
P
os

te
d

on
A

u
th

or
ea

6
M

ay
20

20
—

C
C

B
Y

4.
0

—
h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
58

87
91

84
.4

71
74

20
2

—
T

h
is

a
p
re

p
ri

n
t

an
d

h
as

n
ot

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

at
a

m
ay

b
e

p
re

li
m

in
ar

y.

GRAND TOUR ALGORITHM: NEW SWARM-BASED

OPTIMIZATION

Gustavo Meirelles1, Bruno Brentan2, Joaqúın Izquierdo3, and Edevar Luvizotto Junior4

1Universidade Federal de Minas Gerais
2UFMG
3Universitat Politecnica de Valencia
4Universidade Estadual de Campinas - Campus Cidade Universitaria Zeferino Vaz

May 6, 2020

Abstract

Metaheuristic algorithms based on the collective behavior of nature social groups, such as ants and bees, have been widely

explored to solve many optimization problems in engineering and other sciences. The processing time and the chance to end

up in a local optimal solution are drawbacks of these algorithms, and none has proved to outperform the others. In this

paper, an improved swarm optimization technique, named Grand Tour Algorithm (GTA), based on the behavior of a peloton of

cyclists, is introduced and applied to sixteen benchmarking optimization problems in the literature to evaluate its performance

in comparison to the original particle swarm optimization (PSO) algorithm. Most of these benchmarking problems are tackled

with a number of 20,000 variables, a really huge number inspired in the human genome. Under these conditions, GTA clearly

outperforms the classical PSO. In addition, various sensitivity analyses are performed to verify the influence of the initial

parameters in the GTA efficiency. It can be demonstrated that the GTA fulfils such coveted main aspects of an optimization

algorithm as ease of implementation, speed of convergence, and reliability, thus confirming GTA’s improved performance.

GRAND TOUR ALGORITHM: NEW SWARM-BASED OPTIMIZATION

Gustavo Meirelles 1*, Bruno Brentan2, Joaqúın Izquierdo 3, Edevar Luvizotto Jr. 4

1 Department of Hydraulic Engineering and Water Resources - ERH, Universidade Federal de Minas Gerais,
31270-901, Belo Horizonte, Brazil; gustavo.meirelles@ehr.ufmg.br

2 Department of Hydraulic Engineering and Water Resources - ERH, Universidade Federal de Minas Gerais,
31270-901; brentan@ehr.ufmg.br

3 Fluing-Institute for Multidisciplinary Mathematics, Universitat Politècnica de València, Camino de Vera
s/n, 46022, Valencia, Spain; jizquier@upv.es

4 Department of Water Resources - DRH, Universidade Estadual de Campinas, 13083-889, Campinas, Brazil;
edevar@fec.unicamp.br

ABSTRACT: Metaheuristic algorithms based on the collective behavior of nature social groups, such as
ants and bees, have been widely explored to solve many optimization problems in engineering and other
sciences. The processing time and the chance to end up in a local optimal solution are drawbacks of these
algorithms, and none has proved to outperform the others. In this paper, an improved swarm optimization
technique, named Grand Tour Algorithm (GTA), based on the behavior of a peloton of cyclists, is introduced
and applied to sixteen benchmarking optimization problems in the literature to evaluate its performance
in comparison to the original particle swarm optimization (PSO) algorithm. Most of these benchmarking

1

P
os

te
d

on
A

u
th

or
ea

6
M

ay
20

20
—

C
C

B
Y

4.
0

—
h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
58

87
91

84
.4

71
74

20
2

—
T

h
is

a
p
re

p
ri

n
t

an
d

h
as

n
ot

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

at
a

m
ay

b
e

p
re

li
m

in
ar

y.

problems are tackled with a number of 20,000 variables, a really huge number inspired in the human genome.
Under these conditions, GTA clearly outperforms the classical PSO. In addition, various sensitivity analyses
are performed to verify the influence of the initial parameters in the GTA efficiency. It can be demonstrated
that the GTA fulfils such coveted main aspects of an optimization algorithm as ease of implementation,
speed of convergence, and reliability, thus confirming GTA’s improved performance.

KEYWORDS: optimization, swarm optimization, benchmarking problems.

