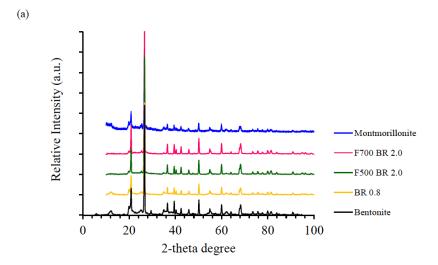
Influence of Chemical Composition of Activated Sodium Bentonites on Degummed Palm Oil Bleaching

Rujira Dolphen¹, Prapai Dhurakit¹, and Paitip Thiravetyan¹

¹King Mongkut's University of Technology Thonburi


May 6, 2020

Abstract

The efficiency of clays in bleaching degummed palm oil depended on their unique characteristics. The characteristics of bentonites and Na-bentonites, including activated forms of both clays, were investigated in depth to determine their bleaching capacity. The results showed that Na-bentonite treated with 1.5 M H₂SO₄ at a clay:acid ratio of 10:50 (w/v) and refluxing time of 8 h had higher bleaching capacity (78.04%) than commercial clay (67.09%). X-Ray Diffraction (XRD) patterns of bentonites and Na-bentonites activations show peaks similar to montmorillonite. Meanwhile, X-ray Fluorescence Spectrometry (XRF) indicated a correlation between the SiO₂ and Al₂O₃ contents of clays and their bleaching capacity. Interestingly, the high bleaching capacity of Na-bentonite was correlated with SiO₂ and Al₂O₃ contents in the range of 72.30–85.20% and 8.96–13.30% by weight, respectively. Moreover, the specific surface area and total pore volume of this activated clay also increased. In addition, after bleaching by Na-bentonite treated with 1.5 M H₂SO₄, the degummed palm oil appeared to be of good quality, leading to less deterioration and rancidity. Moreover, the bleached palm oil had lower yellowish colour, moisture content, and peroxide values than the degummed palm oil.

Hosted file

Manuscript 30-4-2020.docx available at https://authorea.com/users/317075/articles/447183-influence-of-chemical-composition-of-activated-sodium-bentonites-on-degummed-palm-oil-bleaching

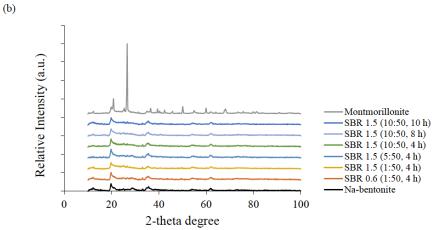


Figure 1. XRD patterns of (a) commercial clay, bentonite, and activated bentonites, and (b) Nabentonite and activated Na-bentonites

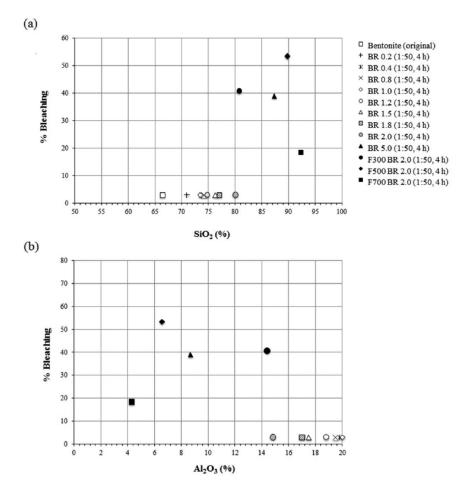


Figure 2. Relationship between % bleaching of palm oil and SiO₂ (a) Al₂O₃ (b) contents of activated bentonites.

