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Abstract

The relative roles of rivers and refugia in shaping the high levels of species diversity in tropical rainforests has been widely de-
bated for decades. Only recently has it become possible to take an integrative approach to answer these questions with genomic
sequencing and paleo-species distribution modeling. Here, we tested the predictions of the classic river, refuge, and river-refuge
hypotheses on diversification in the arboreal West and Central African snake genus Toxicodryas. We used dated phylogeographic
inferences, population clustering analyses, machine learning-based demographic model selection, species paleo-distribution range
estimates, and climate stability modeling to conduct a comprehensive phylogenomic and historical demographic analysis of this
genus. Our results revealed significant population genetic structure within both Toxicodryas species, corresponding geograph-
ically to river barriers, and divergence times ranging from the mid to late Miocene. Our demographic and migration analyses
supported our interpretation that rivers have represented strong barriers to gene flow among populations since their divergence.
Additionally, we found no support for a major contraction of suitable habitat during the last glacial maximum, allowing us to
reject both the refuge and river-refuge hypotheses in favor of the river barrier hypothesis. This study highlights the complexity
of diversification dynamics in the African tropics and the advantage of integrative approaches to studying speciation in tropical
regions.

Key words

Phylogenomics, Historical Demography, Machine Learning, Paleo-distributions, Toxicodryas

1. INTRODUCTION

For more than two hundred years, scientists have pondered the most pervasive pattern in biogeography,
the latitudinal diversity gradient, a striking pattern of increasing species diversity from the poles toward
the equator (Allen & Gillooly, 2006; Darlington, 1957; Darwin, 1859; Hutchinson, 1959; Jablonski, Roy, &
Valentine, 2006; Pianka, 1966; Ricklefs & Schluter, 1993; Rohde, 1992; Rosenzweig, 1995; Wallace, 1878).
Potential explanations of this pattern have been provided from diverse perspectives, including that tropical
regions have a wider array of niches (Buckley et al., 2010; Lamanna et al., 2014; Stevens, 2011), higher
primary productivity (Hawkins, Porter, Diniz-Filho, & Alexandre, 2003; Jetz & Fine, 2012; Whittaker,
Nogués-Bravo, & Araujo, 2007), higher environmental heterogeneity (Janzen, 1967; Stein, Gerstner, & Kreft,
2014; Stevens, 1989), greater land area (Fine & Ree, 2006; Rosenzweig, 1995; Terborgh, 1973), and higher
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climatic stability (Harrison & Noss, 2017; Hawkins, Diniz-Filho, Jaramillo, & Soeller, 2007). In more recent
studies of historical tropical biogeography, researchers have focused on speciation processes in major tropical
rainforests to explain their high biodiversity (e.g. Cardillo, Orme & Owens, 2005; Jablonski et al., 2006;
Ricklefs, 2006; Smith et al., 2017; Weir & Schluter, 2007; Wiens & Donoghue, 2004; Wiens, Sukumaran,
Pyron, & Brown, 2009).

Three major allopatric diversification mechanisms have been proposed in the classical literature to explain
species diversity in the Amazon: the “river hypothesis” in which species and populations diverged across river
barriers (Ayres & Clutton-Brock, 1992; Bates, 1863; Hershkovitz, 1977; Mayr, 1942; Sick, 1967; Wallace,
1853); the “refuge hypothesis” in which forests fragmented during Earth’s cold or dry climate cycles (i.e.
the Pleistocene glaciation cycles), causing isolation and divergence in small forest patches (Haffer, 1969,
1974, 1982; Prance, 1982; Vanzolini, 1973; Vanzolini & Williams, 1970); and an amalgamate “river-refuge
hypothesis” in which speciation was promoted by a combination of river barriers and climate driven vegetation
changes (Ayres & Clutton-Brock, 1992; Haffer 1992, 1993). These hypotheses have been widely used in the
study of Neotropical biodiversity and the mechanisms of its production (e.g. Gascon et al., 2000; Haffer, 2008;
Patton & Silva, 2005; Richardson, Pennington, Pennington, & Hollingsworth, 2001; Weir, 2006). However,
because the early scientific focus was primarily on the Amazon (Amorim, 1991; Cracraft, 1985; DeMenocal,
2004; Haffer, 1969, 1997; Plana, 2004; but see Fjeldsa, 1994; Mayr & O’Hara, 1986), and given political
instability in tropical Africa (Greenbaum, 2017; Siddig, 2019; Tolley et al. 2016), rigorous testing of the
predictions stemming from these hypotheses has been neglected for the West and Central African rainforests
until only recently.

Based on pollen core records (Brenac, 1988; Bonnefille & Riollet, 1988; Girese, Maley, & Brenac, 1994;
Maley, 1987, 1989, 1991; Maley & Brenac, 1987; Maley & Livingstone, 1983; Sowunmi, 1991) and species
distribution data (Colyn, 1987, 1991; Rietkerk, Ketner, & De Wilde, 1995; Richards, 1963; Sosef, 1991),
Maley (1996) proposed several rainforest refugia for sub-Saharan Africa that are still widely used today
(e.g. Bell et al., 2017; Hughes, Kusamba, Behangana, & Greenbaum, 2017; Huntley, Castellanos, Musher, &
Voelker, 2019; Jongsma et al., 2018; Larson, Castro, Behangana, & Greenbaum, 2016; Penner, Wegmann,
Hillers, Schmidt & Rodel, 2011, Portik et al. 2017; Fig. 1). Many of these hypothesized refugia are located
in highland areas (e.g., the Cameroon Volcanic Line and the Albertine Rift), however, a major fluvial refuge,
located in the gallery forests around the Congo River, has been supported by pollen core data (Maley, 1996),
and distributional patterns of multiple bird (Huntley, Harvey, Pavia, Boano, & Voelker, 2018; Levinsky et al.,
2013), mammal (Colyn, Gautier-Hion, & Verheyen, 1991; Levinsky et al., 2013) and plant taxa (Robbrecht,
1996).