INTRODUCTION

Many optimization problems in engineering are of a very complex nature and must be solved subjected to
various sometimes complicated constraints. As a consequence, the achievement of an optimal solution is often
hard. In addition, frequently, a large number of mixed variables, and differential and non-linear equations
are used to describe the problem. As a result, in many cases, classical optimization procedures based on
differential methods cannot be used. Metaheuristic techniques arise to bridge this gap, as they can explore
the search space for optimal and feasible solutions in a less restrictive (derivative-free) framework. Since
in continuous problems the set of feasible solutions is infinite, metaheuristic algorithms use an empirical
iterative search method, mostly based on natural intelligence, to guide the search in a way that the solution
is expected to always improve.

Among the various approaches utilized by metaheuristic algorithms, swarm intelligence uses social features
of a group to define the behavior of its individuals, leading them to local optimal solutions [1]. In general,
the position of an individual represents a potential solution, and has a defined score based on the objective
function of interest. First, initial positions for individuals are defined randomly, and this defines their initial
score. Then an individual evolves according to: i) its own preferences, based on its past experience, i.e., on its
best performance ever achieved, and ii) according to the group experience, i.e., the best solution ever found
by any individual in the group. Each algorithm has its own rules to express this social behavior. Additional
random coefficients are used to guarantee better exploration of the search space, especially in the initial
period, and those coefficients are also modified along iteration [2] to achieve better exploitation, mainly at
the end of the search.

Examples are algorithms based on ants [3] and bees [4] looking for food, the breeding behavior of cuckoos
[5], the behavior of birds flocking [6], and multi-agent theory [7], among many others.

One of the major issues of metaheuristic algorithms is the fact that there is no guarantee that the global
optimal solution is achieved. Despite the randomness deployed to build the initial solutions and during
iteration, the search can be easily biased and the final result may be just a point close to a local optimum [8].
In addition, to account for possible constraints of the problem, in a single-objective setting, penalty functions
have to be used, adding a value to the objective function to hinder unfeasible solutions [9]. If the added value
is too high, optimal solutions on the boundaries can be disregarded because of the steep path this represents
for the individuals and the strong deformation of the objective function close to the boundary. On the other
hand, if the penalty is too soft, unfeasible solutions can be considered as optimal [10]. The randomness of
the process and the penalties added can lead to inconsistent results, so that multiple runs of the algorithm
are necessary to verify the quality of the solution.

Another crucial issue of these methods is the computational effort required. Multiple solutions (individuals)
must be evaluated in each iteration. This number varies according to the number of variables of the problem,
and can be very large. In general, the number of individuals has to be at least the same as the number of
variables [11]. Thus, in complex problems, the number of objective functions evaluations can be very large. In
addition, many engineering problems use external models to calculate parameters of the objective function
and the constraints, as is the case of hydraulic [12], thermal [13], and chemical models [14], thus increasing
even more the computational effort.

A final crucial idea is that there is not such a thing as the best metaheuristic algorithm. Each of them
has advantages and disadvantages regarding three major aspects [15]: i) ease of implementation due to the

2

P
os

te
d

on
A

u
th

or
ea

6
M

ay
20

20
—

C
C

B
Y

4.
0

—
h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
58

87
91

84
.4

71
74

20
2

—
T

h
is

a
p
re

p
ri

n
t

an
d

h
as

n
ot

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

at
a

m
ay

b
e

p
re

li
m

in
ar

y.

number of parameters to be adjusted (sometimes costly fine-tuned); ii) computational complexity, which
reflects on the convergence speed; and iii) reliability of the results, with consistent optimal values obtained
through a series of tests.

As an attempt to help in the solution of these problems, a new swarm-based algorithm that uses the metaphor
of the cyclists’ behavior in a peloton, which we have named Grand Tour Algorithm (GTA), is proposed in
this paper. The main features of the algorithm are: i) the drag, defined according to the distance to the
leading cyclist (embodying the best solution), and ii) the speed, defined using the difference between two
consecutive objective function evaluations. These two elements are used to calculate the coefficients that
determine the route of each cyclist. As a result, the peloton will try to follow the cyclist closest to the
finish line, i.e. the optimal solution, and also the cyclist who is going faster at this point. We describe the
methodological aspects in the next section. Then, sixteen benchmarking functions, most of them with 20,000
decision variables, are used to evaluate the performance of the algorithm when compared with the classical
Particle Swarm Optimization (PSO) algorithm [6]. Finally, various sensitivity analyses verify the relevance
the algorithm parameters have in the optimization convergence and stability.

