to the omnivorous
nature of T. urticae (compared with P. citri , which primarily feed from citrus trees). The presence of more
detoxification genes suggests that, in the process of the development of resistance against exogenous toxins,
T. urticae could have an advantage relative to P. citri.

Genomic resequencing technologies, such as BSA, QTL, GWAS, etc., can be used to perform correlation
analyses on trait-related genes with accurate genomic references. In research on insects, resistance traits are
often caused by mutations in target genes. Therefore, screening for high mutation frequency SNP sites related
to extreme traits is often the key to studying resistance. Compared with QTL and GWAS, BSA is a more
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suitable approach and has been widely used in resistance research. After Van Leeuwen et al. first applied
the method to the study resistance mechanisms in T. urticae c, BSA has been used to study the target
mutations of T. urticae against clofentezine, hexythiazox, and other mite growth inhibitors (Demaeght et
al., 2014), as well as the mechanism of resistance to phosphine byTribolium castaneum (Jagadeesan et al.,
2013) and the mechanism of resistance of Spodoptera exigua against Bt toxins (Park et al., 2014). Research on
the mechanisms of resistance of T. urticae against Mitochondrial Electron Transport Inhibitors of complex
I (METI-I) acaricides used a high-resolution QTL mapping method to screen multiple related genes that
might have been involved in mite resistance (Snoeck et al., 2019). The method of population genetic analysis,
based on genomic resequencing, requires a clear knowledge of the routes of inheritance (e.g. single- or multi-
gene inheritance, and recessive or dominant expression). This level of analysis can be achieved through
reciprocal cross and backcross experiments with strains of different traits. It has previously been confirmed
that the resistance of T. urticae to ethizole occurs as a result of the recessive inheritance of a single gene
(Van Leeuwen et al., 2012), resistance to chlorfenapyr is an incomplete recessive inheritance controlled by
multiple genes (Van Leeuwen et al., 2004), resistance to spirodiclofen is an incomplete dominant inheritance
controlled by multiple genes (Van Pottelberge et al., 2009a), and resistance to pyridaben is an incomplete
dominant inheritance determined by a single gene on the chromosome (Pottelberge et al., 2009b).

We performed a correlation analysis on the results of BSA through two methods, the ΔSNP-index and the
ED method, helped narrow the range of candidate genes. In the end, we screened the SNP with the strongest
correlation, which was located at base 752 of 5’ UTR, upstream of the start codon of the β-2R octopamine
receptor gene (T752C). The populations of P. citri from different regions were verified by Sanger sequencing.
Of note, there was a strong correlation between the mutation frequency and the extent of resistance of mites
sampled from various citrus farms around China. Although 5’ UTR base mutations do not cause changes
in the protein structure, they may cause changes in the secondary structure of mRNA. Through predictive
analysis, it was found that the 5’ end of the mRNA of the gene with the mutation does have two short hairpin
structures that may affect the efficiency protein translation (Grens & Scheffler, 1990; Gray & Hentze, 1990).
Amitraz is an octopamine receptor agonist; if the expression of the octopamine receptor on the cell membrane
is decreased, it will reduce the stimulatory signal provided by amitraz. In fact, the expression of this receptor
gene was down regulated by more than 50% in resistant strains. We speculate that this is the cause of the
resistance of P. citrito amitraz. In prokaryotic mRNAs, if base mutations occur in the 5’ UTR region, the
extent of expression of transcripts and proteins is typically affected. This suggests that UTR has a generally
unrecognized but crucial role in transcription at the DNA or RNA level (Berg et al., 2009). Relatedly, a 4
base mutation in the 5’ UTR of the whiB7 gene ofMycobacterium tuberculosis may be related to its resistance
to kanamycin (Chakravorty et al., 2015). In rice, the G98A base mutation in the 5’ UTR of the BML gene
may cause a significant reduction of transcript abundance compared to wild-type (Akhter et al., 2018). As a
next step, to test these hypotheses, we will investigate whether this base mutation at the β-2R octopamine
receptor leads differential expression of proteins in eukaryotic protein expression systems.

Availability of data and materials

The raw data of the genome sequencing and bulked segregant analysis have been uploaded to the NCBI
Sequence Read Archive (SRA) database, and the accession numbers are PRJNA600040 and PRJNA600137,
respectively. Whole Genome Shotgun project has been deposited at DDBJ/ENA/GenBank under the ac-
cession JAAABK000000000. The version described in this paper is version JAAABK010000000. Tran-
scriptome Shotgun Assembly project has been deposited at DDBJ/EMBL/GenBank under the accession
GIIF00000000. The version described in this paper is the first version, GIIF01000000. The gene structures
of β-2R octopamine receptor and the sequences alignment between resistant strain and sensitive strain of
P.citri can be found in GeneBank datebase with the accession number MN928575˜ MN928576.
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Tables

Table 1. Statistics of sample sequencing results. Library: Sequencing library of fine map; Data:
Sequencing data volume of the corresponding sequencing library; Depth: Depth of sequencing; Q20: Pro-
portion of bases with sequencing quality value above 20; Q30: Proportion of bases with sequencing quality
value above 30.