Major river barriers in West and Central Africa include the Volta, the Sanaga, the Ogooue, the Congo, the
Niger and the Cross Rivers (Fig. 1). The exact ages of many of these rivers are unknown but are generally
estimated to date back to the Late Mesozoic to the Early Cenozoic (80–35 mya; Goudie, 2005; Stankiewicz &
de Wit, 2006). However, while the Congo basin is quite old (Flugel, Eckardt, & Cotterill, 2015; Stankiewicz
& de Wit, 2006), the present course of the Congo River appears to be much younger, dating to the mid to
late Miocene and corresponding to the uplift of the East African Rift (Flugel, et al., 2015; Stankiewicz & de
Wit, 2006).

Numerous phylogeographic studies have supported the importance of rivers, refugia, or both as drivers of
diversification across disparate plant and animal species. Rivers alone have been shown to be important
barriers for some species of primates (Mitchell et al., 2015; Telfer et al., 2003), shrews (Jacquet et al., 2015),
and frogs (Charles et al., 2018; Penner et al. 2011; Penner, Augustin & Rodel, 2019; Wieczorek, Drews
& Channing, 2000; Zimkus, Hillers & Rodel, 2010), but do not appear to represent an important barrier
for many plant species (Dauby et al., 2014; Debout, Doucet, & Hardy, 2011; Hardy et al., 2013; Ley et
al., 2014; Lowe, Harris, Dormontt, & Dawson, 2010). Refugia are suggested to have played an important
role in the diversification of rodents (Bohoussou et al., 2015; Nicolas et al., 2011; Nicolas, Missoup, Colyn,
Cruaud, & Denys, 2012), primates (Clifford et al., 2004; Haus et al., 2013; Tosi, 2008), frogs (Bell et al.,
2017; Jongsma et al., 2018), lizards (Allen, Tapondjou, Greenbaum, Welton, & Bauer, 2019; Leache et al.,
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2017), birds (Fjeldsa & Bowie, 2008), pangolins (Gaubert et al., 2016), and rainforest plants (Born et al.,
2011; Budde, Gonzalez-Martinez, Hardy, & Heuertz, 2013; Dainou et al., 2010; Dauby, Duminil, Heuertz, &
Hardy, 2010; Duminil et al., 2015; Faye et al., 2016; Gomez et al., 2009; Hardy et al., 2013; Ley et al., 2014;
Ley, Heuertz, & Hardy, 2016; Lowe et al., 2010). In some cases, divergence patterns match both refugial and
riverine predictions (Anthony et al., 2007; Barej et al., 2011; Bohoussou et al., 2015; Gonder et al., 2011;
Jacquet et al., 2014; Jongsma et al., 2018; Leache et al., 2019; Leache & Fujita, 2010; Marks, 2010; Portik et
al., 2017), suggesting that both may have played roles simultaneously—or in combination—in evolutionary
diversification. However, because of the spatial overlap of refugia with montane and riverine systems (Hofer,
Bersier, & Borcard, 1999, 2000), and the sparse pollen core and fossil records for the tropics (Colinvaux,
De Oliveira, Moreno, Miller, & Bush, 1996; Maley & Brenac, 1998), distinguishing between these three
hypotheses has been difficult, especially when relying on phylogeographic data alone.

The three major allopatric diversification hypotheses make the following predictions regarding species diversi-
fication patterns in tropical African forests (1) river hypothesis: boundaries between population distributions
should correspond to riverine barriers and the ages of populations should be relatively old, corresponding to
the ages of the rivers; (2) refuge hypothesis: population distributions should be concordant with locations
of hypothesized rainforest refugia during cold, dry periods and populations are predicted to be relatively
young, possibly corresponding to the Pleistocene glaciation cycles; (3) river-refugia hypothesis: population
distributions should be correlated with the locations of rainforest refugia and bounded by rivers barriers, or
will have been confined to refugial locations and additionally subdivided by rivers. Finally, the timing of
population splits should correspond to ages of rivers but would be expected to show patterns of expansion
and contraction dating to the Pleistocene.

In this study, we use the snake genus Toxicodryas as a model system to test the predictions of these hypothe-
ses. The genusToxicodryas consists of two large, rear-fanged, venomous West and Central African species,
T. blandingii and T. pulverulenta. The taxonomic placement of this genus is uncertain. They were originally
placed in the Asian genus Boiga (Schmidt, 1923), and some authors still classify them as such, but recent
phylogenetic analyses recover them as the sister genus to the African egg eating snakes, Dasypeltis , albeit
with weak support (Pyron et al., 2013). Both species in this genus are primarily arboreal, feeding mainly
on birds, bats, frogs and chameleons (Akani, Barieenee, & Luiselli, 1998; Chippaux & Jackson, 2019; Nagy
et al., 2011; Spawls, Howell, Hinkel, & Menegon, 2018). Because of their general arboreality, these species
are predicted to have distributions strongly correlated with forest distribution. In addition, Toxicodryas is
widely distributed within the Congo River fluvial system and broadly across West and Central Africa, mak-
ing this genus a suitable system for testing the competing predictions of the river, refugia and river-refugia
hypotheses.