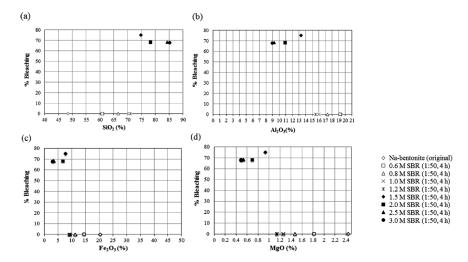


Figure 3. Relationship between % bleaching of palm oil and SiO2 (a), Al2O3 (b), Fe2O3 (c) and MgO (d) contents of activated Na-bentonites.

Table 1. Chemical composition and bleaching capacity of commercial clay, bentonite and activated bentonites under various conditions.

Sample		% Bleaching							
•	SiO ₂	Al ₂ O ₃	Fe ₂ O ₃	CaO	TiO ₂	K ₂ O	MgO	Na ₂ O	
Commercial clay	80.70	10.20	2.18	1.61	0.65	0.84	ND	ND	67.09±0.50e
Bentonite (original)	66.40	20.30	7.65	1.98	1.38	1.16	0.48	0.20	Oa
BR 0.2	71.00	20.80	4.54	0.17	1.49	1.22	0.42	0.14	Oa
BR 0.4	73.70	19.80	2.75	0.16	1.53	1.26	0.42	0.13	Oa
BR 0.8	74.10	19.50	2.38	0.33	1.54	1.23	0.45	0.18	O _a
BR 1.0	73.50	20.00	2.57	0.29	1.54	1.25	0.45	0.17	O _a
BR 1.2	74.70	18.80	2.45	0.22	1.59	1.27	0.42	0.14	Oa
BR 1.5	76.30	17.50	2.28	0.22	1.63	1.26	0.39	0.14	O _a
BR 1.8	77.00	17.00	2.12	0.21	1.61	1.25	0.39	0.13	Oa
BR 2.0	80.00	14.80	1.59	0.18	1.58	1.15	0.33	0.15	O _a
BR 5.0	87.30	8.68	0.75	0.15	1.63	1.03	0.20	0.14	38.95±2.11c
F300 BR 2.0	88.70	7.10	0.71	0.17	1.67	1.11	0.32	0.15	40.70±4.75c
F500 BR 2.0	89.70	6.55	0.77	0.18	1.73	0.63	0.20	0.08	53.33±3.04d
F700 BR 2.0	92.30	4.28	0.88	0.15	1.74	0.43	0.06	0.06	18.47±1.39ь

Note: BR 0.2, BR 0.4, BR 0.8, BR 1.0, BR 1.2, BR 1.5, BR 1.8, BR 2.0, BR 5.0 = refluxing bentonite with H_2SO_4 solution with 0.2–5.0 M at 90 °C for 4 h and the ratio of clays to acid was 1:50 (w/v); F300 BR 2.0, F500 BR 2.0, and F700 BR 2.0 = bentonites preheated at 300 °C, 500 °C, and 700 °C for 1 hour in a muffle furnace prior to refluxing with 2.0 M H_2SO_4 at 90 °C for 4 h and the ratio of clays to acid was 1:50 (w/v). For % bleaching, data are presented as mean \pm SD of three replication. Different letters indicate significant difference among treatments at the 0.05 significant level based on Duncan's multiple range test.

Table 2. Chemical compositions and bleaching capacity of commercial clay, Na-bentonite and activated Na-bentonites under various conditions.

