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Abstract

The distributions of olfactory receptors (ORs) are widely available throughout our body, not compartmen-
talized in nasal parts, which are known as Ectopic olfactory receptors (EORs). Their functions are diverse
but the majority of them are yet to be determined. ORs in non-olfactory tissues transduce their signals
via different pathways that vary depending on their placements. As they are G-protein coupled receptors
(GPCR), they stimulate Golf protein following the activation with specific ligands. They are involved in
several cellular processes like chemotaxis, tissue repairing, hair growth, cell proliferation, energy metabolism,
inflammation, apoptosis, etc. All these functions make them prospective therapeutic targets. The trans-
formed expression level of ORs in the healthy and cancerous cells might open a new door to detect and
diagnose cancer in the early stages. Ligand-based activation can also block the cancer pathway. This review
summarizes the therapeutic potential of the EORs including their manifold functions outlined till date.
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Introduction

The odor is a very common trait surrounding us that generally is a mixture of various chemical substances
known as odorants (Hetherington-Rauth & Ramirez., 2016; Locatelli, Fernandez & Smith, 2016; Chan et
al., 2018). Odorants are generally small and hydrophobic organic molecules with diverse chemical structures
and characters (Pick et al., 2009; Chan et al., 2018). Commonly, odorants can be either came from external
environments or formed by internal metabolisms of living beings (Lee, Depoortere & Hatt, 2019). Most of
the living entities can use olfactory receptors (ORs) to recognize and differentiate odorants for chemical com-
munications and finding food, making territories, identifying mates and avoiding dangers, etc. (Breer, 2003;
Luu et al.,2005). Apart from chromosome 20 and the Y, OR genes are present in a cluster in the telomeric
regions of other human chromosomes (Glusman et al., 2000; Glusman et al., 2001). ORs are classified as
7 transmembrane G-protein coupled receptors (GPCR) which are the major drug targets and 40% market-
available pharmaceutical drugs target GPCR proteins (Firestein, 2001; Glusman et al., 2001; Hutchings et
al., 2017). Except for nasal epithelium, ORs could be also found everywhere in the human body, such as
testis, lungs, intestine, skin, heart, and blood, which are known as “Ectopic olfactory receptors” (EORs)
(Flegel et al., 2013). EORs show no connection to the olfaction, but they represent attractive potential
novel therapeutic chances with variety of biological functions like sperm chemotaxis, wound healing, hair
growth, muscle regeneration, cancer cell inhibition (Feldmesser et al., 2006; Spehr et al., 2013; Busse et
al., 2014; Cheret et al., 2018; Lee, Depoortere & Hatt, 2019). For instance, cyclohexyl salicylate activates
OR2A4/0OR2A7 which transduces p38MAPK signaling. This leads to the reduction of melanocyte by slow-
ing down p42MAPK signaling and increasing the growth of melanin (Tsai et al., 2017). Receptor based
signaling biology eludes the mechanism for binding of odorants to the EORs (Kaupp, 2010, Mafiberg &
Hatt, 2018). Recently, using high-throughput screening, scientists showed that 304 human ORs can respond
to 89 odorants after analyzing 535 interacting pairs of odorants and ORs (Mainland et al., 2015). Some
ORs activated by specific odorants can have a huge change in expression level according to their presence
in healthy or cancerous tissues. These ORs can be considered as early detectors for cancerous tissues (We-
ber et al., 2018a, b). As many ORs are still orphans, their functions are yet to be determined (MaBberg &
Hatt, 2018). This review intends to focus on their expressions and possible mechanisms in different tissues
and functions in healthy and diseased tissues. Another aim is to enlist their known ligands which may lead
us to a therapeutic possibility.



2. Olfactory system

After Buck and Axel (1991) found the ORs in rats, olfaction research began at molecular level (Buck & Axel,
1991). OR genes are discovered as the largest GPCR family in nasal epithelium with about 900 genes, among
which only 370 genes are functional, and the others are pseudogenes (Rouquier et al., 1998; Glusman et al.,
2001; Firestein, 2001; Wiese et al., 2015). Since 1992, the first EOR was identified in mammalian testis, more
and more EORs were found in the other non-sense tissue with potential bio-functions need to be confirmed
(Parmentier et al., 1992; Braun et al., 2007; Garcia-Esparcia et al., 2013; Xu et al., 2015; Wu et al., 2015).
As ORs exist in non-sense tissues, they have no connection with olfaction termed EORs.

EORs have the same structures as ORs, so only odorants can be their ligands to activate biological functions
(Kim et al., 2015; Ferrer et al., 2016; Mafiberg & Hatt, 2018). Until now, 6% of total ORs have been identified
with specific odorants as ligands to activate the functions (Buck, 2000; Dalton & Lomvardas, 2015; Tham et
al., 2019). Normally Odorants bind with ORs and transduce a signal cascade which produces chemical signals
by amplifying the chemical information (Jones & Reed, 1989). The initiation of that signaling cascade based
on the activation of Golf protein. Following the binding of GTP, Golf protein activates adenylyl cyclase 11T
(ACIII, also known as ADCY3) which later on raises the amount of cyclic adenosine monophosphate (cAMP)
in the cytoplasm. This increase facilitates the opening of nonspecific cation-selective cyclic nucleotide-gated
(CNG) channels resulting in external calcium and sodium influx (Firestein, 2001).