Sequence data Library Depth (×) Data (Gb) Q20 (%) Q30 (%)

Fragment library 350 bp 301.27 23.23 96.81 91.25

Table 2. Filtering statistics from Nanopore sequencing raw data. SeqNum: number of sequences;
SumBase: total number of bases; N50Len: length of data N50; N90Len: length of data N90; MeanLen:
average length of reads; MaxLen: longest reads length; MeanQual: average reads quality value

Platform Data type SeqNum SumBase N50Len N90Len MeanLen MaxLen MeanQual

Nanopore Clean data 1,368,300 25,229,827,259 19,718 11,389 18,438 302,086 8.63

Table 3. Genome assembly statistics of P. citri. Contig number: The number of Contigs above 1
Kb; Contig length: The length of Contig above 1 Kb; Contig N50: The length of Contig N50 above 1 Kb;
Contig N90: Contig above 1 Kb N90 length; Contig max: The length of the longest Contig above 1 Kb.

Contig number Contig length (bp) Contig N50 (bp) Contig N90 (bp) Contig max (bp) GC content (%) Gap total length (bp)

144 83,967,864 1,807,243 247,900 5,138,740 31 0

Table 4. Genomic assembly quality assessment. Total Reads: the number of Clean Reads; Mapped:
the number of clean reads mapped to the reference genome as a percentage of all Clean Reads; Properly
mapped: the proportion of sequences from two-end sequencing that were located on the reference genome
and that also had a distance matching the sequencing fragment Complete length distribution; Complete
BUSCOs; Complete and single-copy BUSCOs; Complete and duplicated BUSCOs; Fragmented BUSCOs;
Missing BUSCOs; Number of 458 highly conserved CEGs present; % of 458 highly conserved CEGs present;
Number of 248 highly conserved CEGs present; % of 248 highly conserved CEGs present.

Panonychus citri 350bp library Total reads 156,842,670

Mapped (%) 96.95%
Properly mapped (%) 94.36%

BUSCO Complete BUSCOs 975
Complete and single-copy BUSCOs 878
Complete and duplicated BUSCOs 97
Fragmented BUSCOs 24
Missing BUSCOs 67

CEGMA Number of 458 CEGs present in assembly 448
% of 458 CEGs present in assemblies 97.82%
Number of 248 highly conserved CEGs present 243
% of 248 highly conserved CEGs present 97.98%
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Table 5. Genomic repeat sequence statistics

Type Number Length Rate(%)

ClassI 31,601 9,606,976 11.44
ClassI/DIRS 223 61,219 0.07
ClassI/LINE 2,089 317,963 0.38
ClassI/LTR 1,708 256,699 0.31
ClassI/LTR/Copia 833 160,582 0.19
ClassI/LTR/Gypsy 4,964 3,778,949 4.5
ClassI/PLE|LARD 21,574 5,115,340 6.09
ClassI/SINE 74 4,623 0.01
ClassI/TRIM 67 64,507 0.08
ClassI/Unknown 69 8,255 0.01
ClassII 16,142 2786052 3.32
ClassII/Crypton 178 14,466 0.02
ClassII/Helitron 1,230 164,584 0.2
ClassII/MITE 432 106,275 0.13
ClassII/Maverick 2,603 1,075,871 1.28
ClassII/TIR 6,254 1,156,490 1.38
ClassII/Unknown 5,445 350,474 0.42
PotentialHostGene 4,288 932,137 1.11
SSR 38 107,733 0.13
Unknown 4,099 1,119,553 1.33
Total 52,069 13,934,963 16.6

Table 6. Statistics of gene structure prediction. GeneLen: total gene length; AveGeneLen: average
gene length; ExonLen: total exon length; AveExonLen: average exon length; IntronLen: included total
intron length; AveIntronLen: mean intron length.

Soft ware Gene Num GeneLen (bp) AveGeneLen (bp) ExonLen (bp) AveExonLen (bp) IntronLen (bp) AveIntronLen (bp)

EVM 11,577 45,429,646 3924.13 23,189,757 2003.09 22,239,889 1921.04

Table 7. Functional annotation statistics of genes from comparison to 7 databases.

