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In this paper, we study the problem of least square solutions of the complex matrix equation (AXB,CXD)=(E,F). First, by

using the real representation method of the complex matrix, we prosent the real representation form of the complex matrix

equation (AXB,CXD)=(E,F). In combination with the special structure of the real representation matrix of the complex matrix,

the vec operator of the matrix, the Kronecker product of the matrix and the MP inverse property of the matrix, we obtain the

Hermitian least squares solution of the complex matrix equation(AXB,CXD)=(E,F),and derive the Hermitian minimum norm

least square solution, the real symmetric minimum norm least square solution and the real dissymmetric minimum norm least

square solution of the complex matrix equation(AXB,CXD)=(E,F). At last, we give the expressions of three minimum norm

least squares solutions and their corresponding algorithms, respectively.

The special least squares solutions of the complex matrix equation

(AXB,CXD) = (E,F)

Yanzhen Zhang1, Shanshan Yang2, Ying Li1 *

1.School of Mathematical Science, Liaocheng University, Liaocheng Shandong 252000

2. School of Mathematics and Statistics, Beijing Institute of Technology, Beijing 100081

Abstract In this paper, we study the problem of least square solutions of the complex matrix
equation(AXB,CXD) = (E,F). First, by using the real representation method of the complex matrix,
we prosent the real representation form of the complex matrix equation(AXB,CXD) = (E,F). In combina-
tion with the special structure of the real representation matrix of the complex matrix, the vec operator of the
matrix, the Kronecker product of the matrix and the MP inverse property of the matrix, we obtain the Her-
mitian least squares solution of the complex matrix equation(AXB,CXD) = (E,F),and derive the Hermitian
minimum norm least square solution, the real symmetric minimum norm least square solution and the real
dissymmetric minimum norm least square solution of the complex matrix equation(AXB,CXD) = (E,F).
At last, we give the expressions of three minimum norm least squares solutions and their corresponding
algorithms, respectively.

Keywords Matrix equation; Hermitian least squares solution; The real symmetric least square solution;
The real opposition least square solution; Real representation matrix.

1.Introduction
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Matrix equations have a wide range of applications, which the calculation of special least squares solution
is always a research hotspot in the field of numerical algebra. The least squares solutions of complex
matrix equations have been studied extensively[1]-[11]. For example, [1,2] by using the real representation
method of the complex matrix, Zhang et al. study the Hermitian minimum norm least square solution
ofAXB + CXD = E and (AXB, CXD) = (E, F ), respectively; [3] by the Kronecker product of the
Matrix-Vector and the MP inverse property of the matrix, Wang et al. proposed a direct method to solve
the least squares solution of the complex matrix equation(AXB, CXD) = (E, F ); [4] Yuan et al. proposed
a new method to solve the Hermitian least square solution of the complex matrix equation, and gave the
expression and algorithm of the least square solution of the Hermitian least square solution and the Hermitian
minimum norm least square solution, et al.

This paper study the problem of least square solutions of complex matrix equations

(AXB,CXD) = (E,F ) . (1)

In this paper, we use the following notations.

LetRm×nCm×nHCn×nSRn×nASRn×nbe the sets of m× n real matrices, be the sets ofm× n real matrices,
be the sets of m× n Hermitian complex matrices, be the sets of m× n real symmetric matrices, be the sets
of m× n real dissymmetric matrices.Rn be the sets of n column vector,

ATAH denote the transpose and the conjugate transpose of matrix A, respectively. A+ denote the MP
inverse of matrixA, ,In = (e1, e2, . . . , en) denote the identity matrix of order n, ‖A‖ denote Frobenius norm
of complex matrices

For (1), we mainly discuss the following three issues.

Problem 1 LetA,C ∈ Cm×n, B,D ∈ Cn×s , E, F ∈ Cm×s,the Hermitian minimum norm least squares
solution of (1) denote byCH , that is

CH =
{
X
∣∣X ∈ HCn×n, ‖AXB − E‖+ ‖CXD − F‖ = min

}
,

make sure CH , and solve the Hermitian minimum norm least square solution X̂ ∈ CS satisfying
∥∥∥X̃∥∥∥ =

minX∈CH
‖X‖ .