Some EORs have different effects on cell biological functions owing to their versatility in activating different
molecular and cellular signaling mechanisms which depend on the cell types and the signaling components
involved (Lee, Depoortere & Hatt, 2019). All the above discussion directs us towards the fact that EORs
might have some good potentials for future therapeutics.

3. Ectopically expressed olfactory receptors in human

After activating by ligands, ORs in the nasal epithelium are responsible for creating smell perception through
hormones, neural networks, and neurotransmitters. EORs have no business with smelling and neural sensati-
on, but they are capable of triggering different responses through ligand-receptor bonding, such as promoting
muscle regeneration, wound healing, cell proliferation and alleviating oxidative stress, reducing arthritis (Fer-
rer et al., 2016).

Nowadays, EOR transcripts identification is generally carried out depending on qRT-PCR, microarray or
next-generation sequencing (NGS) of mRNA (MaBberg & Hatt, 2018). Since the identification of first EOR in
the testis in 1992 by RT-PCR (Parmentier et al., 1992), many EORs were found in different non-sense tissues
until today: placenta (Itakura et al., 2006), gut (Braun et al., 2007), colon (Kaji, Karaki & Kuwahara, 2011),
brain (Garcia- Esparcia et al., 2013), lung (Gu et al., 2014), liver (Wu et al., 2015), heart (Kim et al., 2015),
pancreases (Munakata et al., 2018), salivary glands (Xu et al., 2015), kidney (Kelbe et al., 2016¢), leukemia
cells (Menteniotis et al., 2016 a,b), cardiac and skeletal muscle (Jovancevic et al., 2017a), airway and adipose
tissues (Wu et al.,2017), retina (Jovancevic et al., 2017b), skin (Tham et al., 2019), tongue (Malik et al.,
2019). The highest number of EOR genes was identified in testis (more than 60) and the lowest is in the liver
(2) (Flagel et al., 2013). Substantially, the expressions of EOR transcripts are not very strong as nasal ORs
and distribution of some EORs is very comprehensive while some are tissue-specific (table 1) (Fledmesser et
al., 2006; Olender et al., 2016). Most of the evidences show that EORs express at the mRNA level, not as
proteins because they do not own specific antibodies.

3.1 Reproductive organs

Following the first human EOR discovered in testis mid-piece, efforts to determine their location and function
substantially increased (Parmentier et al., 1992). OR1D2 was the first EOR identified in humans. Activation
by odorant bourgeonal triggers spermatozoal chemotaxis by increasing the swimming speed and direction
of spermatozoa by enhancing the beating frequency of flagella (Neuheus et al.,2006). OR1D2 activated by
undecanal regulates the behavior of spermatozoa by fastening swimming speed (Spehr et al., 2003). The



activation of OR1D2 can regulate some fertilization or early embryogenesis gene expression by initiating
the transfer of cytosolic B-arrestin2 to the nucleus (Neuhaus et al., 2006). Reduced bourgeonal perception
sensitivity may be correlated with idiopathic infertility (Ottaviano et al., 2013; Sinding et al.,2013). The
effect of OR7A5 and OR4D1 activated by Myrac and PI-23472 respectively on spermatozoal mobility were
found later in testis (Veitinger et al., 2011). OR4N4 is another OR that expresses highly in spermatozoa
which is not found in other tissues (Flagel et al., 2016).

After activated by specific ligands, most EORs characterized in testis show implications on Ca?* transients
(Spehr et al., 2003; Veitinger et al., 2011). Through testing the induction of sperm Ca?T elevated level, two
novel ligands 5a-androst-16-en-3-one for OR4D1 and 4-hydroxy-2, 5dimethyl-[2H |-furanone for OR7A5 were
found (Hartmann et al., 2013). Instead of activating EORs to initiate the canonical signal transduction
cascade and cause elicited Ca?ttransients, some odorants act on adenylyl cyclase activation, the second
messenger cAMP and even the (cataion channel of sperm )CatSper calcium channel directly in human
spermatozoa (Veitinger et al., 2011; Brenker et al., 2012). Calcium channels and extracellular Ca?* are
the prerequisites for Ca?*signaling. Mibefradil, a blocker, could inhibit different calcium channels located
in sperm, including CatSper and Ca?*signals activated by odorants (Bezprozvanny, Scheller & Tsien, 1995;
Wennemuth et al., 2003; Striinker et al., 2011; Flegel et al., 2016).

Until now, there were a few EORs discovered in the female reproductive system, but more than 20 different
odorants including established activators of OR1D2 were found in vaginal secretions and follicular fluid by
gas chromatography-olfactometry(GC-O) (Hartmann et al., 2013).

3.2 Prostate

The prostate is the most important endocrine gland of the male reproductive system. OR51E1 (PSGR1)
and OR51E2 (PSGR2) are the two definite EORs expressed in this tissue stimulated by -ionone and steroid
hormone 1,4,6-androstatriene-3,17-dione (ADT) respectively (Neuhaus et al., 2009; Maflberg & Hatt, 2018).
Up-to-date researches showed that these two EORs can be expressed widely in various tissues of the human
body, such as the human tongue, heart, skin, etc. (Flagel et al., 2016; Gelis et al., 2017; Jovancevic et al.,
2017a; Malik et al., 2019).