Database Annotated Number Percentage 100<=Protein length<300 Protein length>=300

GO Annotation 4,032 34.83% 1,152 2,801
KEGG Annotation 5,668 48.96% 1,511 4,076
KOG Annotation 7,849 67.80% 2,094 5,647
Pfam Annotation 8,591 74.21% 2,346 6,124
Swissprot Annotation 7,029 60.72% 1,825 5,107
TrEMBL Annotation 10,905 94.20% 3,257 7,431
nr Annotation 9,533 82.34% 2,659 6,725
All Annotated 10,940 94.50% 3,266 7,457

Table 8. Screening of heterologous compound metabolism-related genes at the genome level
of P. citri
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CYP450s CYP450s CYP450s CYP450s GSTs GSTs GSTs GSTs GSTs Carboxylesterase family Carboxylesterase family Carboxylesterase family Carboxylesterase family Carboxylesterase family ABC transporters ABC transporters ABC transporters ABC transporters ABC transporters ABC transporters ABC transporters ABC transporters Others Others Others

CYP2 CYP3 CYP4 Mitochondrial CYP mu delta omega zeta kappa Esterase Acetylcholi-nesterase Acetylcholi-nesterase precursor Carboxyles-terase Neuroligin A family B family C family D family E family F family G family H family MFS transporters Lipocalins UGTs
11 12 26 5 9 7 1 1 1 25 5 2 5 9 13 3 32 2 1 3 38 0 80 16 39
Total: 54 Total: 54 Total: 54 Total: 54 Total: 19 Total: 19 Total: 19 Total: 19 Total: 19 Total: 46 Total: 46 Total: 46 Total: 46 Total: 46 Total: 92 Total: 92 Total: 92 Total: 92 Total: 92 Total: 92 Total: 92 Total: 92

Table 9. Sequencing and statistical comparison of four DNA samples of parental and offspring.
Clean Reads: the number of reads after filtering; Clean Base: the number of bases after filtering; Q30: the
percentage of bases with a mass value of 30 or more in the total number of bases; GC: G and C bases
as a percentage of total bases. Mapped: the number of Clean Reads mapped to the reference genome as
a percentage of all Clean Reads; Properly mapped: the proportion of sequences from two-end sequencing
that were located on the reference genome whose distance matched the length distribution of the sequenced
fragments; Ave depth: the average of the sample’s coverage depth.

ID Clean Reads Clean Base Q30(%) GC(%) Mapped(%) Properly mapped(%) Ave depth

P(SS) 67,466,235 20,165,001,842 92.00 34.42 90.96 88.00 208
F(SS) 52,269,916 15,643,096,538 91.34 32.04 99.51 97.16 192
P(RR) 63,737,350 19,082,853,740 89.89 31.64 93.20 90.37 226
F(RR) 62,575,871 18,736,142,624 90.27 30.68 82.38 79.94 196

Ταβλε 10. Στατιστιςς οφ Τ752῝ μυτατιονς ιν τηε β-2Ρ οςτοπαμινε ρεςεπτορ γενε οφ

Π. ςιτρι ισολατεδ φρομ διφφερεντ ρεγιονς.Resistance ratio: The ratio of the LC50 of amitraz toP.
citri between the field populations and the sensitive strain in the lab ; n: The number of Sanger sequencing
for P. citri ; Pearson correlation indicates the degree of correlation between the resistance ratio and the
T752C frequency, Sig. < 0.05 indicates a significant difference.

Strains Coordinate
Slpoe ±
SE

LC50

(95%CI)
(mg L-1)

Resistance
ratio n T/T T/C C/C

T752C
frequency

SS E106°37’85”
N29°76’06”

1.24±0.07 29.03
(20.01-
42.11)

1.00 20 20 0 0 0

RR E106°37’85”
N29°76’06”

1.84±0.24 2361.45
(1982.89-
2812.29)

81.35 20 0 0 20 100.00%

SC-MS E103°32’20”
N29°52’41”

1.60±0.36 306.45
(245.12-
383.11)

10.56 30 11 14 5 40.00%

YN-NS E103°12’12”
N24°20’62”

2.02±0.10 219.17
(188.13-
255.33)

7.55 30 13 12 5 36.67%

YN-XC E103°11’14”
N24°25’15”

1.64±0.15 1481.86
(1223.04-
1795.45)

51.05 30 1 0 29 96.67%

GX-YL E109°87’52”
N22°73’64”

1.42±0.08 2195.85
(1696.22-
2842.66)

75.64 25 0 0 25 100.00%
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Strains Coordinate
Slpoe ±
SE

LC50

(95%CI)
(mg L-1)

Resistance
ratio n T/T T/C C/C

T752C
frequency

JX-GZ E114°75’71”
N24°93’40”

1.9±0.14 1329.54
(1122.12-
1575.30)

45.80 20 0 2 18 95.00%

χ
2=168.539

df =12
Sig.=0

χ
2=168.539

df =12
Sig.=0

χ
2=168.539

df =12
Sig.=0

Pearson
correla-
tion=0.944
Sig.=0

Figure Legends

Fig. 1 Evaulation of genome assembly quality . aSingle-ended reads were randomly selected from the
350 bp library and the Nanopore library and compared with the database of genes from related species. b
Evaluation of genome size, repeat sequence ratio, and heterozygosity by Kmer analysis. c Distribution map
of genes derived from 3 prediction methods after integration.