Problem 2 LetA,C ∈ Cm×n, B,D ∈ Cn×s , E, F ∈ Cm×s,the real symmetric minimum norm least squares
solution of (1) denote by CS , that is

CS =
{
X
∣∣X ∈ SRn×n, ‖AXB − E‖+ ‖CXD − F‖ = min

}
,

make sure CS , and solve the symmetric minimum norm least square solution X̂ ∈ CSsatisfying
∥∥∥X̂∥∥∥ =

minX∈Cs
‖X‖.

Problem 3Let A,C ∈ Cm×n, B,D ∈ Cn×s , E, F ∈ Cm×s, the real dissymmetric minimum norm least
squares solution of (1) denote by CA, that is

CA = {X|X ∈ ASRn×n, ‖AXB− E‖+ ‖CXD− F‖ = min},

make sure CA, and solve the symmetric minimum norm least square solution
ˇ

X ∈ CAsatisfying足

∥∥∥∥ ˇ

X

∥∥∥∥ =

minX∈CA
‖X‖ .

2 Preliminaries

In this paper, we need the following concepts and conclusions:

2
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Definition 1 [12] ForA = (aij) ∈ Cm×n, B = (bij) ∈ Cp×q, called the following block matrix

A⊗B = (aijB) ∈ Cmp×nq

is the Kronecker product of matrix A and matrix B.

Definition 2 [1]For A = A1 +A2i ∈ Cm×n, whichA1, A2 ∈ Rm×n.

AR =(
A1 amp;−A2

A2 amp;A1

)
∈ R2m×2n,

is called to the real representation matrix of A, Let AR
c denote the first column block(

A1

A2

)
of AR.

AR and AR
c have some properties as follows:

Lemma 1 [1] ForA,B ∈ Cm×n, k ∈ C. Then the following properties hold.

(1) A = B ⇔ AR = BR; (2)(A+B)
R
AR +BR; (3)(kA )

R
= kAR.

Lemma 2 [1]For A,B ∈ Cm×n, D ∈ Cn×s, k ∈ C. Then the following properties hold.

(1) A = B ⇔ AR
c = BR

c ; (2)(kA)
R
c = kAR

c ,

(3) (AD)
R
c = ARDR

c ; (4)(A+B)
R
c A

R
c +BR

c .

ForA ∈ Cm×n, have ‖A‖ = 1
2

∥∥AR
∥∥ =

∥∥AR
c

∥∥ and .

The vec operator of real matrix have some properties as follows:

Lemma 3[12] ForA ∈ Rm×n, B ∈ Rn×p, C ∈ Rp×q. Then the following properties hold.

vec (ABC) =
(
CT ⊗A

)
vec (B) .

For complex matrixX = X0 +X1i, the following relationship betweenXRXR
CX0 and X1

as follows:

Lemma 4[1] ForX = X0 +X1i ∈ Cm×n. Then the following properties hold. (1)vec
(
XR
)

= Hvec
(
XR

C

)
,

in which H =(
diag (I2n, . . . , I2n)
diag (Qn, . . . , Qn)

)
∈ R4mn×2mn,Qn =(

0 amp;−In
In amp; 0

)
.

(2) vec(X
R
c ) = K

(
vecX0

vecX1

)
,

in which K =

3
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In amp; 0
0 amp; 0

amp;
· · · amp; 0 amp; 0
· · · amp; 0 amp; In

amp;
0 amp; · · · amp; 0
0 amp; · · · amp; 0

0 amp; In
0 amp; 0

amp;
· · · amp; 0 amp; 0
· · · amp; 0 amp; 0

amp;
0 amp; · · · amp; 0
In amp; · · · amp; 0

· · · amp; · · ·
0
0

amp;
0
0

amp;
· · · amp; · · · amp; · · ·
· · · amp; In
· · · amp; 0

amp;
0
0

amp;
· · · amp; · · · amp; · · ·
0
0

amp;
· · · amp; 0
· · · amp; In


∈ C2n2×2n2

.