3.3 Respiratory system

As breathing is the most primary trait for being alive, the respiratory system is the prominent system in our
body. Inhalation is the way to contact the environment for the respiratory system. Different EORs activated
by different odorants control serotonin release in pulmonary neuroendocrine (NEC) cells (Gu et al., 2013;
Gu et al., 2014). A study on Non-small cell lung cancer (NSCLC) A549 cell line shows the expression
of OR2J3 triggered by helional and prompts PI3K signaling by secreting intracellular Ca?*flux (Kalbe et
al., 2017). Long-term exposure of stimulus, the activation of OR2J3 could provoke apoptosis and block cell
migration and proliferation. The most important function of this EOR in the respiratory system is to control
serotonin release and airway flexibility (Gu & Ben-Shahar, 2013; Gu et al., 2014). OR2AG1 stimulated
by amyl butyrate can inhibit histamine and induced human airway smooth muscle cell contraction. Paired
with Bourgeonal, the OR1D1 activation causes increased contraction of the airway muscle cell in the lungs
(Kalbe et al., 2016a).

3.4 Kidney

The kidney plays a very important role in the urinary system. OR1A1 and OR1A2 are the most import-
ant ORs found in the liver (Flegel et al., 2013). They may be responsible for detoxification and hepatic
metabolism (MaBberg et al., 2015; Wu et al.,2015). OR51E1 and OR11H7 in the kidney stimulated by iso-
valeric acid and 4-methylvaleric acid could control the secretion of renin and blood pressure by regulating
the intracellular Ca?* flux via cAMP-mediated pathway (Pluznick, 2013; Shepard et al., 2016).

3.5 Skin

Skin is the largest organ of the human body that maintains direct contact with the external environment.



Various sensory receptors presented in skin tissues (Mafiberg & Hatt , 2018). So far, more than 5 ORs are
found in skin tissues and epidermal skin layers (Oh, 2018). Basal keratinocytes express a high mRNA level of
OR2AT4 paired with sandalore. An ex-vivo experiment showed that this activation speeds up keratinocyte
migration and proliferation and results in wound healing via cAMP-dependent pathway. The wound healing
process can be blocked by antagonist oxyphenylon (Busse et al., 2014). In the co-culture system, ATP based
pannexin-mediated cell-cell communication between trigeminal neurons and keratinocytes may be induced
by OR2AT4 activation (Sondersorg et al., 2014). Upon activation with sandalore or brahmanol, OR2AT4
can also increase the growth of hair follicles (Cheret et al., 2018). Studies on HeLA cells showed that
OR51B5, depending on its agonist isononyl alcohol, may cause an increase in the migration and proliferation
of keratinocytes with cytokine secretion such as IL-6. The expression of OR2A4/7 in keratinocytes stimulated
by cyclohexyl-salicylate leads to the production of IL-1 and cell proliferation (Tsai et al., 2017). OR2A4/7
activation can persuade p38MAPK signaling by reducing intracellular Ca?* and cAMP levels in melanocytes
(Wojcik et al., 2018)

3.6 Heart

The heart is the most important of the circulatory system, which provides blood throughout our body by
rhythmic pumping. Different odorant can enter our body through blood circulation. Through next-generation
sequencing, almost 10 different ORs have been identified in adult and fetal cardiovascular systems (Lee,
Depoortere & Hatt, 2019). OR51E1 shows a huge expression and can sense fatty acids. The strongest two
stimulators are Nonanoic acids and structurally related medium-chain fatty acids (MCFAs) (Jovancevic et
al., 2017a). OR51E1 may regulate our heart rate as its activation by MCFAs negatively affects chronotropic
affects human stem cell-derived cardiomyocytes and reversely induce inotropic effects human explanted heart
preparations (Jovancevic et al., 2017a). Odorant lyral can activate OR10J5 present in the human aorta,
coronary arteries, and umbilical vein endothelial cells. This activation results in increased migration and
angiogenesis by inhibiting Ca?* influx and protein kinase B (AKT) phosphorylation (Kim et al., 2015)

3.7 Gut

The gut is the most important part that expressed ORs because it has to tackle the odorants from the
outside world and from inside as gut microbiota produces many metabolites (Lee, Depoortere & Hatt,
2019). Different odorants from spices can activate several ORs present in gut enterochromaffin (EC) cells
and increase Ca?" level which leads to the regulation of serotonin secretion (Braun et al., 2007). On the
contrary, OR2J3 in pancreatic EC cells is stimulated by helional may increase serotonin secretion but reduce
intracellular calcium level (Kalbe et al., 2016b).

(-)-citronellal induced OR1A2 in hepatocellular cells activates the cAMP-dependent signaling pathway and
decreases cell proliferation (Mafiberg et al., 2015). In liver cells, OR1A1 takes part in the synthesis of
triglyceride by reducing mitochondrial glycerol-3-phosphate acyltransferase (GPAM) gene expression (Wu et
al., 2015).