Recent advances in paleo-climate modeling and genome-scale DNA sequencing have opened new avenues to
testing classic hypotheses of tropical rainforest speciation (Bell et al., 2017; Leache et al., 2019; Portik et
al., 2017). In this study, we integrate dated phylogeographic inference, population structure analyses, and
machine learning-based demographic modeling to identify the timing of divergence as well as the location and
permeability of past and present dispersal barriers. These genetic data are combined with paleo-distribution
and climate stability modeling to determine the congruence of historical distributions with the refugial and
river-refugial hypotheses. Our results demonstrate that, although population distributions alone could be
congruent with any of the three hypotheses, diversification times predate the Pleistocene, a finding that
aligns with predictions of the river-barrier hypothesis. Historical demographic analyses support models of no
migration among populations since the time of divergence, and migration analyses suggest that the western
Congo River represents one of the strongest barriers to recent dispersal. Species paleo-distribution and
climate stability modelling show no suggestion of suitable habitat contraction during or since the Pleistocene,
allowing us to soundly reject the predictions of refugia hypotheses in favor of the prevailing role of riverine
barriers in shaping, structuring, and maintaining diversity in this generally arboreal, forest-associated group
of endemic African snakes.

2. MATERIALS AND METHODS

3
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2.1 Sampling

We obtained 20 specimens of Toxicodryas (seven T. blandingii and 13 T. pulverulenta ) through fieldwork
and from various museums (see Table S1). Sampling was representative of the known range of each species
throughout the upper and lower Guinean forest blocks of West and Central Africa including the countries of
Guinea, Liberia, Ghana, Cameroon, Gabon, and Democratic Republic of the Congo (DRC). Museum catalog
numbers, GenBank accession numbers, and locality data for each specimen are presented in Table S1.

2.2 Genetic data collection, bioinformatic processing, and locus assembly

Tissue samples were preserved in 95% ethanol or RNAlater? (Sigma-Aldrich) and extracted using the
Maxwell RSC system (Promega). The nuclear gene c-mos and the mitochondrial gene cytochrome b(cyt
b ) were PCR-amplified for each individual using standard primers (c-mos: S67, S68; Lawson, Slowinski,
Crother, & Burbrink, 2005; cyt b : L4910B, H15720; Burbrink, Lawson, & Slowinski, 2000) and sequenced on
an ABI 3730 capillary electrophoresis system. Electropherograms were edited manually in Geneious v5.6.7
(http://www.geneious.com, Kearse et al., 2012) and resulting sequences were aligned in MAFFT v.5 with
default parameters (Katoh & Kuma, 2002).

We also sequenced genome-wide anonymous nuclear markers for each individual following a modified version
of the ddRADseq protocol of Peterson, Weber, Kay, Fisher, and Hoekstra (2012). For each individual, a total
of 300–500 ng of genomic DNA was double digested using the restriction enzymes Sbf I (restriction site 5’-
CCTGCAGG-3’) andMsp I (restriction site 5’-CCGG-3’). The resulting double digestion products were then
bead-cleaned with AmpureXP beads (Agencourt) and individually barcoded using custom oligonucleotide
adapters. Pooled samples were size-selected to a mean insert length of 541 base pairs (bp) (487–595 bp
range) with internal standards with a Pippin Prep? (Sage Science, Beverly, MA). Resulting post-ligation
products were amplified for eight cycles with a high-fidelity polymerase (Phusion?, New England Biolabs).
An Agilent TapeStation was used to determine the final fragment size distribution and concentration of each
pool. Library pools were combined in equimolar amounts for sequencing on one Illumina HiSeqX lane (with
a 10% Phi X spike-in and 150 bp paired-end reads).

Illumina reads from the ddRAD libraries were processed using STACKS v. 2.4 (Catchen, Hohenlohe,
Bassham, Amores, & Cresko, 2013). Because the ddRAD protocol generates strand-specific libraries, prior
to read filtering and assembly, we used a read-stitching approach (Hime, Briggler, Reece, & Weisrock, 2019)
to join the first read from an Illumina read pair with the reverse complement of the second, recapitulating the
original orientation of fragments in the genome. Stitched reads were quality-filtered and demultiplexed by
individual with the process_radtags function in STACKS with the following parameters: demultiplex each
library by in-line barcode, check for both restriction enzyme cut sites, remove any read with an uncalled
base, rescue barcodes and RAD-Tags, and discard any read with average Phred quality score < 20 over
sliding windows of 15% of the total read length. Next, we used STACKS to de novo assemble filtered and
stitched Illumina read pairs.

We aimed to produce three separate ddRAD data sets, including one forT. blandingii , one for T. pulveru-
lenta , and a combined data set comprising both species. Because the optimal de novoassembly of ddRADseq
data can vary widely across taxa (Paris, Stevens, & Catchen, 2017; Shafer et al., 2017), we tested a range
of assembly parameters to optimize the recovery of putatively single-copy orthologous loci. Final assembly
parameters were selected based on the methods laid out in Paris et al. (2017). According to their recom-
mendations, in USTACKS, we kept m (the minimum number of reads needed to form a stack) at 3 while
in CSTACKS, we varied M (the number of mismatches allowed during loci formation) and n (the number
of mismatches allowed during catalog formation) until we identified the parameters at which the maximum
number of polymorphic loci were available across 80% (r = 0.8) of the population. For our data, this was
found to be M = 5 and n = 15. Further parameters were tested in POPULATIONS separately for each
species and for the genus as a whole in order to balance missing data and number of polymorphic loci.
WithinT. blandingii and T. pulverulenta , the percent missing data was low (5% and 7.3% missing data
respectively) and no further processing was needed, and r = 0.8 was used. Because of dissimilarity between
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the two species causing high levels of missing data in the combined dataset, further restrictions were imple-
mented. For the genus-wide data set, we set r = 0.5 and p = 4 [p is the minimum number of populations in
which a locus must be present (here 4/5)]. This approach increased the number of informative loci, but also
the amount of missing data. For each of our three separate data sets, we generated a data set comprising
only a single random SNP per locus (for population clustering analyses and demographic modeling), and
another data set comprising full-length sequences for all loci (for use in phylogenetic reconstruction).