METHODOLOGY

In this section we present a few general ideas about iterative methods, then we concisely describe the classical
PSO and, finally, fully present GTA.

Iterative optimization processes: a general view

Typically, an iterative optimization algorithm can be mathematically described as in Eq. (1):

xt+1 = xt + αdt, (1)

where xt+1 is (the position of) a solution at time step t+ 1, α is the step size, and dt is the direction of the
movement.

Since there is no general a priori clue about which direction to take to progress towards the optimal solution,
various mathematical properties are used to define the right track and the step size, better leading to optimal
points.

First-order derivative methods use the opposite direction of the gradient vector with a certain step size to
find minimal points. Despite first-order methods have fast convergence, sometimes, depending of the step
size, an oscillatory process can start, and the optimal point is never found. The classical well-known gradient
method, a first-order method, is shown in Eq. (2):

xt+1 = xt − α ∇f(xt)
‖∇f(xt)‖ . (2)

Here ∇f(xt) is the gradient vector calculated at xt.

To improve the convergence of first-order methods, second-order methods use the opposite direction of the
gradient vector improved by the information of the Hessian matrix, which provides second-order information.
The Modified Newton method, for example, adopts a unitary step size, and the method is described by Eq.
(3).

xt+1 = xt −
[
∇2f (xt)

]−1
.∇f (xt) . (3)

Even though derivative methods are mathematically efficient, the calculations of the Jacobian vector and
the Hessian matrix are computationally hard or, simply, not possible in many cases.

3

P
os

te
d

on
A

u
th

or
ea

6
M

ay
20

20
—

C
C

B
Y

4.
0

—
h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
58

87
91

84
.4

71
74

20
2

—
T

h
is

a
p
re

p
ri

n
t

an
d

h
as

n
ot

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

at
a

m
ay

b
e

p
re

li
m

in
ar

y.

To cope with this drawback, metaheuristic algorithms, many of them based on natural processes, are widely
applied in real-world problems. Among them, swarm-based algorithms use the same search process described
by equation (1). However, in contrast with derivative-based algorithms, in metaheuristic algorithms each
solution is brought to a new position (solution) based on a set of rules that replace the derivative information
with other kind of information, while providing a conceptually similar approach.

We first concisely present the classical PSO, since we are going to use it for comparisons purposes.

Particle Swarm Optimization (PSO)

The Particle Swarm Optimization algorithm [6] is one of the most popular swarm-optimization techniques.
Each particle represents a candidate solution and has its own position X and velocity V . Initially, these
values are randomly defined according to the boundaries of the problem. As the time (iterations) goes by,
the particles move according to its velocity and reach a new position. This velocity of a particle, see equation
(4), is a linear combination of: the particle’s inertia, through coefficient ω· its memory, through coefficientc1;
and some social interaction with the group, through coefficient c2. The best position found by the group, G
, and the best position ever reached by the particle, P , are used to update its velocity. In addition, random
values, rand1and rand2, are used to boost good exploitation abilities of the search space. Equations (4) and
(5), used to update the particles’ positions, describe the complete iteration process.

V k+1
i = ω • V k

i + c1 • rand1 •
(Pk

i −X
k
i)

t + c2 • rand2 •
(Gk−Xk

i)
t (4)

Xk+1
i = Xk

i + V k+1
i • t (5)

Grand Tour Algorithm

The principle of the Grand Tour Algorithm (GTA) is similar to most swarm-based algorithms’: each cyclist
represents a possible solution with position and velocity updated along the iteration.

GTA fundamentals

The difference hinges on how the velocity is updated. Instead of the social and cognitive aspects, the power
spent by cyclists is the main feature for this update. Eq. (6) shows how the power, P , of a cyclist can be
calculated according to its speed, S.

P =
(Fg+Ff+Fd)S

1−l (6)

Three main forces are considered for this calculation: gravitational,Fg; friction, Ff ; and drag, Fd. In GTA,
friction is disregarded, as it represents only a small fraction of the power; also, the losses, l, mainly represented
by the friction of the chain and other mechanical components of the bike, are negligible.

Obviously, the speed used in this equation has no relationship with the velocity used to update a particle’s
position. Here, the speed is calculated through Eq. (7), representing the cyclist ascending or descending
(vertical) speed, using two consecutive values of the cyclist’s objective function (OF).