3.8 Other tissues

By adenylyl cyclase signaling, another OR, OR11H7, present in renal proximal tubular cells, can evoke Ca?*
influx intracellularly (Kalbe et al., 2016b). RNA-seq analysis identifies an orphan OR, OR6B3. It is highly
expressed particularly in trigeminus and dorsal root ganglia of the human nervous system (Flagel et al.,
2015). OR2W3, OR5P3, and OR10AD1 showed cell type-specific expression for retina in immunohistoche-
mical staining of the retinal section (Jovancevic et al., 2017b). OR1A1 and OR1A2 are the most important
ORs found in the liver (Flegel et al.,2013). They may be responsible for detoxification and hepatic metabo-
lism (MaBberg et al., 2015; Wu et al., 2015). Serotonin secretion can also be regulated by helional-stimulated
OR2J3 available in pancreatic EC cells (Kalbe et al., 2017). Several ORs are also found in the tongue and
immune tissues for which functions need to be specified. OR2W1, OR5A1, OR5P3, and OR51E1 present
in the human tongue can have a good impact on our taste perception (Malik et al.,2019). Erythrocytes,
peripheral blood mononuclear cells, natural killer cells;, B and T cells, and poly-morpho-nuclear neutrophil
granulocytes are subjected to research with food aroma compounds. This means a various class I OR trans-



cripts are expressed in those human body defense cells (Geithe et al., 2015; Clark et al., 2016; Manteniotis et
al., 2016a, b). Volatile amines can target trace amine-associated receptors (TAAR) genes in human which
can act as ORs (Gainetdinov, Hoener & Berry, 2018).

4. Odorants as therapeutic ligands with EORs

Odorants with therapeutic potentials play a very crucial role in human life (Denda et al., 2000; Kako et al.,
2008; Lee, Depoortere & Hatt, 2019). Several investigations have presented EORs activations by odorants
administration may have some help on a physiological and psychological process in humans (Table 2), for
example, odorants can encourage skin barrier recovery by reducing the stress responsible for homeostasis
(Denda et al., 2000; Angelucci et al., 2014).

From the literature review, we summarize the EORs activating odorants (ligands) into three main groups.
In this section, these three groups have been elaborated with examples.

4.1 Fatty Acids

According to the research to date, fatty acids are a large group of ligands that can activate EORs, mainly
short-chain fatty acids (SCFAs) and medium-chain fatty acids (MCFAs). In the human body, about 500-600
mmol of SCFAs are formed in the gut per day, but the amount of SCFAs production depends on the fiber
intake dose and sources. Some good sources of dietary fiber are apples, apricots, milk, yogurt, see-weeds, etc.
(Dhingra et al., 2012; Dalile et al., 2019). Acetate (C2) and propionate (C3) are the prominent SCFAs in the
human body (Macfarlane & Macfarlane, 2003). Acetate stimulates OR51E2 in the kidney and induces renin
secretion (Pluznick , 2013). Propionate activates OR51E2 to mitigate airway contraction (Aisenberg et al.,
2016). Propionic acid, an SCFA metabolite generated from gut microbiota fermentation can trigger OR51E2
and reduce anabolic and proliferative signals in the prostate (Natarajan & Pluznick, 2016; Pluznick, 2016;
Rooks & Garrett, 2016; Abaffy et al., 2018). Another receptor OR51E1, paralogous to OR51E2, can also be
stimulated by SCFA, but most prone to be activated by MCFA like nonanoic acid, decanoic acid and valeric
acid derivatives (Fujita et al., 2007; Jovancevic et al., 2017a). MCFA can be released by the metabolism of
adipose tissue as well as direct dietary intake (Costa et al.,1998). MCFA is present in human plasma and
epicardial adipose tissue, which is a case in point to indicate the participation of ORs in heart function.
Because MCFA-activated OR51E1 can negatively induce cardiac trabeculae in human explanted heart and
results in chronotropic negativity in human stem cell-derived cardiomyocytes (Jovancevic et al., 2017a).

4.2 Essential oil oriented flavor compounds

EORs activating odorants are naturally found in plant essential oils (EOs) (Lahlou, 2004). EOs are colorless
smelling liquids consisting of saturated and unsaturated hydrocarbons, alcohol, aldehydes, esters, ethers,
ketones, oxides phenols, and terpenes, which can be considered a mixture of fragrance compounds (Schiller,
& Schiller, 1994; Wildwood , 1996). The human body could intake these odorants through the skin and lungs
by absorption and inhalation (Mafiberg & Hatt, 2018). Furthermore, Some of EOs can also be taken with
drinks or foods as additives.

With small molecular weight, they are highly refractive. EOs are the main therapeutic agents in aromathe-
rapy, an age-old treatment system that still possesses a very strong position in medical science (Ali et al.,
2015). As EOs are highly concentrated with fragrance elements, they can work very effectively on pressure
points even by inhalation (Alok, Rakesh & Sushil, 2000). Besides relieving the stress, rejuvenating and re-
generating the individuals, EOs also has antimicrobial and antioxidant characteristics (Guleria et al.,2013).
For centuries, EOs are used by folklore professionals as powerful treatment materials for diseases like Alz-
heimer’s, cardiovascular, cancer and labor pain in pregnancy in different parts of the world (Perry & Perry,
2006; Shiina et al., 2008; Jimbo et al.,2009; Smith, Collins & Crowther, 2011). Even recent medical science
has found that EOs can have a good effect on cancer treatment (Blowman et al., 2018).

