Thermodynamic analysis of an ecologically restored plant community at a manganese tailing site:Growth potential and ecological niche

Mingli Chen¹, Zijian Wu², Xinxi Fu¹, Linnan Ouyang³, and Xiaofu Wu¹

May 6, 2020

Abstract

The data used in the analysis were obtained from an ecologically restored plant community. The basic idea presented in this study is that the conventionally defined chemical potential μ can be used as a growth potential index for a species for evaluating the biotic effect on its realized niche. An ecological niche defines a suitable environment for a species to live while μ defines the adaptability of a species to a given environment. The deviation from the fundamental niche of a plant species due to changes in its living environment will thus be reflected by the changes in its μ value. The μ factor is a function of μ (the standard chemical potential) and N (the species number). Similar to the fundamental niche, μ io is uniquely determined by abiotic factors. Increasing N will reduce μ and thus, similar to the realized niche, μ takes into account the biotic effect.

Hosted file

Manuscript.docx available at https://authorea.com/users/318787/articles/448805-thermodynamic-analysis-of-an-ecologically-restored-plant-community-at-a-manganese-tailing-site-growth-potential-and-ecological-niche

¹Central South University of Forestry and Technology

²Hunan Academy of Forestry Science, Changsha 410004, China

³China Eucalypt Research Centre, State Forestry and Grassland Administration