S = OFk+1−OFk

t (7)

So, if the objective function is reduced, the cyclist is closer to the finish line, i.e., to the optimal solution.
Larger difference of the objective function between two successive iterations means that the cyclist is fast
approaching the finish line.

4

P
os

te
d

on
A

u
th

or
ea

6
M

ay
20

20
—

C
C

B
Y

4.
0

—
h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
58

87
91

84
.4

71
74

20
2

—
T

h
is

a
p
re

p
ri

n
t

an
d

h
as

n
ot

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

at
a

m
ay

b
e

p
re

li
m

in
ar

y.

Calculation of the drag force

The drag force can be calculated by Eq. (8).

Fd = 0.5•Cd •A • ρ • (S +W)
2
. (8)

Here Cd is the drag coefficient, A is the frontal area of the cyclist, ρ is the air density, S the cyclist vertical
speed, and W the wind speed. Frontal area and air density may be considered the same for every cyclist,
both herein taken as 1. The wind speed is considered to be null.

The drag coefficient, Cd, is the major component of this equation. As shown in an aerodynamic model for a
cycling peloton using CFD simulation [16], in a cycling peloton the front cyclists have to pedal with much
more power than those in the back of the peloton due to the drag produced. Thus, the cyclist who achieves
the best solution is the leader and, according to how far the others are behind, they are more or less benefited
from the leader’s drag. In this sense, cyclists far from the leader find it easy (and are bound) to follow him
or her because their paths require less power, while the cyclists closest to the leader are freer because the
power difference in following the leader or not is less relevant. Using the physical results obtained by [16],
the drag coefficient may be estimated by creating a ranking of the cyclists according to their OF values. The
leader has no benefit from the peloton, and has a drag coefficient equal to one. The rear cyclist is the most
benefited and has a drag coefficient of only 5% of the leader. The drag coefficient of the remaining cyclists
is obtained by means of a linear interpolation between the first and the last cyclists (Equation 9).

Cd = 1− 0.95 OF−OFbest

OFworst−OFbest
. (9)

In this expression, OF is the cyclist objective function value, OFbestis the leader objective function,
andOFworst is the value of the objective function of the last cyclist in the peloton.

Calculation of the gravitational force

The gravitational force has a great impact on the speed of convergence of the algorithm. It is calculated
using Eq. (10).

Fg = g • sin
(
tan−1 (I)

)
•m (10)

Here g is the acceleration of gravity, I is the slope, defined as the difference between the values for the
objective function in two successive iterations, and m is the cyclist mass.

As previously described, the objective function represents the (vertical) distance to the finish line. And,
as the race is downhill, towards the minimum, the objective function is also the elevation of the cyclist’s
place on the terrain with respect to the minimum. Thus, when cyclists are going downhill (negative slope),
they need to put less power, because the gravity is aiding. In contrast, a cyclist’s weight causes an opposite
force to the movement. This procedure avoids cyclists to go uphill (positive slope), towards a worst solution,
because they would spend too much power in this case.

The value of the gravitational acceleration is constant, and the cyclists’ mass is randomly defined at the
beginning, in a range from 50 to 80 kg. This procedure allows lightweight cyclists, known as climbers, not
to be hardly affected by going uphill, i.e., with a direction towards a worse solution. This guarantees better
search capabilities.

Velocity and position updating

The power component corresponding to each force is calculated separately and will be used to update the

5

P
os

te
d

on
A

u
th

or
ea

6
M

ay
20

20
—

C
C

B
Y

4.
0

—
h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
58

87
91

84
.4

71
74

20
2

—
T

h
is

a
p
re

p
ri

n
t

an
d

h
as

n
ot

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

at
a

m
ay

b
e

p
re

li
m

in
ar

y.

cyclist velocity according to Eq. (11), which is used, in turn, to define its new position, as in Eq. (5).

V k+1
i = kg • V k

i + kd • rand1 •
(Xd−Xk

i)
t + kg • rand2 •

(Xg−Xk
i)

t (11)

The elements of this formula are calculated as follows. First, the values of the power spent by the cyclists,
according to Eq. (6), are ranked. Then, the two weight coefficients for drag and gravitational power, kd and
kg, shown in Eq. (11), are calculated by normalizing Fd and Fg between 0.5 and 1.0, where 1.0 represents
the cyclist with the lowest power.