Volatile terpenes and terpenoids are the main components of EO (Pichersky, Noel & Dudareva, 2006). Some
of these volatiles viz. citronellal (pelargonium), thymol (thyme), ionone (roses and berries), geraniol (rose oil
and citronella oil) and citronellal (citrus species) can trigger ORs in non-chemosensory tissues and affect the



cellular process (Sanz et al., 2005; Braun et al., 2007; Saito et al., 2009; Adipietro, Mainland & Matsunami,
2012; Gu & Ben-Shahar, 2013; Wu et al., 2015; Zhao et al., 2013).

B-ionone, an endogenous ligand for OR51E2, is a very available component of cosmetics because it has a
good impact on melanogenesis and dendritogenesis. It can also cut off the proliferation of melanocytes in
cell culture. OR51E2, formerly believed to be native in the prostate, has shown its presence and effects
on skin tissues too (Gelis et al., 2016). In prostate cancer cells, B-ionone triggers OR51E2 and activates
tyrosine kinase Src and increases Ca?tvia transient receptor potential channel (TRVP6) (Spehr et al.,2011).
This ligand retards the tumor suppressor N-myc downstream-regulated gene 1 (NDRG1) by evoking the
downstream phosphorylation of tyrosine kinase 2 (PYK2), p38 MAPK, and JNK/SAPK. It can also suppress
the phosphorylation of ribosomal protein S6 kinase (p70S6K) (Wiese et al., 2015).

Sandalore stimulates OR2AT4 and triggers cAMP-dependentt pathway following Ca?t increment and pro-
tein kinases phosphorylation. This results in the proliferation and migration of human keratinocytes. Ker-
atinocyte proliferation and migration by sandalore mediated OR2AT4 can develop healing in wounded human
cells by ez vivo system (Busse et al., 2014; Sondersorg et al., 2014). Activation of OR2AT4 in human scalp
hair follicles by sandalore promotes hair growth by boosting the formation of anagen-prolonging growth
factor IGF-1 and reducing the amount of apoptosis (Cheret et al., 2018). Italy has planned to use sandalore
clinically by making it an ingredient for shampoo and lotions (Di Pizio, Behrens & Krautwurst, 2019).

Activation of OR2AT4 by Brahmanol and also by sandalore can induce a strong reduction of hair matrix ker-
atinocyte apoptosis by inhibiting catagen development. OR2AT4 activation promotes anagen improvement
(active growth phase) of the hair follicle by boosting the production of IGF1. That means OR2AT4-induced
signaling has a significant role in the hair growth cycle (Chéret et al., 2018).

OLFRI16 activated by Lyral has a great impact on the regeneration of muscle tissues (Griffin, Kafadar &
Pavlath, 2009). This activation causes a rise of intracellular cAMP leading to myocyte migration, myofibre
branching, and myogenesis. OLFR16 also modulates cell-cell adhesion and myotube formation (Pichavant,
Burkholder & Pavlath, 2015).

Troenan (5-methyl-2-pentan-2-yl-5-propyl-1, 3-dioxane) stimulates OR51B4 in colorectal cancer cells which
results in apoptosis and inhibition of cell proliferation (Weber et al., 2017). In German clinics, suppository
capsules with troenan have already been used to treat colon cancer patients (Di Pizio, Behrens & Krautwurst,
2019).

Activation of OR2AG1 using amyl butyrate might inhibit the histamine-inducedd contraction of human air-
way smooth muscle cells, resulting in muscle relaxation. By contrast, stimulation of OR1D2 using bourgeonal
increased cell contractility and elicited the secretion of interleukin-8 (IL-8) and granulocyte— macrophage
colony-stimulating factor (Kalbe et al., 2016a).

Eugenol and thymol from spices increase gut motility by activating some ORs, e.g. OR1G1, OR1A1, OR3A1
(Braun et al., 2007). Thymol can also induce angiogenesis via hOR17-7/11(Kim et al., 2015).

ORI1A1 stimulated by the ligand (—)-carvone, a supreme compound in spearmint essential oil, triggers PKA
signaling pathway without influencing intracellular Ca?* levels. This transduction helps in hepatic metabo-
lism by reducing intracellular triglyceride concentrations. a-cedrene activates OR10J5 and decreases hepatic
lipid concentrations (Wu et al., 2015).

Cyclohexyl salicylate can reduce intracellular cAMP (cyclic adenosine monophosphate) and Ca?* levels by
activating OR2A4/OR2A7. Tt can inhibit the growth of melanocyte and induce melanin biosynthesis by
reducing p42 MAPK (also known as MAPK1) and/or p44 MAPK (also known as MAPK3) phosphorylation
and promoting p38 MAPK signaling (Tsai et al., 2017).