2.3 Assessing genetic structure

We used multivariate, Bayesian, and admixture-based analyses to assess population structure. In all analyses,
clustering algorithms were run on three data sets separately for comparison (T. blandingii ,T. pulverulenta ,
and both species combined [genusToxicodryas ]). A discriminant analysis of principal components (DAPC)
was run using Adegenet v. 2.1.1 (Jombart & Ahmed, 2011). This approach uses discriminant functions to
maximize variation among clusters and minimize variation within clusters. The best-clustering scheme was
chosen based on Bayesian information criterion (BIC) scores. Numbers of clusters (K) ranging from 1–10
were evaluated and a discriminant function analysis of principal components (DAPC) was performed based
on the number of suggested clusters. Ancestry proportions of all individuals were inferred using LEA v.
1.6.0 (Frichot & Francois, 2015) through the Bioconductor v. 3.4 package. The sNMF function was used
to assess K values from 1–10, with 20 replicates, estimate individual admixture coefficients, and select the
value of K that minimized cross entropy (Francois, 2016; Frichot, Mathieu, Trouillon, Bouchard, & Francois,
2014). Population structure and admixture were also tested using the Bayesian method STRUCTURE v.
2.3.4 (Falush, Stephens, & Pritchard, 2003; Pritchard, Stephens, & Donnelly, 2000). Each data set was
evaluated for K=1–10 with 10 runs per K and a MCMC burn-in of 10,000 steps followed by 100,000 steps
(Porras-Hurtado et al., 2013). Results were evaluated using the Evanno method (Evanno, 2005) and plotted
through the R package pophelper v. 2.3.0 (Francis, 2017).

2.4 Phylogenetic analyses

We conducted a Bayesian time calibrated analysis on our Sanger data set (c-mos and cyt b ) in Beast v.
2.5.2 (Bouckaert et al., 2019). We used a relaxed log-normal clock and a Yule tree prior assuming a constant
lineage birth rate. The species Farancia erytrogramma ,Micrelaps muelleri , and Contia longicaudae were
used as outgroups to allow the use of two fossils for calibration, one at the Elapoidea + Colubridae node
(minimum age: 30.9 Mya), and one at theHeterodon + Farancia node (minimum age: 12.08 Mya), with fossil
ages and placement based on Head, Mahlow, and Muller (2016). Two runs of 100,000,000 generations were
conducted and logged every 10,000 generations. Convergence was assessed using Tracer v. 1.7 (Rambaut,
Drummond, Xie, Baele, & Suchard, 2018). A burn-in of 10% was used to create a maximum clade credibility
tree. Node ages are based on median tree heights.

We analyzed our SNP data set, including all samples of both species ofToxicodryas , using both species-tree
summary quartet and maximum likelihood phylogenetic methods. The quartet method was implemented
through SVDquartets (Chifman & Kubatko, 2014) in PAUP* v. 4.1a166 (Swofford, 2003). We sampled all
possible quartets and assessed support using 100 nonparametric bootstraps and species tree topology was
summarized with DendroPy v. 4.4.0 (Sukumaran & Holder, 2010). We ran a maximum likelihood analysis
of our genus-wide SNP data set in IQtree v. 1.6.12 (Nguyen, Schmidt, von Haeseler, & Minh, 2014) using
10,000 ultrafast bootstraps (Hoang et al., 2018) and the ModelFinder function to choose the best substitution
model (Kalyaanamoorthy, Minh, Wong, von Haeseler, & Jermiin, 2017).

2.5 Contemporary migration and genetic diversity

We visualized spatial patterns of gene flow and genetic diversity in each of our three data sets using EEMS
(Estimated Effective Migration Surfaces), an approach that uses a population genetic model to compare
effective migration rates to expected genetic dissimilarity in order to identify regions where genetic similarity
decays more quickly than expected under a model of isolation-by-distance (Petkova, Novembre, & Stephens,
2016). We converted our filtered stacks output to the correct bed filetype using PLINK (Chang et al., 2015),
and created a dissimilarity matrix using the BED2DIFFS program in the EEMS package (Petkova et al.,
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2016). The outer coordinate file was generated in QGIS v. 3.4 (QGIS Development Team, 2020). We ran the
RUNEEMS_SNPS script under several deme sizes (400, 600 and 1000). For each data set, each deme was
run for three independent analyses with an MCMC length of 2,000,000 generations, a burn-in of 1,000,000
generations and a thinning interval of 9999 (Petkova et al., 2016). The results were combined, checked for
convergence through a visual examination of the trace files, and plotted using the REEMSPLOTS R package
(Petkova et al., 2016).

