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Abstract

In this paper, we investigate the pth moment exponential stability of stochastic differential equations driven by G-Brownian motion

(G-SDEs) with respect to a part of the variables by means of the G-Lyapunov functions and Gronwall’s inequalities. We establish

sufficient conditions to ensure the quasi sure exponential stability of stochastic differential equations perturbed by G-Brownian motion

with respect to a part of the variables. Some illustrative examples to show the usefulness of the stability with respect to a part of

variables notion are also provided.

Keywords: G-Stochastic differential equations, G-Itô formula, G-Brownian motion, pth moment exponential sta-
bility with respect to a part of the variables, quasi sure exponential stability with respect to a part of the variables .
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Introduction

Stability of stochastic differential equations (SDEs) has become a very prevalent theme of recent research in
Mathematics and its applications. Stochastic systems are used to model problems from the real world in which
some kind or randomness or noise must be taken into account.
Some stochastic models cannot be proved to fulfill stability properties with respect all the unknown variables
of the system. However, it is very interesting in some situations to analyze if it is still possible to prove some
stability properties with respect to some of the variables in the problem. It is worth mentioning that, recently
considerable attention has been paid to the concept of stability with respect to a part of the system states. Such
concept arises from the study of combustion systems (E. Awad, n.d.), vibrations in rotating machinery (K. Y.
Lum, n.d.), biocenology (N. Rouche, n.d.), inertial navigation systems (Sinitsyn, n.d.), electro-magnetics (V. I.
Zubov, 1982), and spacecraft stabilization via gimballed gyroscopes and/or flywheels (V. I. Vorotnikov, n.d.).
The method of Lyapunov functions is one of the most powerful tool to study the stability of stochastic dynamical
systems. Lyapunov stability of stochastic dynamical systems has attracted the attention of several authors, we
would like to mention here the references (missing citation; missing citation; R. Z. Has’minskii, 1980; Mao, n.d.),
among others.
With the emergence of the second method of Lyapunov as an essential means in science, engineering, and applied
mathematics, numerous exciting and important variants to Lyapunov’s original concept stability were proposed.
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One of these involves the notion of stability with respect to a part of the variables, Peiffer and Rouche (1969),
Rouche et al. (N. Rouche, n.d.), Rumyantsev (1957), Rumyantsev and Oziraner (V, n.d.), Savchenko and Ignatyev
(1989), Vorotnikov (V. I. Vorotnikov, n.d.), Vorotnikov and Rumyantsev (V. I. Vorotnikov & Control with Respect
to a Part of the Phase Coordinates of Dynamic Systems: Theory, n.d.). This type of stability has been used in
investigating the qualitative properties of equilibria and boundedness properties of motions of dynamical systems
determined by ordinary differential equations, difference equations, functional differential equations, stochastic
differential equations, etc. It involves a notion of stability with respect to only a prespecified subset of the state
variables characterizing the motions of the system under investigation.
For the dormant applications in uncertainty problems, risk measures, and superhedging in finance, considerable
attention has been paid to the theory of nonlinear expectation. Notably, Peng (2006) built the fundamental
theory of time-consistent G-expectation and G-conditional expectation, where G is the infinitesimal generator
of a nonlinear heat equation. Under the G-framework, Peng (1002; 2006) introduced the notion of G-normal
disribution, G-Brownian motion and he also established the corresponding stochastic calculus of Itô’s type. Since
then, many researches have been carried out on the stochastic analysis with respect to the G-Brownian motion.
On that basis, Gao (F. Gao & homomorphic flows for stochastic differential equations driven by G-Brownian,
n.d.) and Peng (1002) studied the existence and uniqueness of the solution of G-SDE under a standard Lipschitz
condition. Moreover, Lin (Y. Lin, n.d.) obtained the existence and uniqueness of the solution of G-SDE with
reflecting boundary. The G-Brownian motion has a very rich and interesting new structure which non-trivially,
for a recent account and development of this theory we refer the reader to see (X. Bai & uniqueness of solutions
to stochastic differential equations driven by G-Brownian, n.d.),(missing citation), and (2013).
However, so far no work have been reported about stability with respect to a part of variables of G-stochastic
differential equations. Consequently, this paper is devoted to establishing some criteria for the p-th moment
exponential stability and the quasi sure exponential stability with respect to a part of the variables of GSDEs by
means of the G-Lyapunov functions method and Gronwall inequalities.
The content of this paper is organized as follows: In Section 2, we recall some necessary preliminaries and results. In
Section 3, we establish sufficient conditions to ensure p-th moment exponential stability and quasi sure exponential
stability with respect to a part of the variables of stochastic differential equations driven by G-Brownian motion
(GSDEs, in short) by using the G-Lyapunov techniques. In section 4, we give sufficient conditions of quasi sure
exponential stability with respect to a part of the variables of G-stochastic perturbed systems based on Gronwall’s
inequalities. Moreover, we exhibit some illustrative examples to show the applicability of our abstract theory.