4.3 Metabolites

In animal cholesterol biosynthesis, terpenes are degraded into their functional unit isoprene through meval-
onate pathway (Goldstein & Brown, 1990). In addition, lots of metabolic intermediates of this pathway



generally contain similarities with OR activating terpenes in their structure (Edwards & Ericsson, 1999).
19-Hydroxyandrostenedione is a testosterone metabolite, which can activate OR51E2 and transduce Neu-
roendocrine Trans-Differentiation of prostate cancer cells (Abaffy et al., 2018)

5. EORs involved in diseases

Some EORs may show no or very low expression in healthy tissues. Nevertheless, they can show high
expression in cancer and diseased tissues, which might represent such kinds of EORs as potential biomarkers
for pathogenesis.

5.1 Breast Cancer

OR2B6, a tissue-specific EOR in breast cancer, has been found 73% and 80% expression of OR2B6 in breast
carcinoma cell lines and carcinoma tissues respectively. The upregulated expression of OR2B6 was found in
blood platelets of tumors from breast cancer patients. OR2B6 can also express mutually with a histone gene
HIST1H2BO and build a fusion transcript together in carcinoma tissues. However, healthy tissues hardly
show any expression of OR2B6 that makes it to be a probable biomarker for breast cancer. OR2B6 can
also express in several carcinoma tissues, but not as remarkable as breast carcinoma tissues (Weber et al.,
2018a). OR2W3 and OR2TS are also highly up-regulated. These three EOR genes are “over-expressed” in
breast cancer tissues (Masjedi, Zwiebel & Giorgio, 2019).

5.2 Bladder Cancer

Bladder cancer tissues show a significant expression of OR10H1 compared to the normal bladder. The
triggering of this receptor can change the morphology of cytoskeletons that can be identified B-Catenin, T-
cadherin, and {-actin staining. Stimulation by sandranol blocks cell migration and proliferation, implies cell
cycle arrest and leads to a limited extent- apoptosis. Sandranol inhibits adenylyl cyclase and thus reduces
cAMP levels which evoke an increase of intracellular Ca?* concentration (Weber et al., 2018b).

5.3 Lung cancer

RSK1 silencing increases tumor metastasis in non-small-cell lung cancer (NSCLC) tissues in humans. This
cell shows very strong positivity about the expression of OR2J3. This receptor also can start the release
of Ca?* from intracellular Ca* stores (Kalbe et al., 2017). Functional imaging and immunohistochemical
studies show quite stable and high expression of OR51E1 in lung cancer cells. Due to the extensive membrane
localization, OR51E1 can be considered as a novel therapeutic target against available Somatostatin receptors
(SSTRs). Moreover, some tumor patients do not respond to SSTRs based diagnosis (Giandomenico et al.,
2013)

5.4 Colorectal Cancer

In 2017, Weber et al. found extraordinarily over-expression of OR51B4 in colorectal cancer tissues confirmed
by shRNA mediated knockdown. In HCT116 cells, Troenan can stimulate anti-proliferation, anti-migration,
and pro-apoptosis by PLC activation and intracellular calcium level changes. This results in phosphorylation
levels changes of p38, mTOR and Akt kinases (Weber et al., 2017). Cancer initiating cells (CICs) in colon
expresses OR7C1, which results in higher tumorigenicity. Peptide specific cytotoxic T lymphocyte (CTL)
antigen for OR7C1 is toxic to CICs (Morita et al., 2016).

5.5 Myelogenous leukemia

By next-generation sequencing, a recent study shows that chronic myelogenous leukemia (CML) cell express
OR at a high rate, specifically OR51B5. Isononyl alcohol activates OR51B5 and increase intracellular Ca?*
level in acute myelogenous leukemia (AML) patients. OR51B5 can inhibit cell proliferation in both AML
and CML patients by reducing the phosphorylation of p38MAPK (Manteniotis et al., 2016b).

OR2AT4 can increase the phosphorylation of p38-MAPK that leads to leukemia. This receptor expresses
highly in human myelogenous leukemia (Manteniotis et al., 2016a)



5.6 Hepatic diseases

OR1A2, which is paralogous to OR1A1, is a potentially expressed olfactory receptor in hepatic cancer cells.
(-)citronellal activates OR1A2 which increases cytosolic Ca?* level via the cAMP-dependent pathway and
reduces cell proliferation by p38MAP phosphorylation (Mefberg et al., 2015). As a null variant, OR1B1
gene influences liver cell metabolism by reducing serum cholinesterase activity. It aids to effect significantly
in liver autoimmune disease (Koyano et al., 2008).

5.7 Retinitis Pigmentosa

Definite mutation in OR2W3 gene is highly related to an ocular disease called Retinitis pigmentosa (RP)
(Ma et al., 2015). RP is an inherited autosomal dominant retinal disease, which is rare, reported only one of
3000 to 5000 peoples (Zhang & Huang, 2015). OR2W3 is located in the photosensitive outer membrane of
cone cells. As it does not fuse with Trim58 transcript, it can be concluded that it possibly has a physiological
function in the human retina (Sharon, Kimchi & Rivolta, 2016).