Regarding the drag component, kd, this procedure reduces the step taken by the leading cyclists, which are
closer to an optimal solution, thus resulting in a more specific local search around the leader position, Xd,
while the latter cyclists are rapidly pushed towards this point to benefit from the leaders drag.

With the gravitational component, kg, the purpose is to encourage the cyclists that are rapidly converging
to a better solution,Xg, to keep going in this direction, while cyclists going uphill or slowly improving are
kept to explore with a more local search focus around their place.

Finally, instead of an inertia coefficient, as used in PSO, the gravity coefficient kg is also used to give a
weight to the cyclist current direction. Random values are also used to avoid a biased search.

The flowchart in Figure 1 summarizes the GTA optimization process.

6

P
os

te
d

on
A

u
th

or
ea

6
M

ay
20

20
—

C
C

B
Y

4.
0

—
h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
58

87
91

84
.4

71
74

20
2

—
T

h
is

a
p
re

p
ri

n
t

an
d

h
as

n
ot

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

at
a

m
ay

b
e

p
re

li
m

in
ar

y.

Figure 1 – Flowchart of the Grand Tour Algorithm

Test conditions

The GTA algorithm is implemented in Matlab, and the comparison with PSO is performed using the built-in
PSO algorithm from the Global Optimization Toolbox [17], with default parameters (c1 = c2 = 1.49 and ω
varying from 0.1 to 1.1, linearly).

To evaluate the performance of GTA against PSO, both algorithms were applied to sixteen well-known
benchmark functions from the literature [18-19] and collections online of test functions, such as the library
GAMS World [20], CUTE [21], and GO Test Problems [22]. In addition, [23] provides an exhaustive list of

7

P
os

te
d

on
A

u
th

or
ea

6
M

ay
20

20
—

C
C

B
Y

4.
0

—
h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
58

87
91

84
.4

71
74

20
2

—
T

h
is

a
p
re

p
ri

n
t

an
d

h
as

n
ot

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

at
a

m
ay

b
e

p
re

li
m

in
ar

y.

up 175 functions.

Table 1 shows the name and the equation of each function, the dimension we have used for the problem, and
the boundaries considered for the variables. The minimum value for all of these functions is given in the last
column. Let us note here that the dimension for most of these benchmark functions has been taken inspired
in the human DNA, which may be represented by 20,000 genes [24-25].

Table 1 – Benchmark functions

Function Equation Dimension (n) Search Space (xmin, xmax) Global Minimum
Paraboloid f (x) = x21 + x22 2 [-100,100] 0
Sphere f (x) =

∑n
i=1 x

2
i 20,000 [-100, 100] 0

Rosenbrock f (x) =
∑n−1

i=1

[
100

(
xi+1 − x2i

)2
+ (xi − 1)

2
]

20,000 [-30, 30] 0

Rastrigin f (x) =
∑n

i=1

[
x2i − 10 cos (2πxi) + 10

]
20,000 [-5.12, 5.12] 0

Griewank f (x) = 1
4000

∑n
i=1

[
x2i −

∏n
i=1 cos

(
xi√
i

+ 1
)]

20,000 [-600, 600] 0

Shaffer f6 f (x) = 0.5−
(
sin
√

x2
1+x2

2

)2
−0.5

[1+0.001(x2
1+x2

2)]
2 2 [-100, 100] 0

Alpine f (x) =
∑n

i=1 [xi sin (xi) + 0.1xi] 20,000 [-10, 10] 0

Brown f (x) =
∑n−1

i=1

[(
x2i
)x2

i+1+1
+
(
x2i+1

)x2
i+1
]

20,000 [-1, 1] 0

Chung Reynolds f (x) =
(∑n

i=1

[
x2i
])2

20,000 [-100, 100] 0

Dixon Price f (x) = (x1 − 1)
2

+
∑n

i=2

[
i
(
2x2i − xi−1

)2]
20,000 [-10, 10] 0

Exponential f (x) = −exp
(
−0.5

∑n
i=1

[
x2i
])

20,000 [-1, 1] -1

Salomon f (x) = 1− cos
(

2π
√∑n

i=1 [x2i]
)

+ 0.1
√∑n

i=1 [x2i] 20,000 [-100, 100] 0

Schumer Steiglitz f (x) =
∑n

i=1

[
x4i
]