Preliminaries

In this section, we briefly recall some notations and preliminaries about sublinear expectations and G-Brownian
motion. For more details, one can refer to (P. Luo & ordinary differential equations, 2014; 1002; 2006; S. Peng &
related stochastic calculus under G-expectation, 2008).

Notations on G-stochastic calculus

• Rn : the space of n−dimensional real column vectors.

• 〈x, y〉 : the scalar product of two vectors x, y ∈ Rn.

• |.| : arbitrary spacial norm.

• B(Ω) : the Borel σ−algebra of Ω.

• Cb,Lip(Rn) : the space of all bounded real-valued Lipshitz continuous functions.

• L0 : the space of all B(Ω)−measurable real functions.

3
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• Mp,0
G = {ζt :=

∑N−1
j=0 ζj1[tj ,tj+1[ : ζj ∈ LpG(ωj)}.

• Mp
G(0, T ) : the completion of Mp,0

G under ||.||Mp
G
.

Let Ω be a given set and let H be a linear space of real valued defined on Ω. We further suppose that H satisfies
a ∈ H for each constant a and |X| ∈ H if X ∈ H.
Definition 0.1. A sublinear expectation Ê on H is a functional Ê : H → R satisfying the following properties:
for all X,Y ∈ H,
i) Monotonicity: if X ≥ Y, then Ê[X] ≥ Ê[Y ].

ii) Constant preserving: Ê[a] = a, ∀ a ∈ R.
iii) Sub-additivity: Ê[X + Y ] ≤ Ê[X] + Ê[Y ].

iv) Positive homogeneity: Ê[λX] = λÊ[X], λ ≥ 0.

The triple (Ω,H, Ê) is called a sublinear expectation space. X ∈ H is called a random variable in (Ω,H, Ê).

Y = (Y1, ..., Yn), where Yi ∈ H is called a n-dimensional random vector in (Ω,H, Ê).
Definition 0.2. Let X1 and X2 be two n-dimensional random vectors defined on sublinear expectation spaces

(Ω1,H1, Ê1) and (Ω2,H2, Ê2), respectively. They are called identically distributed, denoted by X1
d
= X2, if

Ê1[ϕ(X1)] = Ê2[ϕ(X2)], ∀ϕ ∈ Cb,Lip(Rn).

X̄ is said to be an independent copy of X if X̄
d
= X and X̄ is independent from X.

Definition 0.3. (G-Normal Distribution) A random variable X on a sublinear expectation space (Ω,H, Ê)
is called G-normal distributed, if for any a, b ≥ 0

aX + bX̄
d
=
√
a2 + b2X,

where, X̄ is an independent copy of X.

Let Ω be the space of all Rd−valued continuous paths (ωt)t≥0 with ω(0) = 0. We assume moreover that Ω is a
metric space equipped with the following distance:

ρ(ω1, ω2) :=

∞∑
N=1

2−N
(

max
0≤t≤N

(|ω1
t − ω2

t |) ∧ 1
)
,

and consider the canonical process Bt(ω) = ω(t), t ∈ [0,∞), for ω ∈ Ω; then for each fixed T ∈ [0,∞), we have

L0
ip(ΩT ) := {ϕ(Bt1 , Bt2 , ..., Btn) : n ≥ 1, 0 ≤ t1 ≤ ... ≤ tn ≤ T, ϕ ∈ Cb,lip(Rd×n)}.

Definition 0.4. On the sublinear expectation space (Ω, L0
ip(ΩT ), Ê), the canonical process (Bt)t≥0 is called a

G-Brownian motion, if the following properties are satisfied:
(i) B0 = 0.

(ii) for t, s ≥ 0, the increment Bt+s −Bt
d
=
√
sX, where X is G-normal distributed.

(iii) for t, s ≥ 0, the increment Bt+s − Bt is independent from (Bt1 , Bt2 , ..., Btn) for each n ∈ N, and
0 ≤ t1 ≤ t2 ≤ ... ≤ tn ≤ t.
Moreover, the sublinear expectation Ê[.] is called G-expectation.

Let (Bt)t≥0 be a 1-dimensional G-Brownian motion. The letter G denotes the function

G(a) :=
1

2
Ê[aB2

1 ] =
1

2
(σ2a+ − σ2a−), a ∈ R,

with, σ2 := −Ê[−B2
1 ] ≤ Ê[B2

1 ] := σ2, 0 ≤ σ ≤ σ <∞.