2.6 Demographic modeling and analysis of gene flow

To test for present day migration and historical gene flow between our populations, we used the R package
delimitR (Smith & Carstens, 2020; https://github.com/meganlsmith/delimitR). This program uses a binned
multidimensional folded site frequency spectrum (bSFS; Smith, Ruffley, Tank, Sullivan, & Carstens, 2017)
and a random forest machine learning algorithm to compare speciation models such as no divergence, di-
vergence with and without gene flow, and divergence with secondary contact (Smith & Carstens, 2020). A
bSFS was used because it stores the observed frequencies of the minor alleles for multiple populations and
bins them to avoid inference problems associated with sampling too few segregating sites (Smith et al., 2017;
Terhost & Song, 2015). DelimitR was chosen over more traditional multi-species coalescent methods because
of its ability to take historical and current gene flow into account (Leache, Harris, Rannala, & Yang, 2014;
Smith & Carstens, 2020). Demographic histories are simulated using the multi-species coalescent model
implemented through fastsimcoal2 (Excoffier, Dupanloup, Huerta-Sánchez, Sousa, & Foll, 2013) under a
user-specified guide tree and set of priors on divergence times, population sizes, and migration rates. The
random forest classifier then creates a user-defined number of decision trees from a subset of the prior. Each
decision tree compares the empirical bSFS to the SFS of each simulated speciation model and votes for the
most similar model. The demographic model with the largest number of votes is chosen as the best model.
Out-of-bag error rates are used to assess the power of the random forest classifier. The posterior probability
of the selected model is then calculated by regressing against the out-of-the-bag error rates following Pudlo
et al. (2015).

We created folded multi-dimensional site frequency spectrums for the twoT. blandingii clades and the two
Central African T. pulverulenta clades using easySFS (https://github.com/isaacovercast/easySFS), a wrap-
per for [?]a[?]i (Gutenkunst, Hernandez, Williamson, & Bustamante, 2009). The West African T. pulveru-
lenta clade was not included because of the low sample size available for this lineage. We simulated 100,000
data sets under four models: no divergence (Model 1), divergence without gene flow (Model 2), divergence
with secondary contact (Model 3), and divergence with gene flow (Model 4). Priors for both models were
drawn from uniform distributions for population size: 10000 – 1000000 haploid individuals (twice the number
of estimated diploid individuals), divergence time: 20000 –2000000 generations, migration rate: 0.000005–
0.005 corresponding to 0.05–5 migrants per generation. We then coarsened our empirical site frequency
spectra to 10 bins each. Our out-of-bag error rates were calculated, and 500 random forest classifiers were
simulated using 100,000 pseudo-observed data sets for each model. A confusion matrix was calculated to
determine how often the correct model was selected and posterior probability for the ”best” model was
estimated for each species.

2.7 Species distribution modeling

Occurrence data for each species was obtained from the specimens used in this study, “expert” identified
individual occurrences from GBIF, and research grade locality records from iNaturalist (www.inaturalist.org).
This resulted in a total of 43 T. blandingii localities and 30T. pulverulenta localities (Fig. S1). Duplicate
records were removed, and points were thinned within a distance of 10-kilometers using the spThin package
(Aiello-Lammens, Boria, Radosavljevic, Vilela, & Anderson, 2015) in R v. 3.4.4 (R Core Team, 2018). A
subset of points from each data set was set aside for model calibration (75%) and internal testing (25%)
following Cobos, Peterson, Barve, and Osorio-Olvera (2019).

Environmental data were obtained from the WorldClim database v. 1.4 (Hijmans, Cameron, Parra, Jones, &
Jarvis, 2005). Fifteen of the 19 bioclim variables were downloaded at a 2.5-minute resolution. We excluded
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bio8, bio9, bio18, and bio19 which are known to create artifacts in distribution models (Escobar, Lira-
Noriega, Medina-Vogel, & Peterson, 2014). The same 15 variables were used for the Last Glacial Maximum
(LGM) under three general circulation models (GCMs): CCSM4, MIROC-ESM, and MPI-ESM-P. In order
to reduce spatial autocorrelation, principal component analyses (PCAs) were performed on present bioclim
variables and projected to the LGM for the extent of sub-Saharan Africa.

Model calibration areas were defined as a 1000-kilometer buffer around occurrence points for each species.
Model calibration, creation, projection, and evaluation were done using the R package kuenm (Cobos et al.,
2019). In order to calibrate our models, we created 1479 candidate models for each species by combining
three sets of environmental predictors (PCAs 1–6, 1–5, 1–4), 17 possible regularization multipliers (0.1–1.0
at intervals of 0.1, 2–6 at intervals of 1, and 8 and 10), and all combinations of five feature classes (linear =
l, quadratic = q, product = p, threshold = t, and hinge = h; Cobos et al., 2019).

Candidate models were run in Maxent (Phillips, Anderson, & Schapire, 2006) and chosen based on significant
partial ROC scores (Peterson, Papes, & Soberon, 2008), omission rates of E [?] 5% (Anderson, Lew, &
Peterson, 2003), and AICc scores of [?] 2 to minimize model complexity (Warren & Seifert, 2011). These
models determined the parameter set used for final model creation.

Final models were created for each species using the full set of occurrence records and the parameters chosen
during model calibration. Models were run in Maxent with ten bootstrap replicates and logistic outputs.
After models were run in the present, they were projected to the LGM and mid-Holocene for the three GCMs.
The mobility-oriented parity (MOP) index was used to test for model extrapolation (Soberon & Peterson,
2005). Models were visualized in QGIS 3.4 and thresholded to 5% to create presence-absence maps. Models
from each time period were summed to estimate potential LGM and mid-Holocene distributions as well as
continuous stability maps (Devitt, Devitt, Hollingsworth, McGuire, & Moritz, 2013; Yannic et al., 2014).