20,000 [-100, 100] 0

Sum of Powers f (x) =
∑n

i=1

[
|xi|i+1

]
20,000 [-1, 1] 0

Sum of Squares f (x) =
∑n

i=1

[
ix2i
]

20,000 [-1, 1] 0

Zakharov f (x) =
∑n

i=1

[
x2i
]

+ (
∑n

i=1 [0.5ixi])
2

+ (
∑n

i=1 [0.5ixi])
4

20,000 [-10, 10] 0

RESULTS

Performance

The sixteen optimization problems presented were solved with GTA using 500 cyclists and considering 1000
as the maximum number of iterations allowed. Figure 2 shows the boxplot analysis for the 100 optimizations
performed. In most of the cases the deviation is so low that it is not possible to observe the height of the
boxplot in the figure. For the Rosenbrock and Dixon Price functions a local optimal solution was invariably
found, but the minimum value was never reached. The number of evaluations of the objective function for all
the cases was, in average, high, close to the maximum of 500,000. However, since no improvement tolerance
was used to stop the optimization, after just a few iterations the gains soon become negligible, as can be seen
in Figure 3. Thus, the three fundamental features of an optimization procedure, namely, few parameters to
adjust, fast convergence, and reliability of the results, are satisfied for the studied cases.

8

P
os

te
d

on
A

u
th

or
ea

6
M

ay
20

20
—

C
C

B
Y

4.
0

—
h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
58

87
91

84
.4

71
74

20
2

—
T

h
is

a
p
re

p
ri

n
t

an
d

h
as

n
ot

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

at
a

m
ay

b
e

p
re

li
m

in
ar

y.

Figure 2 – Boxplot analysis of the GTA performance for the sixteen benchmarking functions;
values obtained for eachOF are represented on the vertical axis.

Figure 3 – GTA Objective function evolution for the sixteen benchmarking functions

For comparison purposes, the same functions were tested once using PSO, with a higher value, namely 3,000,
for the maximum number of allowed iterations, but with the same number of cyclists (particles), 500. Table
2 shows the results obtained. The global minimum was achieved only in three cases: Paraboloid, Shaffer f6
and Salomon. Moreover, a higher number of evaluations were necessary to achieve these results. In addition,
it can be observed that in most cases there was no convergence, even with a higher number of iterations,
reaching the maximum number of evaluations possible. The extremely high dimension of the problems, with
most of them depending on 20,000 decision variables, is the major contributor for this behavior. Many more
iterations and many more particles could have been used to reach (perhaps) an optimal solution; however,
the increase in the computational effort would had been huge (or unaffordable).

Table 2 – PSO results for the sixteen benchmarking functions

Function Number of OF evaluations Best Solution

Paraboloid 23,500 0
Sphere 1,500,500 2.97E+07
Rosenbrock 1,500,500 9.05E+10

9

P
os

te
d

on
A

u
th

or
ea

6
M

ay
20

20
—

C
C

B
Y

4.
0

—
h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
58

87
91

84
.4

71
74

20
2

—
T

h
is

a
p
re

p
ri

n
t

an
d

h
as

n
ot

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

at
a

m
ay

b
e

p
re

li
m

in
ar

y.

Function Number of OF evaluations Best Solution

Rastrigin 1,500,500 256,392
Griewank 1,500,500 266,962
Shaffer f6 25,500 0.0025
Alpine 1,500,500 35,760
Brown 1,500,500 4,824
Chung Reynolds 1,500,500 8.35E+14
Dixon Price 1,500,500 4.17E+11
Exponential 11,000 0
Salomon 12,500 0
Schumer Steiglitz 1,500,500 1.17E+11
Sum of Powers 24,500 4
Sum of Squares 1,500,500 2.73E+07
Zakharov 11,000 695,675

Sensitivity Analysis

We report here three tests. The first test is performed to evaluate the relevance of the number of cyclists
and the maximum number of iterations in the optimization process. Figure 4-a shows that the increase in
the numbers of cyclists and maximum number of iterations has no significant influence on the reduction of
the objective function. Only a combination of low numbers of cyclists and iterations resulted in poor results.
As expected, Figure 4-b shows the increase of the number of objective function evaluations when both
parameters are increased. Therefore, the algorithm reaches the best results after an extensive searching, but,
as observed in Figure 3, with no significant changes. These results agree with the ones obtained previously,
showing that GTA has a fast convergence to a feasible and high-quality solution.