5.8 Neurological Disorders

Neurodegenerative and neuropsychiatric disorders evaluation in recent days proves the relation with dys-
regulated OR gene expression. Several ORs (OR2L13, OR1E1, OR2J3, OR52L1, and OR11H1) have been
identified to be down-regulated in the early stages of Parkinson’s disease pathogenesis (Garcia-Esparcia et al.,
2013; Grison et al.,2014), which may lead to their undeniable importance in the development of the disease.
Patients samples with Alzheimer’s disease (AD), Creutzfeldt-Jakob disease, and progressive supra-nuclear
palsy present differentially regulated OR gene expression (Ansoleaga et al.,2013). Among the verified ORs
in AD patients, half showed altered expression in the cortical region. OR11H1 supposed to be up-regulated,
while OR4F4, OR52L1, and OR10GS8 expression are reduced and linked up with disease development (An-
soleaga et al., 2013; Woodward et al., 2017).

Downregulated ORs in cerebral regions leads to chronic schizophrenia (Ansoleaga et al., 2015) and traumatic
brain injury (Zhao et al., 2013). For biomarker analysis, the detection of both OR4M1 and OR11H1 can
have a potential diagnostic feature in the near future (Mafiberg & Hatt, 2018). Down-regulation of OR2L13,
OR2T33, OR2J3, OR52L1, OR10G8, OR11H1 and OR4F4 in frontal cortex has been detected in the early
stages in Parkinson’s disease (Grison et al., 2014). Olfactory receptor gene cluster on 14q11.2 region contai-
ning OR4M1, OR4N2, OR4K2, OR4K5, and OR4K1 shows modifications in their expression at the earlier
age of Alzheimer’s disease (Ansoleaga et al.,2013).

5.9 Urological disorders

OR51E1 and OR51E2 are the most distributed and expressed ectopic OR. They make themselves noble
biomarkers by expressing higher in cancer tissues than healthy tissues. They were first introduced as a
significant OR, expression restricted to prostate adenocarcinoma and named as PSGR (OR51E2) and PSGR2
(OR51EL) (Xia et al., 2001; Xu et al., 2006). PSGR locates in chromosome 11p15 encoding 320 amino acid-
containing proteins (Xu et al., 2000). Its mRNA level, correlated with prostate-specific antigen (PSA), raises
remarkably prostate intraepithelial neoplasia (PIN) and Prostate cancer (PCa) (Xu et al., 2006). As it is
available in human urine sediment, it can be used as an alternative biopsy for prostate cancer (Rigau et
al., 2010). According to Cao et al., PSGR can boost up cell proliferation invasion and later on metastasis
in prostate cancer (Cao et al., 2015). The elevated expression refers to an early alteration of PCa while
low expression reveals poor prognosis. Both OR51E1 and OR51E2 can be linked with PCa marker alpha-
methyl-CoA racemase (AMACR) (Wang et al., 2006). Therefore, a dual marker can be a good identifier to
ensure the development of prostate cancer. Besides, PSGR can be fused up with erythroblast transformation
specific (ETS) transcription factor (ETV-1) chimerically and show important positive effects on the elevation
of prostate cancer (Weng et al., 2005; Barros-Silva et al., 2013).

5.10 Others

OR51E1 can also be a potential biomarker for the detection of somatostatin receptor-negative lung carcinoids



(Giandomenico et al., 2013) and small intestinal neuroendocrine carcinomas (Leja et al., 2009; Cui et al.,
2013). A recent study mentioned that peptide derived from OR51E2 can behave as tumor-associated antigen
(TSA), detected by CD8+ T-cells, in various cancer cells including melanoma (Gelis et al., 2017).

6. Possible mechanisms of EORs

Even EORs are not involved in smell and neural perception; they share the same structure with ORs in the
nasal epithelium as well as their mechanisms. The signaling of EORs is hypothesized by the fragmentary
involvement of cAMP, recommending heterotrimeric G-protein (Golf protein) as a strong stimulatory that
widely expressed in human tissues (Flegel et al., 2013; Busse et al., 2014).

6.1 The initial process for EORs activation

When a ligand binds to the OR, the 7 transmembrane receptor initiates and converts its conformation
based on the interaction between GPCR and G-protein. The Ga subunit presumes a triggered conformation
upon GTP-binding and dissociates from receptor and Gfy. When GPCR activates, Go releases from GDP.
“Empty pocket” of G-protein and the receptor bridges with a high-affinity complex, which can be described
with “action at a distance” hypothesis elaborated by Oldham & Hamm (2008). The conversion of GTP
from GDP results in dissociation of Gy dimer from Go that further starts intracellular signaling as “second
messenger” (Sprang, 2007). This second messenger can initiate or inhibit other elements of cell mechanisms.
For instance, Phospholipase C enzyme can hydrolyze phosphatidylinositol 4,5-bisphosphate (PIP2) to 1,2-
diacylglycerol (DAG) and inositol 1,4,5-trisphosphate (IP3). DAG can actuate protein kinase C isoforms.
IP3 can connect with receptors which lead to calcium release in the cytosol. A large number of the second
messenger including cyclic AMP, cyclic GMP, calmodulin, and kinases can be modulated by G proteins.
When GTP hydrolyzes into GDP by GTPase activity of the Go subunit, inactive Gofy is formed by the
re-association of Ga-GDP and GBy. Evidence implicates that there is no physical disassociation of G-protein
from the complex (Frank et al., 2005; Digby et al., 2006).