3. RESULTS

3.1 Genetic data collection, bioinformatic processing, and locus assembly

Our concatenated c-mos and cyt b data set (Sanger data set hereafter) consisted of 1237 bp, including indels.
Both genes were represented in all samples with the exception of c-mos for the outgroupContia longicaudae
. After filtering (see Methods, above), our genus-level ddRAD data set consisted of 2848 loci with 20.7%
missing data (here defined as proportion of missing loci across all individuals), and an effective mean per-
sample depth of coverage of 78.7x ± 13.6x. Our T. blandingii data set consisted of 7231 loci with 5.0%
missing data, and an effective mean per-sample depth of coverage of 83.6x ± 12.0x. Our T. pulverulenta
data set consisted of 4471 loci with 7.3% missing data, and an effective per-sample mean depth of coverage
of 77.9x ± 14.6x.

3.2 Phylogenetic structure and divergence dating

Broad-scale phylogenetic relationships estimated in analyses of our Sanger and SNP data sets were identical
in topology, with strongly supported internal nodes throughout (Fig. 2; Fig. S2). Our two-locus Sanger tree
and our 2848-locus ddRAD SNP trees both supported two divergent lineages of T. blandingii , in West and
Central Africa, respectively. These same analyses revealed three divergent lineages ofT. pulverulenta , one
from West Africa and two in Central Africa, north and south of the Congo River (Fig. 3). Fossil-calibrated
divergence dating suggests that T. blandingii and T. pulverulenta diverged in the early to mid-Miocene
(median age 18.3 Mya). Diversification within each species is estimated to have taken place in the late
Miocene to Pliocene, with the two clades in T. blandingii diverging around 8.6 Mya, the West African clade
of T. pulverulenta diverging around 7.0 Mya, and the two Central African clades diverging around 4.1 Mya
(Fig. 2).

3.3 Population structure

A comparison of BIC values from the genus-level DAPC analyses suggested a total of five genetic clusters,
with two populations in T. blandingii and three in T. pulverulenta , matching the clades identified in the
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phylogenetic analyses (Fig. S3). Our admixture-based method, LEA, identified two distinct genetic clusters at
the genus level, corresponding to the two Toxicodryas species, and the same two populations for T. blandingii
and three populations forT. pulverulenta as suggested by DAPC (Fig. 4). A low amount of admixture was
identified in the Cameroonian sample of T. blandingii , and varying levels of admixture were suggested
for the Gabonese samples of T. pulverulenta (Fig. 4). The population assignment of individuals between
the two clustering methods was identical; however, admixture between populations was not detected by
DAPC. Similarly, STRUCTURE suggested two populations at the genus level, and two in T. blandingii , but
combined the Central African clades and suggested two populations, instead of three, for T. pulverulenta .
Three populations were supported as the second highest ΔK and showed identical admixture proportions to
those from LEA. We used five populations for our remaining analyses because multivariate-based analyses
such as LEA and DAPC do not make assumptions about Hardy-Weinberg equilibrium and may be preferable
over Bayesian methods such as STRUCTURE when sample sizes are small or uneven (Puechmaille, 2016).

3.4 Contemporary migration and genetic diversity

Through our EEMS analyses we identified several present-day barriers to migration, as well as areas of higher-
or lower-than-expected genetic diversity. The Dahomey Gap and the western Congo River were supported
as major barriers to dispersal when we simultaneously analyzed all data for both species of Toxicodryas (Fig.
5a). Areas of lower-than-expected diversity were suggested for the coast of Central Africa and higher levels
of West African diversity in in the Upper Guinean rainforest (Fig. 5b). We also ran EEMS individually for
T. blandingii and T. pulverulenta , but these analyses are more difficult to interpret because of the small
sample sizes for each individual species (Fig. S4).

3.5 Demographic modeling and analysis of gene flow

Using machine learning-based demographic model selection, we identified divergence without gene flow as
the best model for T. blandingiiwith a posterior probability of 0.68, and divergence with gene flow forT.
pulverulenta with a posterior probability of 0.63 (Fig. 6). For both species, models representing no divergence
and divergence with secondary contact received very low support (Tables S2 and S3). The out-of-bag error
rate for T. blandingii was 17.3% and 22.8% forT. pulverulenta . Our values for posterior probability and
out-of-bag error rate are similar to those obtained by Smith & Carstens (2020). The confusion matrix and
number of votes per model can be found in Tables S2 and S3.

3.6 Distribution modeling

Species distribution modeling suggested widely overlapping ranges forT. blandingii and T. pulverulenta ,
with both species documented from both rainforest and woodland habitats (Fig. 7). Paleodistribution
models for the LGM suggested a slight northern and southern contraction of suitable habitat for the genus
in West and Central Africa. Toxicodryas pulverulenta showed evidence of a slight southward range expansion
into Angola, while the range ofT. blandingii remained stable (Fig. 7a). The mid-Holocene distribution was
highly similar to the present-day distribution for all data sets (Fig. 7b).

Continuous climate stability maps estimating the areas of persistent suitable habitat from the LGM to
the present suggest that the core distribution of each species has remained stable through time (Fig. 7c).
Instability in suitable habitat is only found on the edges of the species range, with the greatest potential
for distribution change in southern Central Africa. No northward range expansion past the present day was
estimated at any time scale in Central Africa, but lesser degrees of northward expansion may have been
possible in West Africa.