(a)

(b)

Figure 4 – Sensitivity analysis for the number of cyclists and the maximum number of itera-
tions: a) Objective function variation; b) Number of objective function evaluations

The second sensitivity analysis focused on the variation of the cyclists’ mass. To this purpose, the minimum
and maximum values considered were changed in a range from 25 to 125 kg. The results showed no significant
difference. Only when all the cyclists had the same weight, regardless the value, the optimization became
slower and with worse results. This lack of randomness in the cyclists’ weight hampers the exploration of
points near the boundaries, since there are no lightweight cyclists, who are less affected by the gravitational
force, to venture closer to the boundaries because of the penalties.

Finally, the score used to calculate the kg and kdcoefficients of the ranked cyclists according to the power
spent in each iteration was evaluated. The best cyclist, or the one who spends less energy, receives the higher
score and the worst receives the minimum. Figure 5 shows that only with a combination of high values, the
results of the objective function got worse. In terms of the number of evaluations of the objective function,
no significant difference was observed. In all the analyses made, the GTA presented consistent results despite
changes in its parameters. This robustness is very interesting for the user, since there is no need of heavy
fine-tuning to adjust the default parameters so as to perform a better optimization.

10

P
os

te
d

on
A

u
th

or
ea

6
M

ay
20

20
—

C
C

B
Y

4.
0

—
h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
58

87
91

84
.4

71
74

20
2

—
T

h
is

a
p
re

p
ri

n
t

an
d

h
as

n
ot

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

at
a

m
ay

b
e

p
re

li
m

in
ar

y.

Figure 5 – Sensitivity analysis for the score of parameterskg and kd

Conclusion

As a swarm-based algorithm, GTA exhibits good results in terms of consistency and speed to find the
optimal solution for the benchmarking problems considered. GTA performance is clearly superior to PSO in
terms of speed and consistency when functions with a huge (human genome-like) search space (up to 20,000
decision variables) were tested. The great advantage of GTA is its ability to direct the cyclists to search the
fastest path for improvement of the objective function. At the same time, points with worst values for the
objective functions are locally explored, since they can be just a barrier for a big improvement. The search
for the fastest path has a similar goal as the first derivative, hence its fast convergence, despite the number
of cyclists and iterations used. Finally, the sensitivity analysis showed the robustness of GTA, since the
change in the main parameters had little impact in the final result. This feature results in a user-friendly
algorithm, because there is no concern in adjusting the default parameters to perform a good optimization.
Therefore, the three main aspects desirable for an optimization algorithm – ease of implementation, speed
of convergence and reliability – had good results, confirming the expected improvements of GTA.

References

1. Mirjalili S, Lewis A. The whale optimization algorithm. Adv Engrg Soft. 2016; 95:51-67.
2. Chatterjee A, Siarry P. Nonlinear inertia weight variation for dynamic adaptation in particle swarm

optimization. Comput Oper Res.2006; 33(3):859-871.
3. Dorigo M, Blum C. Ant colony optimization theory: A survey. Theor Comput Sci. 2005; 344(2-3):243-

278.
4. Karaboga D, Basturk B. A powerful and efficient algorithm for numerical function optimization: arti-

ficial bee colony (ABC) algorithm. J Global Optim. 2007; 39(3):459-471.
5. Gandomi AH, Yang XS, Alavi AH. Cuckoo search algorithm: a metaheuristic approach to solve struc-

tural optimization problems. Engrg Comput. 2013; 29(1):17-35.
6. Kennedy J, Eberhart R. Particle swarm optimization (PSO). In Proc. IEEE Intern Conf Neural Net,

Perth, Australia , 1995 (November) pp. 1942-1948.
7. Montalvo I, Izquierdo J, Pérez-Garcia R, Herrera M. Water distribution system computer-aided design

by agent swarm optimization. Comput Aided Civil Infrastr Engrg. 2014; 29(6):433-448.
8. Gonzalez-Fernandez Y, Chen S. Leaders and followers—a new metaheuristic to avoid the bias of accu-

mulated information. In 2015 IEEE Congr Evol Comput. (CEC) 2015 (May) pp. 776-783. IEEE.
9. Parsopoulos KE, Vrahatis MN. Particle swarm optimization method for constrained optimization prob-

lems. Intell Tech Theory Appl: New Trends in Intell Tech. 2002; 76(1):214-220.
10. Wu ZY, Simpson AR. A self-adaptive boundary search genetic algorithm and its application to water

distribution systems. J Hydr Res.2002; 40(2):191-203.