4
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(Recall that a+ = max{0, a} and a− = −min{0, a}).

Now, we introduce the natural choquet capacity.
Definition 0.5. Let B(Ω) the borel σ−algebra and P be a weakly compact collection of probability measures P
defined on (Ω,B(Ω)), then the capacity Ĉ(.) associated to P is defined by

Ĉ(A) := sup
P∈P

P (A), A ∈ B(Ω).

Definition 0.6. A set A ⊂ B(Ω) is polar if Ĉ(A) = 0. A property holds ”quasi-surely”(q.s.) if it holds outside a
polar set.
Lemma 0.1. (2010) Let {Ak} ⊂ B(Ω) such that

∞∑
k=1

Ĉ(Ak) <∞.

Then, limk→∞ supAk is polar.
Lemma 0.2. (2010) Let X ∈ L0(Ω) satisfying Ê|X|p <∞, for p > 0. Then, for each M > 0,

Ĉ(|X| > M) ≤ Ê|X|p

Mp
.

Lemma 0.3. (F. Gao & homomorphic flows for stochastic differential equations driven by G-Brownian, n.d.)
For each p ≥ 1, η ∈Mp

G(0, T ), and 0 ≤ s ≤ t ≤ T. Then,

Ê
[

sup
s≤u≤t

|
∫ u

s

ηrd〈Ba, Bā〉r|p
]
≤
(σ(a+ā)+(a+ā)T + σ(a−ā)+(a−ā)T

4

)p
|t− s|p−1

∫ t

s

Ê[|ηu|p]du.

Lemma 0.4. (F. Gao & homomorphic flows for stochastic differential equations driven by G-Brownian, n.d.)
Let p ≥ 2, η ∈Mp

G(0, T ) and 0 ≤ s ≤ t ≤ T. Then, there exists some constant Cp depending only on p such that

Ê
[

sup
s≤u≤t

|
∫ u

s

ηrdBr|p
]
≤ Cp|t− s|

p
2−1

∫ t

s

Ê[|ηu|p]du.

p-th moment exponential stability of G-stochastic differential equati-
ons with respect to a part of the variables

In this section, we aim to prove the pth moment exponential stability of stochastic differential equations driven
by G-Brownian motion with respect to a part of the variables, via the G-Lyapunov functions.

Consider the following SDE driven by an m-dimensional G-Brownian motion:

dx(t) = f(t, x(t))dt+ h(t, x(t))d〈B〉t + g(t, x(t))dBt, ∀x ∈ Rn, t ≥ 0,

(0.1)

5



P
os

te
d

on
A

u
th

or
ea

6
M

ay
20

20
—

C
C

B
Y

4.
0

—
h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
58

87
91

36
.6

71
61

36
7

—
T

h
is

a
p
re

p
ri

n
t

an
d

h
as

n
ot

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

at
a

m
ay

b
e

p
re

li
m

in
ar

y.

where, Bt = (B1(t), ...., Bm(t))T is an m-dimensional G-Brownian motion, and (〈B〉)t≥0 is the quadratic variation
process of B.

We make a partition of the state x := (x1, x2) ∈ Rb × Rn−b, with 1 ≤ b ≤ n. We obtain the following
system:

{

dx1(t) = f1(t, x1(t), x2(t))dt+ h1(t, x1(t), x2(t))d〈B〉t + g1(t, x1(t), x2(t))dBt

dx2(t) = f2(t, x1(t), x2(t))dt+ h2(t, x1(t), x2(t))d〈B〉t + g2(t, x1(t), x2(t))dBt.
(0.2)

f := (f1, f2), h := (h1, h2), g := (g1, g2).

Assume that,

• f1, h1, and g1 ∈M2
G([0, T ],Rb) satisfy the following condition:

|φ1(t, x1, x2)− φ1(t, y1, x2)| ≤ K1|x1 − y1|, for all t ∈ [0, T ], x1, y1 ∈ Rb, x2 ∈ Rn−b,
φ1 = f1, h1, and g1 respectively, and K1 is a positive constant.

• f2, h2, and g2 ∈M2
G([0, T ],Rn−b) satisfy the following condition:

|φ2(t, x1, x2)− φ2(t, x1, y2)| ≤ K2|x2 − y2|, for all t ∈ [0, T ], x1 ∈ Rb, x2, y2 ∈ Rn−b,
φ2 = f2, h2, and g2 respectively, and K2 is a positive constant.