Fig. 2 Phylogenetic analysis of metabolism-related genes fromPanonychus citri and Tetrany-
chus urticae . aNeighbor-Joining phylogenetic analysis of P450 protein sequences fromP. citri and T.
urticae . XP×××, NP×××, and AWD××× represent the accession number of the T. urticae p450 protein
in Genebank, EVM××× represents the ID number of p450 protein screening from the genome database of
P.citri . P450 protein sequences clustered into the four clans: CYP2, CYP3, CYP4, and mitochondrial CYP
(CYP M).b Neighbor-Joining phylogenetic analysis of glutathione S-transferase(GST) protein sequences
from P. citri and T. urticae . XP×××, NP×××, AFQ×××, and AGE××× represent the accession number
of T. urticae GST protein in Genebank, EVM××× represents the ID number of GST protein screening from
genome database of P. citri . GST protein sequences clustered into the five clans: mu, delta, omega, zeta,
and kappa. The protein sequences of P450 and GST inP. citri can be found in the TSA database (accession
number: GIIF00000000)

Fig. 3 SNP detection and annotation through bulked segregant analysis . a Statistical differences
and types of SNPs between resistant and susceptible samples of P. citri . bStatistical differences and types
of Small InDels between resistant and susceptibile samples of P. citri . The ordinate represents the number
of SNPs and Small InDels; the x-axis represents the position of SNPs and Small InDels in the gene and the
type of mutation. INTERGENIC: intergenic region; INTRAGENIC: SNPs or Small InDel located in the ge-
ne; SPLICE SITE ACCEPTOR: splice donor mutation; SPLICE SITE DONOR: spliced receptor mutation;
NON SYNONYMOUS CODING: non-synonymous mutations; NON SYNONYMOUS START: start codon
mutation; START LOST: start codon loss; STOP GAINED: new Stop codon; STOP LOST: stop codon loss;
SYNONYMOUS CODING: synonymous mutation; SYNONYMOUS STOP: stop codon synonymous muta-
tion; CODON CHANGE PLUS CODON DELETION: base deletion that is not an integer multiple of 3 on
the codon boundary; CODON CHANGE PLUS CODON INSERTION: an integer that is not 3 on the codon
boundary fold base insertion; CODON DELETION: codon deletion (integer multiple of 3); CODON INSER-
TION: codon insertion (integer multiple of 3); EXON DELETED: entire exon is deleted; FRAME SHIFT:
gene frameshift mutation. The Venn diagram represents the distribution of shared or distinct SNPs and
Small InDel among the 4 groups of DNA samples. c SNPs related to resistance traits were obtained using
ED and SNP-index methods. AssoSNP SNP-index/ED: the number of candidate SNPs associated with the
SNP-index/ED method on the contig.d Clusters of Orthologous Groups (COG) classification of genes in the
2 candidate intervals. e Functional annotation of genes in the 2 candidate intervals based on gene ontology
(GO) categorization.f KEGG classification of candidate genes and pathway enrichment.

Fig. 4 Location of target genes and verification of mutation sites . a Distribution of SNPs, mutation
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types, and gene annotations related to traits. b ΔSNP-index and ED evaluation results of candidate SNPs.
The x-axis represents the position of the SNPs in the corresponding candidate interval, and the y-axis
represents the ΔSNP-index value and the original ED value. “*” represents the original ED value of the
associated SNPs; “” represents the ΔSNP-index value of the associated SNPs. c Comparison of mRNA
secondary structure of the β-2R octopamine receptor before (SS) and after (RR) 5’ UTR mutation (GenBank
accession numbers: MN928575 and MN928576). The presence of U752C forced the local secondary structure
of the mRNA to change from a long stem-loop structure to three short hairpin structures. d Comparison of
mRNA expression of the β-2R octopamine receptor gene between amitraz-resistant (RR) and -sensitive strains
(SS) of P.citri . Data are shown as means of 3 replicates ± standard deviation; different lowercase letters
indicate a significance difference between the 4 samples (P <0.05); SS: sensitive strain of P. citri treated
with water (control group); RS: amitraz-resistant strain of P. citri treated with water; SS/RS-induced:
susceptible/amitraz-resistant strain of P. citri treated with amitraz. e Three genotypes were detected at
base pair 752 of the 5’ UTR of the β-2R octopamine receptor gene by Sanger sequencing.
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