(3) if X = X0, have

vec
(
XR

c

)
= V vec (X0),

in which V =

In amp; 0 amp; · · · amp; 0
0 amp; 0 amp; · · · amp; 0
0
0
· · ·
0
0

amp;

In
0
· · ·
0
0

amp;

· · · amp; 0
· · · amp; 0
· · ·
· · ·
· · ·

amp;
· · ·
In
0


∈ C2n2×n2

.

By calculation, give definition and relationship between the independent elements of real (dis)symmetric
matrix and vec of its independent elements:

Definition 3 [1] ForX = (xij) ∈ SRn×n, letα1 = (x11, x21, . . . xn1), α2 = (x22, x32,

. . . xn2), . . . , αn−1 = (x(n−1)(n−1), xn(n−1)), αn = xnn, the elements of α1, α2, . . . , αn are called as the in-

dependent elements of real symmetric matrixX = (xij) ∈ SRn×n, for short independent entry. Denoted
by

vecS (X) = (α1, α2, . . . αn)
T ∈ R

n(n+1)
2

is called a column straight of the independent elements of real symmetric matrixX = (xij) ∈ SRn×n.

Definition 4 [1] For arbitrary real dissymmetric matrix X = (xij) ∈ ASRn×n, and
letβ1 = (x21, x31, . . . xn1), β2 = (x32, x42, . . . xn2), . . . , βn−1 = (x(n−1)(n−2), xn(n−2)), βn = xn(n−1), the ele-
ments of β1, β2, . . . , βn are called as the independent elements of real dissymmetric matrix dissymmetric
matrixX = (xij) ∈ ASRn×n. Denoted by

vesA (X) = (β1, β2, . . . βn)
T ∈ R

n(n−1)
2

is called a column straight of the independent elements of real dissymmetric matrix

Lemma 5 [1]For X = (xij) ∈ SRn×n. Then

X ∈ SRn×n ⇔ ves (X) = KnvesS (X) ,Kn ∈ Rn2×n(n+1)
2 ,

in which Kn = (

e1 amp; e2 amp; e3 amp; · · · amp; en−1

0 amp; e1 amp; 0 amp; · · · amp; 0
0
· · ·
0
0

amp;

0
· · ·

0
0

amp;

e1

· · · amp;
· · ·

amp;
0
· · ·

0 amp; · · · amp; e1

0 amp; · · · amp; 0

4
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en amp; 0 amp; 0 amp; · · · amp; 0
0 amp; e2 amp; e3 amp; · · · amp; en−1

0
· · ·
0
e1

amp;

0
· · ·

0
0

amp;

0
· · · amp;

· · ·
amp;

0
...

0 amp; · · · amp; e2

0 amp; · · · amp; 0

0 amp; · · · amp; 0 amp; 0 amp; 0
en amp; · · · amp; 0 amp; 0 amp; 0
0
...

0
e2

amp;

· · ·

· · ·
· · ·

amp;

0
· · · amp;

0
· · · amp;

0
· · ·

0 amp; en amp; 0
0 amp; en−1 amp; en

.

Lemma 6 [1] ForX = (xij) ∈ Rn×n. Then

X ∈ ASRn×n ⇔ ves (X) = LnvesA (X) , Ln ∈ Rn2×n(n+1)
2 ,

in which Ln = (

e2 amp; e3 amp; · · · amp; en−1 amp; en
−e1 amp; 0 amp; · · · amp; 0 amp; 0
0
· · ·
0
0

amp;

−e1

· · ·
0
0

amp;

· · ·
amp;

0
amp;

0
· · ·

· · · amp;−e1 amp; 0
· · · amp; 0 amp;−e1

0 amp; · · · amp; 0 amp; 0 amp; · · · amp; 0
e3 amp; · · · amp; en−1 amp; en amp; · · · amp; 0
−e2

· · ·
0
0

amp;

0
· · ·

0
0

amp;

0
· · · amp;

0
amp;

· · · amp; 0
amp; · · ·

−e2 amp; 0 amp; · · · amp; en
0 amp;−e2 amp; amp;−en−1

Lemma 7 [1] LetA ∈ Rm×n, b ∈ Rn. Then the least square solutions of the incompatible linear equations
Ax = b is x = A+b+ (I −AA+)y, where y ∈ Rn is arbitrary vector.