Under the precedent assumptions, there exists a unique global solution x(t, t0, x0) = (x1(t, t0, x0), x2(t, t0, x0))

corresponding to the initial condition x(t0) = x0 = (x10 , x20) ∈ Rn (see S. Peng (1002; missing citation), Y. Ren,
Q. Bi and R. sakthivel (2013), for more details).
In what follows we use x(t, t0, x0) = (x1(t, t0, x0), x2(t, t0, x0)), or simply x(t) = (x1(t), x2(t)) to denote a solution
of our system on some small interval.

We assume that the origin x = (0, 0) is an equilibrium point of system (0.2), that is fi(t, 0, 0) = hi(t, 0, 0) =
gi(t, 0, 0) = 0, ∀t ≥ t0 ≥ 0, (i = 1, 2).

Definition 0.7. The equilibrium point x = (0, 0) of The G-SDE (0.2) is said to be
(i) Pth moment exponentially stable with respect to x1, if there exist positive constant λ1, λ2, and p > 0 such
that for all x0 ∈ Rn, the following inequalities are satisfied:

Ê(|x1(t; t0, x0)|p) ≤ λ1|x0|pe−λ2(t−t0), ∀t ≥ t0 ≥ 0.

6
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(ii) Quasi surely exponentially stable with respect to x1, if

lim
t→∞

sup
1

t
ln(|x1(t, t0, x0)|) < 0, q.s.

(0.3)

for all x0 ∈ Rn.

Definition 0.8. The solution of the sub-system with respect to the variable x2 is said to be quasi surely globally
uniformly bounded, if for each α > 0, there exists c = c(α) > 0 (independent of t0) such that,

for every t0 ≥ 0, and all x20
∈ Rn−b with |x20

| ≤ α, sup
t≥t0
|x2(t, t0, x0)| ≤ c(α), q.s.

(0.4)

where, x20 = x2(t0; t0, x0).
Definition 0.9. C1,2(R+ × Rn,R) is the family of all real-valued functions V (t, x) defined on R+ × Rn which
are twice continuously differentiable in x and once in t.
If V ∈ C1,2(R+×Rn,R), we define an operator L (called as G-Lyapunov function) from R+×Rn −→ R as follows:

LV (t, x) := Vt(t, x) + Vxf(t, x) +G
(
〈Vx(t, x), 2h(t, x)〉+ 〈Vxx(t, x)g(t, x), g(t, x)〉

)
,

where,

Vt(t, x) =
∂V

∂t
(t, x) ; Vx(t, x) = (

∂V

∂x1
(t, x),

∂V

∂x2
(t, x)) ; Vxx(t, x) =

( ∂2V

∂xi∂xj
(t, x)

)
n×n

.

By G-Itô’s formula (S. Peng & related stochastic calculus under G-expectation, 2008), it follows

dV (t, x(t)) = LV (t, x(t))dt+ Vx(t, x(t))g(t, x(t))dBt.

Our first main result in this section reads as follow.

Theorem 0.5. Assume that there exist V ∈ C1,2(R+ × Rn,R+) and positive constants ci (i = 1, 2, 3), p, such
that for all t ≥ t0 ≥ 0, and all x = (x1, x2) ∈ Rn,

c1|x1|p ≤ V (t, x) ≤ c2|x1|p,

(0.5)

LV (t, x) ≤ −c3|x1|p.

(0.6)

7
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Furthermore, we suppose that x2(t, t0, x0) is quasi surely globally uniformly bounded.
Then, the trivial solution of the G-stochastic system (0.2) is pth moment exponentially stable with respect to x1.

In order to prove this theorem we need to recall an important Lemma (2016):

Lemma 0.6. Let η ∈M1
G(0, T ) and Mt =

∫ t

0

η(s)d〈B〉s −
∫ t

0

2G(η(s))ds.

Then, for each t ∈ [0, T ], Ê(Mt) ≤ 0.

Proof of Theorem 0.5. Applying G-Itô’s formula to e
c3
c2
tV (t, x(t)), we obtain

That is,

Where,

Taking, G-expectation on both sides, we get

On the other hand, since Ê
∫ t

t0

e
c3
c2
s〈Vx(s, x(s)), g(s, x(s))〉dBs = 0, and by Lemma (0.6), we have Ê(M t0

t ) ≤ 0.

Consequently,

Ê(e
c3
c2
tV (t, x(t))) ≤ e

c3
c2
t0V (t0, x(t0)) + Ê

∫ t

t0

e
c3
c2
s
(c3
c2
V (s, x(s)) + LV (s, x(s))

)
ds.

This together with (0.5) and (0.6), implies

8
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That is,

Ê(V (t, x(t))) ≤ c2e−
c3
c2

(t−t0)|x10 |p.