Sample				Mass	(%)				% Bleaching
Sample	SiO ₂	Al ₂ O ₃	Fe ₂ O ₃	CaO	TiO ₂	K ₂ O	MgO	Na ₂ O	76 Bleaching
Commercial clay	80.70	10.20	2.18	1.61	0.65	0.84	ND	ND	67.09±0.50c
Na-bentonite (original)	48.40	19.40	20.40	2.44	1.49	0.17	2.44	4.22	O _a
SBR 0.6 (1:50, 4 h)	60.90	19.20	14.50	1.01	1.99	0.14	1.82	ND	Oa
SBR 0.8 (1:50, 4 h)	66.60	17.30	11.30	0.60	2.13	0.13	1.47	ND	O _a
SBR 1.0 (1:50, 4 h)	70.60	16.00	9.17	0.41	2.14	0.12	1.26	ND	Oa
SBR 1.2 (1:50, 4 h)	71.00	15.50	9.40	0.36	2.18	0.12	1.14	ND	Oa
SBR 1.5 (1:50, 4 h)	74.80	13.30	7.79	0.46	2.27	0.11	0.93	ND	75.09±0.44e
SBR 2.0 (1:50, 4 h)	78.30	10.90	6.75	0.69	2.26	0.10	0.69	ND	68.21±1.45c
SBR 2.5 (1:50, 4 h)	84.30	9.23	3.48	0.27	1.89	0.08	0.53	ND	68.32±0.66c
SBR 3.0 (1:50, 4 h)	85.20	8.96	3.06	0.22	1.81	0.08	0.49	ND	67.86±1.47ь
SBR 1.5 (5:50, 4 h)	75.50	12.90	7.29	0.41	2.27	0.12	0.58	ND	72.11±0.38d
SBR 1.5 (10:50, 4 h)	76.80	12.10	7.2	0.47	2.06	0.11	0.45	ND	62.77±1.16ь
SBR 1.5 (10:50, 6 h)	76.10	12.50	7.9	0.45	2.21	0.12	0.42	ND	66.81±1.90c
SBR 1.5 (10:50, 8 h)	72.30	15.20	8.3	0.58	2.2	0.1	0.43	ND	78.04±0.34f
SBR 1.5 (10:50, 10 h)	75.10	13.10	7.3	0.53	2.15	0.1	0.39	ND	72.70±0.58d

Note: SBR 0.6 (1:50, 4 h), SBR 0.8 (1:50, 4 h), SBR 1.0 (1:50, 4 h), SBR 1.2 (1:50, 4 h), SBR 1.5 (1:50, 4 h) = refluxing Na-bentonite with H₂SO₄ solution with 0.6–3.0 M at 90 °C for 4 h and the ratio of clays to acid was 1:50 (w/v). SBR 1.5 (5:50, 4 h), SBR 1.5 (10:50, 4 h), SBR 1.5 (10:50, 6 h), SBR 1.5 (10:50, 8 h), and SBR 1.5 (10:50, 10 h) = refluxing Na-bentonite with 1.5 M H₂SO₄ concentration at 90 °C for 4 h-10 h and the ratio of clays to acid was 5:50 (w/v) and 10:50 (w/v), respectively. For % bleaching, data are presented as mean±SD of three replication. Different letters indicate significant difference among treatments at the 0.05 significant level based on Duncan's multiple range test.

Table 3. Specific surface area, total pore volume, micro pore volume and average pore size of commercial clay and activated Na-bentonites.

Sample names	Specific surface area (m2/g)	Total pore volume (cc/g)	Micro pore volume (cc/g)	Average pore size (Å)
Commercial clay	160.90	0.32	0.09	80.47
Bentonite	42.30	0.1010	0.0341	37.74
Na-bentonite	67.47	0.1256	0.0052	30.22
SBR 1.5 (1:50, 4 h)	340.50	0.4465	0.2642	48.08
SBR 1.5 (5:50, 4 h)	303.90	0.3780	0.2184	4680
SBR 1.5 (10:50, 4 h)	270.40	0.3164	0.1849	43.41
SBR 1.5 (10:50, 8 h)	373.20	0.4672	0.2862	52.06
SBR 1.5 (10:50, 10 h)	308.40	0.4150	0.2247	46.91

Note: SBR 1.5 (1:50, 4 h), SBR 1.5 (5:50, 4 h) and SBR 1.5 (10:50, 4 h) = refluxing Na-bentonite with 1.5 M H₂SO₄ concentration at 90 °C for 4 h and the ratio of clays to acid was 1:50 (w/v), 5:50 (w/v) and 10:50 (w/v), respectively.