2 The minimum norm least square solution of complex matrix equations(AXB,CXD) = (E,F)

In this paper, the special structure of the real representation matrix of the complex matrix and the MP
inverse property of the matrix, we study Hermitian least square solutions of complex matrix equations(1),
and give the expressions of Hermitian minimum norm least square solution, real symmetric minimum norm
least square solution and real dissymmetric minimum norm least square solution.

Theorem 1 LetA,C ∈ Cm×n, B,D ∈ Cn×s , E, F ∈ Cm×s, X = X0 + X1i,whereX0 ∈ SRn×n, X1 ∈
ASRn×n. For complex matrix equations (1), the Hermitian minimum norm least square solution X sat-
isfies(

vesS(X0)
(vesA(X1))

)
=

[(
(BR

c )
T⊗AR

(DR
c )T⊗CR)

)
HVKn

]+ (
ER

c

FR
c

)
.

Proof. By lemma 1-6, we get

‖AXB− E‖+ ‖CXD− F‖

5
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=
∥∥AR XRBR

c − ER
c

∥∥+
∥∥CR XRDR

c − FR
c

∥∥
=
∥∥∥((BR

c

)T ⊗AR
)

vec
(

XR
)
− vec (ER

c )
∥∥∥+

∥∥∥((DR
c

)T ⊗ CR
)

vec
(

XR
)
− vec (F

R
c )
∥∥∥

=

∥∥∥∥∥∥∥

(

(B
R
c )

T
⊗AR

)
vec
(
XR
)
− vec( ER

c )

((DR
c )T ⊗ CR) vec

(
XR
)
− vec( FR

c )


∥∥∥∥∥∥∥

=

∥∥∥∥∥∥∥

(

(B
R
c )

T
⊗AR

)
((DR

c )T ⊗ CR)

 vec (X
R

)−
(
ER

c

FR
c

)∥∥∥∥∥∥∥
=

∥∥∥∥∥∥∥

(

(B
R
c )

T
⊗AR

)
((DR

c )T ⊗ CR)

HK

(
vecX0

vecX1

)
−
(
ER

c

FR
c

)∥∥∥∥∥∥∥
=

∥∥∥∥∥∥∥

(

(B
R
c )

T
⊗AR

)
((DR

c )T ⊗ CR)

HK

(
KnvesS (X0)
LnvesA (X1)

)
−
(
ER

c

FR
c

)∥∥∥∥∥∥∥
Where H,K,Kn, Ln are defined in the form of lemma 4-6. LetG = diag (Kn, Ln) , then

‖AXB− E‖+ ‖CXD− F‖ =

∥∥∥∥(
(

(BR
c )

T⊗AR
)

((DR
c )T⊗CR)

)
HKG(

vesS (X0)
vesA (X1)

)
-
(

ER
c

FR
c

)
,

So calculating the least squares solution of the complex matrix equation (1) is equivalent to calculating the
least squares solution of the following real linear system((

(BR
c )

T⊗AR
)

((DR
c )T⊗CR)

)
HKG(

vesS (X0)
vesA (X1)

)
=
(

ER
c

FR
c

)
.

By lemma 7, the set of Hermitian least square solution of (1) is denoted by

CH = {X|(
vesS (X0)
vesA (X1)

)
=[

((
(BR

c )
T⊗AR

)
((DR

c )T⊗CR)

)
HKG]+ + [

(
I −

[((
(BR

c )
T⊗AR

)
((DR

c )T⊗CR)

)
HKG

]+((
(BR

c )
T⊗AR

)
((DR

c )T⊗CR)

)
HKG

]
y},

Where y is arbitrary vector. In particular, the Hermitian minimum norm least square solution of (1) is can
be expressed asX = X0 +X1i ∈ Cn×n, in which X0X1satisfies

(
vesS (X0)
vesA (X1)

)
=[

(
(BR

c )
T⊗AR

(DR
c )T⊗CR)

)
HKG]+

(
ER

c

FR
c

)
证毕.