Due to (0.5) again and the fact that |x10
| ≤ |x0|, we deduce that

Ê|x1(t, t0, x0)|p ≤ Ê(V (t, x(t)))

c1
≤ c2
c1
e−

c3
c2

(t−t0)|x0|p.

Therefore, the trivial solution of the G-stochastic system (0.2) is pth moment exponentially stable with respect
to x1. 2

Theorem 0.7. Assume that there exist V ∈ C1,2(R+ × Rn,R+) and positive constants ci (i = 1, 2, 3), p, such
that for all t ≥ t0 ≥ 0, and all x = (x1, x2) ∈ Rn,

c1|x1|p ≤ V (t, x) ≤ c2|x1|p,

(0.7)

LV (t, x) ≤ (−c3 + ϕ(t))|x1|p.

(0.8)

where ϕ(t) is a continuous nonnegative function with

∫ +∞

0

ϕ(t)dt ≤M < +∞.

(0.9)

Furthermore, we suppose that x2(t, t0, x0) is quasi surely globally uniformly bounded.
Then, the trivial solution of the G-stochastic system (0.2) is pth moment exponentially stable with respect to x1.

9
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In order to prove this theorem, we need to recall the following Gronwall Lemma (see, for instance, Dragomir (S.
S. Dragomir & applications, 2003)).
Theorem 0.8. Let u(t) and b(t) be nonnegative continuous functions for t ≥ α, and let

u(t) ≤ a+

∫ t

α

b(s)u(s)ds, t ≥ α,

(0.10)

where a ≥ 0 is a constant. Then,

u(t) ≤ a exp(

∫ t

α

b(s)ds), t ≥ α.

(0.11)

Proof of Theorem (0.7). By using a similar reasoning as above we obtain,

Ê(e
c3
c2
tV (t, x(t))) ≤ e

c3
c2
t0V (t0, x(t0)) + Ê

∫ t

t0

e
c3
c2
s
(c3
c2
V (s, x(s)) + LV (s, x(s))

)
ds.

On account of (0.7) and (0.8), we obtain

Hence,

Ê(e
c3
c2
tV (t, x(t))) ≤ e

c3
c2
t0V (t0, x(t0)) + Ê

∫ t

t0

ϕ(s)

c1
e

c3
c2
sV (s, x(s))ds.

(0.12)

By Gronwall’s inequality and condition (0.7), we obtain

10
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That is,

Ê(V (t, x(t))) ≤ c2e
M
c1 |x10

|pe−
c3
c2

(t−t0).

Due to the fact that |x10 | ≤ |x0| and condition (0.7), we deduce from the last inequality that

Ê(|x1(t)|p) ≤ c2
c1
e

M
c1 |x0|pe−

c3
c2

(t−t0).

Setting λ1 =
c2
c1
e

M
c1 and λ2 =

c3
c2
, we conclude that the G-stochastic system (0.2) is pth moment exponentially

stable with respect to x1. 2

In what follows, we provide the conditions under which the pth moment exponential stability with re-
spect to a part of the variables of the trivial solution to such a G-SDEs implies the quasi sure exponential
stability with respect to a part of the variables.

Theorem 0.9. Consider the G-stochastic system (0.2), assume that there exists a positive constant η such that

Ê
(
|f1(t, x1, x2)|p + |h1(t, x1, x2)|p + |g1(t, x1, x2)|p

)
< ηÊ(|x1|p), ∀x1 ∈ Rb,∀x2 ∈ Rn−b,∀t ≥ t0 ≥ 0.

(0.13)

Furthermore, we suppose that x2(t, t0, x0) is quasi surely globally uniformly bounded.
Then, the pth moment exponetial stability with respect to x1 of the trivial solution of the G-stochastic system
(0.2), implies the quasi sure exponential stability.

Proof. By the definition of the pth moment exponential stability with respect to x1, there is a pair of positive
constants λ1 and λ2 such that

Ê(|x1(t; t0, x0)|p) ≤ λ1|x0|pe−λ2(t−t0), ∀t ≥ t0 ≥ 0.

(0.14)

Furthermore, we have

x1(t+ s) = x1(t) +

∫ t+s

t

f1(u, x1(u), x2(u))du+

∫ t+s

t

h1(u, x1(u), x2(u))d〈B〉u +

∫ t+s

t

g1(u, x1(u), x2(u))dBu.