11

P
os

te
d

on
A

u
th

or
ea

6
M

ay
20

20
—

C
C

B
Y

4.
0

—
h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
58

87
91

84
.4

71
74

20
2

—
T

h
is

a
p
re

p
ri

n
t

an
d

h
as

n
ot

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

at
a

m
ay

b
e

p
re

li
m

in
ar

y.

11. Trelea IC. The particle swarm optimization algorithm: convergence analysis and parameter selec-
tion. Inform Process Letters2003; 85(6):317-325.

12. Brentan B, Meirelles G, Luvizotto Jr E, Izquierdo J. Joint operation of pressure-reducing
valves and pumps for improving the efficiency of water distribution systems. J Water Res Plan
Manag.2018; 144(9):04018055.

13. Freire RZ, Oliveira GH, Mendes N. Predictive controllers for thermal comfort optimization and energy
savings. Ener Build.2008; 40(7):1353-1365.

14. Banga JR, Seider WD. Global optimization of chemical processes using stochastic algorithms. In State
of the art in global optimization (pp. 563-583). Springer, Boston, MA, 1996.

15. Maringer DG. Portfolio management with heuristic optimization (Vol. 8). Springer Science & Business
Media 2006.

16. Blocken B, van Druenen T, Toparlar Y, Malizia F, Mannion P, Andrianne T, . . . , Diepens J. Aero-
dynamic drag in cycling pelotons: new insights by CFD simulation and wind tunnel testing. J Wind
Engrg Ind. Aerod. 2018; 179:319-337.

17. MATLAB 2018, The MathWorks, Inc., Natick, Massachusetts, United States.
18. Clerc M, Kennedy J. The particle swarm-explosion, stability, and convergence in a multidimensional

complex space. IEEE Trans Evol Comput. 2002; 6(1):58-73.
19. Eberhart RC, Shi Y. Comparing inertia weights and constriction factors in particle swarm optimization.

In Proc 2000 Congr Evol Comput. CEC00 (Cat. No. 00TH8512) (Vol. 1, pp. 84-88). IEEE, 2000,
July.

20. GAMS World, GLOBAL Library, Available online: http://www.gamsworld.org/global/globallib.html
21. Gould NIM, Orban D, Toint P.L. CUTEr, A Constrained and Un-constrained Testing Environment,

Revisited, Available online: http://cuter.rl.ac.uk/cuter-www/problems.html
22. GO Test Problems, Available online: http://www-optima.amp.i.kyoto-

u.ac.jp/member/student/hedar/Hedar files/TestGO.htm
23. Jamil M, Yang XS. A literature survey of benchmark functions for global optimisation problems. Intern

J Math Model Num Optim.2013; 4(2): 150–194.
24. Sharma G. The Human Genome Project and its promise. J Indian College Cardiol. 2012; 2(1):1–3.
25. Li W. On parameters of the human genome. J Theor Biol. 2011; 288:92–104.

12

P
os

te
d

on
A

u
th

or
ea

6
M

ay
20

20
—

C
C

B
Y

4.
0

—
h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
58

87
91

84
.4

71
74

20
2

—
T

h
is

a
p
re

p
ri

n
t

an
d

h
as

n
ot

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

at
a

m
ay

b
e

p
re

li
m

in
ar

y.

13

P
os

te
d

on
A

u
th

or
ea

6
M

ay
20

20
—

C
C

B
Y

4.
0

—
h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
58

87
91

84
.4

71
74

20
2

—
T

h
is

a
p
re

p
ri

n
t

an
d

h
as

n
ot

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

at
a

m
ay

b
e

p
re

li
m

in
ar

y.

14

P
os

te
d

on
A

u
th

or
ea

6
M

ay
20

20
—

C
C

B
Y

4.
0

—
h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
58

87
91

84
.4

71
74

20
2

—
T

h
is

a
p
re

p
ri

n
t

an
d

h
as

n
ot

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

at
a

m
ay

b
e

p
re

li
m

in
ar

y.

15