4. DISCUSSION

The relative roles of rivers and refugia in shaping the high levels of species diversity in tropical rainforests has
been widely debated for decades (e.g. Amorim, 1991; Colinvaux, Irion, Räsänen, Bush, & De Mello, 2001;
DeMenocal, 2004; Haffer, 1969, 1997; Mayr & O’Hara, 1986; Vitorino, Lima-Ribeiro, Terribile, & Collevatti,
2016). Only recently has it become possible to take an integrative approach to answering these questions
with genomic sequencing and paleo-species distribution modeling (Portik et al., 2017; Leaché et al., 2019).
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Here we tested alternate predictions of the classic river, refuge, and river-refuge hypotheses for terrestrial
faunal diversification using a novel study system: the arboreal African snake genus Toxicodryas . We found
strong support for the river hypothesis over the refuge and river-refuge hypotheses based on the ages and
locations of the populations as well as a lack of support for suitable habitat contraction during the last
glacial maximum.

4.1 Species diversification

This study represents the first phylogenetic analysis of the genusToxicodryas . Phylogenetic analyses of
our two-locus Sanger data set and 2848-locus RADseq SNP data set reveal two deeply divergent, strongly
supported lineages in T. blandingii and three inT. pulverulenta (Fig. 2; Fig. S2). Although today, the two
recognized species are broadly sympatric, clades within each species are generally situated allopatrically
across river barriers. The two clades within T. blandingii are separated either by the Sanaga River in
Cameroon or the Congo River in the DRC. Both rivers have frequently been interpreted as population
barriers in other terrestrial vertebrates (Blackburn, 2008; Jongsma et al., 2018; Leaché et al., 2019; Leaché
& Fujita, 2010; Portik et al., 2017), but additional sampling and comparative analyses will be needed to
determine which river played the most deterministic role in shaping genetic structure in this species. Of
the three T. pulverulenta clades, one is distributed in West Africa (albeit with limited sampling) and two
are distributed in Central Africa, separated by the western Congo River. Our population structure analyses
are concordant with phylogenetic analyses supporting five distinct genetic clusters (Fig. 4). Minor levels
of admixture appear to have occurred between the T. pulverulenta clades separated by the western Congo
River, and between the two clades of T. blandingii in the sample collected at the Sanaga River (Fig. 4). In
both species, the Congo River barrier seems to be stronger in the west where the river is wider, and the
current is stronger. In the eastern DRC samples of clades from both species can be found on either side of
this river (Fig. 3)

Divergence time estimates from a time-calibrated phylogeny also fail to reject predictions derived from the
river-barrier hypothesis.Toxicodryas blandingii and T. pulverulenta diverged in the early to mid-Miocene,
and subsequent intraspecific diversification took place in the late Miocene to the Pliocene (Fig. 2). The
Congo River, a barrier in the Central African T. pulverulenta (divergence time: ˜4.1 Mya), and a potential
barrier in T. blandingii (divergence time: ˜8.6 Mya), dates back to the mid-late Miocene (Flügel et al., 2015;
Stankiewicz & de Wit, 2006). The Sanaga River, another potential barrier in T. blandingii , has a poorly
known geological history, but likely dates back to the formation of the Adamawa Plateau in the late Eocene-
early Oligocene (Fagny et al., 2016). Similar mid to late Miocene divergence times have been noted for other
widespread Central and West African taxa including frogs (Bell et al., 2017; Jongsma et al., 2018; Zimkus et
al., 2017), and terrestrial snakes (Portillo et al., 2019), and similar West to Central African distribution splits
have been seen in forest cobras (Wüster et al., 2018), frogs (Leache et al., 2019), lizards (Allen et al., 2019),
and shrews (Jacquet et al., 2015). The Congo river has been a well-known barrier to many species including
primates (Harcourt & Wood, 2012; Mitchell et al., 2015; Telfer et al., 2003), shrews (Jacquet et al., 2015),
and frogs (Charles et al., 2018). However, while the timing and locations of population divergences in this
study correspond with river barriers, the Miocene was also a time of global climatic change characterized by
dramatic cooling and vegetation shifts throughout sub-Saharan Africa (Herbert et al., 2016; Jacobs, 2004;
Menegon et al., 2014). Although most research surrounding the role of refugia in driving diversification has
focused on the dramatic climate oscillations of the Pleistocene, it is likely that refugia are able to form during
any period of climatic change (Haffer, 1997; Hampe & Jump, 2011; Jansson & Dynesius, 2002), but the role
of possible older refugia has received little attention in the literature (Hampe & Jump, 2011).

Migration analyses support the western Congo River and the Dahomey Gap as barriers to gene flow in the
genus Toxicodryas (Fig. 5a). The Dahomey gap is a natural savanna region in West Africa that separates
the upper and lower Guinean rainforests, and which has been previously identified as a dispersal barrier for
arboreal species (e.g. Rödel, Emmrich, Penner, Schmitz, & Barej, 2014; Schunke & Hutterer, 2005). Both
areas also support lower genetic diversity in Toxicodryasthan expected under a pure isolation-by-distance
model (Fig. 5b), emphasizing the biological reality of this barrier for forest-associated, primarily arboreal
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vertebrates despite the fact that both Toxicodryas species have been found in forest patches within the
Dahomey gap. Our demographic analyses further suggest that riverine dispersal barriers between clades
are strong, indicating divergence without gene flow between the two T. blandingii clades and divergence
with minor gene flow across the Congo River in the two Central African T. pulverulenta clades (Fig. 6).
Contemporary gene flow was ruled out with high confidence in both species (Table S3). In light of the
Miocene divergence times and lack of gene flow between these five clades, it is likely that they represent
distinct evolutionary lineages and, thus, surveys of morphological data and analyses of phenotypic variation
are underway to determine if formal taxonomic revision is justified.