Which implies,

11
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By the sub-additivity of G-expectation, we obtain

Ê( sup
0≤s≤τ

|x1(t+ s)|p)

≤ 4p−1
[
Ê|x1(t)|p + Ê

(∫ t+s

t

|f1(u, x1(u), x2(u))|du
)p

+ Ê
(

sup
0≤s≤τ

|
∫ t+s

t

g1(u, x1(u), x2(u))dBu|p
)

+ Ê
(

sup
0≤s≤τ

|
∫ t+s

t

h1(u, x1(u), x2(u))d〈B〉u|p
)]
.

(0.15)

On account of (0.13), (0.14), and by Hölder’s inequality (2010), we obtain

Ê
(∫ t+τ

t

|f1(u, x1(u), x2(u))|du
)p
≤ τp

∫ t+τ

t

Ê|f1(u, x1(u), x2(u))|pdu

≤ λ1

λ2
ητp|x0|pe−λ2(t−t0).

(0.16)

On the other hand, by (0.13), (0.14), and Lemma (0.4), we obtain

Ê
(

sup
0≤s≤τ

|
∫ t+τ

t

g1(u, x1(u), x2(u))dBu|p
)
≤ Cpτ

p
2−1

∫ t+τ

t

Ê|g1(u, x1(u), x2(u))|pdu

≤ λ1

λ2
Cpητ

p
2 |x0|pe−λ2(t−t0).

(0.17)

12
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Likewise, by Lemma (0.3) we obtain

Ê
(

sup
0≤s≤τ

|
∫ t+τ

t

h1(u, x1(u), x2(u))d〈B〉u|p
)
≤ C ′pτp−1

∫ t+τ

t

Ê|h1(u, x1(u), x2(u))|pdu

≤ λ1

λ2
C ′pητ

p|x0|pe−λ2(t−t0),

(0.18)

where, C ′p is a positive constant dependent only on p.
We conclude from the above inequalities (0.16), (0.17), and (0.18) that

Ê( sup
0≤s≤τ

|x1(t+ s)|p) ≤ Re−λ2t,

where, R = 4p−1λ1

λ2
|x0|p

(
λ2 + ητp(1 + Cpτ

− p
2 + C ′p)

)
.

Now, let ε ∈ (0, λ2) be arbitrary. Thanks to Lemma (0.2), we have

By the Borel-Cantelli Lemma for the capacity (0.1), we see that there exists n0 := n0(ω), such that for almost
all ω ∈ Ω, n > n0(ω),

sup
0≤s≤τ

|x1(t+ s)|p ≤ e−(λ2−ε)nτ , q.s.

Where, t ∈ [nτ, (n+ 1)τ ]. Then, we obtain

1

t
log(|x1(t)|) =

1

pt
log(|x1(t)|p) ≤ − (λ2 − ε)nτ

pnτ
, q.s.

Hence, limt−→∞ sup
1

t
log(|x1(t)|) ≤ − (λ2−ε)

p , q.s.

Since ε > 0 is arbitrary, we obtain the desired result

lim
t−→∞

sup
1

t
log(|x1(t)|) ≤ −λ2

p
, q.s.

That is, the trivial solution of the G-stochastic (0.2) system is quasi surely exponentially stable with respect to
x1.
Which completes the proof. 2

13
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Exponential stability of G-stochastic perturbed differential equations
with respect to a part of the variables

In this section, we consider the following linear stochastic system:

dx(t) = Ax(t)dt, ∀t ≥ t0 ≥ 0,

(0.19)

where,

A = (

A1 0
0 A2

, x := (x1, x2) ∈ Rb × Rn−b, 1 ≤ b ≤ n.

• A1 is a constant b× b matrix.

• A2 is a constant (n− b)× (n− b) matrix.

The above system (0.19) might be regarded as the following system:

{

dx1(t) = A1x1(t)dt

dx2(t) = A2x2(t)dt,
(0.20)

with initial condition x(t0) := x0 := (x10
, x20

) ∈ Rb × Rn−b.
Assume that some parameters are excited or perturbed by G-Brownian motion, and the perturbed system has
the form:

{

dx1(t) = A1x1(t)dt+ g(t, x1(t), x2(t))dBt

dx2(t) = A2x2(t)dt,
(0.21)

with the same initial conditions, where Bt = (B1(t), ...., Bm(t))T is an m-dimensional G-Brownian motion, and
g : R+ × Rb × Rn−b −→ Rb×m.