Corollary 1 LetA,C ∈ Cm×n, B,D ∈ Cn×s , E, F ∈ Cm×s, X = X0 + X1i,in which X1 = 0, X0 ∈ SRn×n.
For complex matrix equations (1), the real symmetric minimum norm least square solution X = X0 satisfies

6



P
os

te
d

on
A

u
th

or
ea

6
M

ay
20

20
—

C
C

B
Y

4.
0

—
h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
58

87
91

28
.8

32
80

66
5

—
T

h
is

a
p
re

p
ri

n
t

an
d

h
as

n
ot

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

at
a

m
ay

b
e

p
re

li
m

in
ar

y.

vesS (X0) =

[(
(BR

c )
T⊗AR

(DR
c )T⊗CR)

)
HVKn

]+ (
ER

c

FR
c

)
,

Where H,V, Kn are defined in the form of lemma 4-6.

Corollary 2Let A,C ∈ Cm×n, B,D ∈ Cn×s , E, F ∈ Cm×s, X = X0 +X1i,in which X1 = 0, X0 ∈ ASRn×n.
For complex matrix equations (1), the real dissymmetric minimum norm least square solution X = X0

satisfies

vesA (X0) =

[(
(BR

c )
T⊗AR

(DR
c )T⊗CR)

)
HVLn

]+ (
ER

c

FR
c

)
,

Where H,V, Ln are defined in the form of lemma 4-6.

3 Algorithm

For complex matrix equations (1), in whichA,C ∈ Cm×n, B,D ∈ Cn×s , E, F ∈ Cm×s. the following
Theorem 1, Corollary 1 and Corollary 2, we propose the following algorithms for solving the Hermitian
minimum norm least square solution, the real symmetric minimum norm least square solution and the real
dissymmetric minimum norm least square solution of (1).

Algorithm 1(solving the Hermitian minimum norm least square solution of (1) )

(1) Input A, B ,C,D,E, F H,K,G,

(2) Form AR, CR, BR
c , D

R
c , E

R
c , FR

c ,

(3) Calculat(
vesS (X0)
vesA (X1)

)
=[

(
(BR

c )
T⊗AR

(DR
c )T⊗CR)

)
HKG]+

(
ER

c

FR
c

)
.

Algorithm 2 (solving the real symmetric minimum norm least square solution of (1))

(1) Input A, B ,C,D,E, F H, V,Kn,

(2) Form AR, CR, BR
c , D

R
c , E

R
c , F

R
c ,

(3) Calculat vesS (X0) = [

(
(BR

c )
T⊗AR

(DR
c )T⊗CR)

)
HVKn]

+ (
ER

c

FR
c

)
.

Algorithm 3 (solving the real dissymmetric minimum norm least square solution of (1))

(1) Input A, B ,C,D,E, F H, V, Ln,

(2) Form AR, CR, BR
c , D

R
c , E

R
c , F

R
c ,

(3) Calculat vesA (X0) = [

(
(BR

c )
T⊗AR

(DR
c )T⊗CR)

)
HVLn]

+ (
ER

c

FR
c

)
.

4 Conclusious

In this paper, by using the special structures of the real representation of complex matrix, the vec operator
of the matrix, the Kronecker product of matrices and the properties of MP inverse of matrix, we transform
the calculation problem of the special least squares solutions of complex matrix equations into the least
squares problem of corresponding linear systems, and propose illustrate the effectiveness based on real
matrix with the Hermitian minimum norm least square solution, the real symmetric minimum norm least
square solution and the real dissymmetric minimum norm least square solution of the complex matrix
equation(AXB, CXD) = (E, F ) .
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