An activated G-protein can co-localize with regulatory factor Resistance to inhibitors of cholinesterase 8B
(Ric8B) in olfactory sensory neurons. Although there is no solid information for specific functional ap-
pearance, there are some limited proof and proposed data of G-protein subunit activation in cancer cells
(Sanz et al., 2014). ORs require definite cofactors to develop membrane localization of receptors. The
important co-factors are Receptor transporter proteins 1 and 2 (RTP1 and RTP2) and receptor expression
enhancing protein (REEP1). They are found in neurons cytoplasm doing down-regulation of brain’s signal-
ing molecules (Krautwurst, Yau, & Reed, 1998; Abaffy, Matsunami, & Luetje, 2006; Li & Matsunami, 2011;
Peterlin, Firestein & Rogers, 2014)

6.2 cAMP-induced calcium flux

Most of the ectopic ORs trigger a cAMP-induced calcium influx. It generally happens from outside the cells
representing the canonical pathway cascade in olfactory sensory neurons (OSNs). The necessary subunits ex-
pressions to build the canonical heterotetrameric cyclic nucleotide-gated (CNG) channel (CNGA2, CNGA4,
and CNGB1), particularly CNGA2, has not been identified in most tissues of the human body. CNG chan-
nel is a very important channel in peripheral human tissues and cells (Flegel et al., 2013). CNGA1, mainly
activated by cGMP along with cAMP, is the native rod protein capable of forming functional homomeric
channels. CNGA1 can perform as a CNG channel (Kaupp et al., 1989). CNGA3 channel is a cone photore-
ceptor native to sperm cells. Along with the CatSper channel, CNGA3 expressed functionally indicating its
possible involvement in OR-mediated sperm chemotaxis (Busse et al., 2014; MaBberg et al., 2015)

Though the Ca?* entering channels are still mostly unidentified, some researches have shown the involve-
ment of TRP channels, CRAC channels, voltage-gated L-type Ca?*channels, or spermatozoa-specific CatSper
channels (Brown et al.,2019). There is a possibility of determining Ca?*influx through TRPM family mem-
bers by using particular channel blockers 2-APB (Kalbe et al., 2016b; Flegel et al., 2016; Manteniotis et al.,
2016b).
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Intracellular Ca?® increment in human airway smooth cell is induced by OR1D2 and OR2AG1 through a
cAMP-dependent pathway. OR1A1 induces cAMP response element-binding protein (CREB) without cAMP
induction and intracellular Ca?*

6.3 MAPK downstream cascade

Ectopic OR activation can lead to regulate downstream protein kinase cascades, precisely MAPK, in various
cellular signaling dependent or independent of the canonical pathway. These protein kinases presume to be
the main downstream modulators of several cellular processes (Kim et al., 2015; Gelis et al., 2016)

These ORs mediated signaling in physiological systems are distinctly relied on the OR ligands structure and
concentration, morphology and biochemistry of the regarding cellular systems, the heterotrimeric G protein
subunits, and the involvement of other less regulatory scaffold proteins(Rodriguez et al., 2014; Wiese et al.,
2015; Wu et al., 2015). By reducing early phosphorylation of p38 mitogen-activated protein kinases (p38-
MAPK), OR2AT4 can hinder cell growth and through the phosphorylation of p44/42-MAPK can decrease
cell apoptosis in acute myelogenous leukemia (AML) patient (Manteniotis et al., 2016a).

6.4 Others

Some ORs can activate the tyrosine kinase Src (sarcoma) signaling pathway. Without activating any G-
protein, this cascade can raise the Ca®* level in the cell via transient receptor potential channel V6 (TRPV6).
Some evidences show that some specific ligands such as 3-ionone can trigger PI3K/AKT downstream signaling
via GPy stimulation. OR51E1 shows involvement in AR-mediated signaling through Src kinase (Spehr et
al., 2011; Mafiberg et al.,2016).

In essence, ORs activated by their specific odorants can transduce intracellular signal cascade by several
mechanisms.

7. Conclusions

As extra-nasally expressed ORs show their prominent involvement in diseases, undoubtedly they can be
promising therapeutic targets. The characteristics of EORs can be categorized as “chemosensors” as they
show no connection to olfaction (Lee, Depoortere & Hatt, 2019). As the EORs are categorized as chemosensors
in the human body, undoubtedly they might be promising therapeutic targets.

It is quite practical to consider ORs as therapeutic targets, as approximately 30% of pharmaceuticals work
through rhodopsin-like GPCRs (Overington, Al-Lazikani & Hopkins, 2006). Some ORs have also been sug-
gested as biomarkers (Kalbe et al., 2017; Weber et al., 2018a). These biomarkers can be a noble clinical holy
grail to detect diseases in the embryonic stage and to start the diagnosis of cancer. Although a lion’s share
of the ectopic ORs is orphan, some of them with stimulants can actually inhibit several biosynthesis that
leads to the betterment of human health.

EO can be a good source to continue the search for EORs activation mechanisms. EO is naturally full of
fragrant compounds and frequently used by local doctors and aroma-therapists. It can balance physiological
and psychological responses in the human body. We can use EO to deorphanize the orphan EORs and that
may bring out the possible therapeutic effects of EORs.The most dynamic and significant future research
should be the identification of ORs, their agonist or antagonist, and their functions. No doubt, mRNA
expression level research can encourage the possibilities of ORs as therapeutic targets.
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