14
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Assume that conditions of existence and uniqueness of solutions are satisfied, see (2006). Denote by x(t, t0, x0) =
(x1(t; t0, x0), x2(t; t0, x0)) the solution of system (0.21).
We suppose that the origin of the linear stochastic system (0.20) is quasi surely exponentially stable with respect
to x1. Furthermore, we assume that the origin x = (0, 0) is an equilibrium point of the G-stochastic perturbed
system (0.21), that is g(t, 0, 0) = 0 for all t ≥ 0.
The objective of this section is to give sufficient conditions under which the G-stochastic perturbed system (0.21)
is still quasi surely exponentially stable with respect to x1.
Theorem 0.10. Let λ1 be the maximum of the real parts of all eigenvalues of −A1.
Suppose there exist a constant c1 ≥ 0, and a polynomial p1(t) such that for all x1 ∈ Rb, x2 ∈ Rn−b, and sufficiently
large t,

|g(t, x1(t), x2(t))|2 ≤ p1(t)e(−2λ1+c1)t, q.s.

(0.22)

Furthermore, we assume that limt−→∞ sup
log |eA1t|2

t
≤ −c2, where, c2 is a positive constant.

Moreover, we suppose that x2(t, t0, x0) is quasi surely globally uniformly bounded.
Then,

limt−→∞ sup
log |x1(t; t0, x0)|2

t
≤ −(c2 − c1), q.s. for all t0 ≥ 0 and x0 ∈ Rn.

In particular, if c2 > c1, then the G-stochastic perturbed system (0.21) is said to be quasi surely exponentially
stable with respect to x1.

In order to prove this theorem, let us start by recalling an important Gronwall Lemma (S. S. Dragomir &
applications, 2003), which will be very useful later on.
Lemma 0.11. Let b(t), c(t), and u(t) be continuous functions for t ≥ t0 ≥ 0, let b(t) be nonnegative for t ≥ t0 ≥ 0,
φ is a constant and suppose

u(t) ≤ φ+

∫ t

t0

[
b(s)u(s) + c(s)

]
ds, t ≥ t0 ≥ 0.

Then,

u(t) ≤ φ exp(

∫ t

t0

b(τ)dτ) +

∫ t

t0

c(s) exp(

∫ t

s

b(τ)dτ)ds, t ≥ t0 ≥ 0.

We also need the following Lemma (1002), which has its own importance.
Lemma 0.12. Let Bt be a one-dimensional G-Brownian motion. Suppose that there exist constants ε > 0 and
α > 0 such that

Ê
(

exp[
α2

2
(1 + ε)

∫ T

0

g2(s)d〈B〉s]
)
<∞, ∀g ∈M2

G(0, T ).

Then, for any T > 0 and β > 0,

15
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Ĉ
(

sup
0≤t≤T

[ ∫ t

0

g(s)dBs −
α

2

∫ t

0

g2(s)d〈B〉s
]
> β

)
≤ exp(−αβ).

Now, we are able to prove our theorem.

Proof of Theorem 0.10. Fix ε > 0 arbitrarly, and there exists ρ = ρ(ε) such that

|e−A1t|2 ≤ ρe(2λ1+ε)t, p1(t) ≤ ρeεt, t > 0.

By G-Itô’s formula, we obtain

d(e−A1tx1(t)) = e−A1tg(t, x1(t), x2(t))dBt.

Define W (t) = |e−A1tx1(t)|2. By G-Itô’s formula again,

W (t) = W (t0) + 2

∫ t

t0

xT1 (s)e−A
T
1 se−A1sg(s, x1(s), x2(s))dBs

+

∫ t

t0

trace(e−A1sg(s, x1(s), x2(s))gT1 (s, x1(s), x2(s))e−A
T
1 s)d〈B〉s.

(0.23)

It follows from Lemma (0.12) that for any α > 0, β > 0, and τ > t0.

Ĉ
(

supt0≤t≤τ
[ ∫ t

t0

xT1 (s)e−A
T
1 se−A1sg(s, x1(s), x2(s))dBs −

α

2∫ t

t0

xT1 (s)e−A
T
1 se−A1sg(s, x1(s), x2(s))gT1 (s, x1(s), x2(s))e−A

T
1 se−A1sx1(s)d〈B〉s

]
> β

)
≤ exp(−αβ).

Choose an arbitrary θ > 1, and let k be an integer large enough so that k > t0. Set

α = e−c1k, β = θec1k log k, τ = k.

Then, we obtain

16
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Applying the Borel-Cantelli Lemma for the capacity, we see that for almost all ω ∈ Ω, there exists k0 = k0(ω)
such that

for all k > k0, t0 ≤ t ≤ k. By using condition (0.22), it follows that

This together with (0.23), we obtain

In chapter III of Peng (1002), we have for each 0 ≤ s ≤ t ≤ T,

〈B〉t − 〈B〉s ≤ σ̄2(t− s).

Based on this fact and the inequality (??), we obtain

W (t) ≤W (t0) + e−c1kρ2σ2

∫ t

t0

W (s)ec1sds+ 2θec1k log k + bρ2σ2

∫ t

t0

ec1sds.

Thanks to Lemma (0.11), we have

That is,

W (t) ≤
(
W (t0) + 2θec1k log k +

bρ2σ2

c1
ec1k

)
exp

(ρ2σ2

c1

)
, t0 ≤ t ≤ k, k ≥ k0, q.s.

(0.24)
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Since θ > 1 is arbitrary and
W (t)

ec1t log t
≤ W (t)

ec1(k−1) log(k − 1)
, k − 1 ≤ t ≤ k.

From (0.24), we see immediately that

Since,

lim
t−→∞

sup
log |x1(t; t0, x0)|2

t
≤ lim
t−→∞

sup
log |eAt|2

t
+ lim
t−→∞

sup
log |e−Atx1(t; t0, x0)|2

t
.

Consequently,

limt−→∞ sup
log |x1(t; t0, x0)|2

t
≤ −c2 + c1 = −(c2 − c1), q.s.

If the inequality c2 > c1 is satisfied, then the G-stochastic perturbed system (0.21) is quasi surely exponentially
stable with respect to x1. 2

Examples

The following illustrative examples are provided to show the usefulness of the obtained results.
Example 0.13. Consider the following G-stochastic system:

{

dx1(t) = −2x1dt−
1

2
sin2(x2)e−2tx1d〈B〉t + (1 + e−t|sin(x2)|)x1dBt

dx2(t) = 2 cos(t)x2dt,
(0.25)

where, x = (x1, x2)T ∈ R2 , B is a one-dimension G-Brownian motion and B = N(0× [ 1
2 , 1]), with initial value

x0 = (x10 , x20).

This system has the trivial solution x1 = 0, x2 = 0.
It is clear that x2(t) is quasi surely globally uniformly bounded. In fact, for all t ≥ t0 ≥ 0, and all x20

∈ R with
|x20
| ≤ β, we have |x2(t)| ≤ βe2 sin(t) q.s.

Denote V = x2
1, then we have

18
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By the sub-additivity of the function G, we obtain

That is,

LV (t, x) ≤ (−3 + ϕ(t))x2
1,

where ϕ(t) = 2e−t, which satisfies condition (0.9) of Theorem (0.7).
Hence, all conditions of Theorem (0.7) are fulfilled with p = 2 and then the G-stochastic system (0.25) is pth
moment exponentially stable with respect to x1. Furthermore, we have

1. |f1(t, x)|2 = 4|x1|2,

2. |h1(t, x)|2 = | 12sin
2(x2)e−2tx1|2 ≤ |x1|2,

3. |g1(t, x)|2 = |(1 + e−t|sin(x2)|)x1|2 ≤ 2(1 + e−2t| sin(x2)|2)|x1|2 ≤ 4|x1|2.

Then, we obtain

Ê(|f1(t, x)|2 + |h1(t, x)|2 + |g1(t, x)|2) ≤ 9Ê(|x1|2).

Hence, from Theorem (0.9), with p = 2 and η = 9, one can deduce that the G-stochastic system (0.25) is quasi
sure exponential stable with respect to x1.
Example 0.14. Consider the following G-stochastic system

{

dx1(t) = −2x1(t)dt+ (1 + t2)e−4.5t x(t)

1 + |x(t)|
dBt

dx2(t) = A2x2(t)dt,
(0.26)
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where, x = (x1, x2) ∈ R3, x2 = (z1, z2) ∈ R2 and B(t) is one-dimensional G-Brownian motion,

A2 = (

0 −1
1 0

.Withinitialvaluex0 = (x10 , x20), and x20 = (z10 , z20).

By simple resolution, we obtain
x2(t) = (

z10(t, w) cos(t)− z20(t, w) sin(t)
z10

(t, w) sin(t) + z20
(t, w) cos(t)

.Usingthe2−normleadsto|x2(t)| = |x20
|.Itisclearthatx2(t) is quasi surely glo-

bally uniformly bounded. In fact, for all t ≥ t0 ≥ 0, and all x20
∈ R2 with |x20

| ≤ α′, we have |x2(t)| ≤ α′ q.s.
It is clear that, the constants of Theorem (0.10) are c1 = 0.5, and c2 = 2.

Hence, by Theorem (0.10) we deduce that lim supt→∞
log |x1(t, t0, x0)|2

t
≤ −1.5 q.s. for all t0 ≥ 0 and x0 ∈ R2.

Indeed, the G-stochastic perturbed system (0.26) is quasi sure exponential stable with respect to x1.
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