4.2 Paleo-distributions and habitat stability

The nature of the intervening habitat surrounding rainforest refugia during the Pleistocene has been widely
debated. Some authors have argued that much of the Central African rainforest was replaced by savannas
(DeMenocal, 2004; Maley, 1996; Maley & Brenac, 1998), while others have emphasized the possibility of more
subtle shifts in forest composition (i.e., from wet to dry forest; Colinvaux et al., 1996, 2001; White, 1981).
Toxicodryas species are generally characterized as arboreal across rainforest and woodland habitats and the
two species exhibit widely overlapping distributions in West and Central Africa (Chippaux & Jackson, 2019).
Our paleo-distribution modeling suggested that no substantial contraction of suitable climate occurred for
either species during the LGM (Fig. 7a), and our habitat stability mapping suggested that core ranges of
both species have remained stable for the past 22,000 years (Fig. 7c). The greatest potential for habitat
expansion in this species appears to be to the south into today’s northern Angola and the southern DRC
(Fig. 7).

Similar paleo-distribution studies on frogs have suggested substantial habitat contraction in Central Africa
during the Pleistocene (Leaché et al., 2019; Portik et al., 2017). In contrast, our inferred widespread habitat
stability in Toxicodryas may be due to the relatively reduced dependence of arboreal snakes on moist habitats,
as reflected by their distribution in both woodland and rainforest. The stability ofToxicodryas habitat through
the Pleistocene supports the hypothesis that rainforest composition shifted to dryer woodlands surrounding
rainforest refugia, instead of a more dramatic shift to strict savannah habitat. Southward shifts in species
suitability may correspond with predicted forest distribution shifts of White (1981), suggesting a replacement
of lowland rainforest with montane forest habitat.

4.3 Integrative species diversification studies

Prior to the availability of genomic data, dated phylogenies, paleo-distribution modeling, and statistical
analyses of historical demography (Carstens & Richards, 2007; Ellegren, 2014; Knowles, 2009; Knowles &
Madison, 2002; Luikart, England, Tallmon, Jordan, & Taberlet, 2003), biogeographers commonly observed
patterns of species distributions from which they attempted to infer mechanisms of diversification (e.g.
Avise, 2000; Templeton, 2001). The majority of rainforest refugial studies were conducted in this descriptive,
pattern-based manner, usually employing only single-locus mitochondrial DNA data sets (e.g. Fjelds̊a &
Lovett, 1997; Haffer, 1969; Mayr & O’Hara, 1986). The pitfalls and lack of power in such approaches have
been discussed elsewhere (e.g., Knowles & Madison, 2002; Provan & Bennett, 2008; Stewart, Lister, Barnes,
& Dalén, 2010), and are not the focus of this study. However, with respect to hypotheses of tropical African
species diversification, it is noteworthy that so many of the concepts and hypotheses surrounding refugia
have only been evaluated by single-locus data sets during the era of mitochondrial gene phylogeography (but
see more recent, multilocus examples in Leaché et al., 2019; Portik et al., 2017).

The complexity of geographic barriers in West and Central Africa, and the association of refugia with areas
of high surface relief or riparian zones (Hofer et al., 1999; 2000; Fig. 1), makes it extremely difficult to
untangle the relative importance of different diversification mechanisms with distribution data alone (Leaché
et al., 2019; Portik et al., 2017). This difficulty is particularly salient in our study system, where distribution
data may have suggested the association of populations with hypothesized refugia around the Congo River,
Gabon, and in West Africa (refugia 9, 5–8, and 1–3 respectively, Figs. 1, 2). Yet, our dated phylogenies
and paleo-distribution models reject the Pleistocene population age and habitat contraction predictions of
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the refugial hypotheses in favor of the river barrier hypothesis. These results highlight the importance of
using an integrative, multidisciplinary approach to statistically distinguish among competing hypotheses to
explain high levels of geographically concentrated species biodiversity. Moving beyond pure pattern-based
inference, a deeper and more nuanced understanding of the production, partitioning, and maintenance of
diversity in complex landscapes may lead to inference of environmental and evolutionary processes that
accumulate terrestrial biodiversity in tropical areas, which coincide in many cases with Global Biodiversity
Conservation Hotspots (Hrdina, & Romportl, 2017; Mittermeier, Myers, & Mittermeier, 2000; Mittermeier,
Turner, Larsen, Brooks, & Gascon, 2011; Myers, 1988) and other imperiled ecosystems of Earth.
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denoted with an asterisk. Node bars represent 95% confidence intervals. RADseq phylogenies showed
identical topologies

Hosted file

image3.emf available at https://authorea.com/users/317799/articles/447907-rivers-not-

refugia-drove-diversification-in-arboreal-sub-saharan-african-snakes

Figure 3. Toxicodryas clade distributions overlaid onto a map of major rivers and hypothesized rainforest
refugia. Clade colors correspond to Figure 2.

Hosted file

image4.emf available at https://authorea.com/users/317799/articles/447907-rivers-not-

refugia-drove-diversification-in-arboreal-sub-saharan-african-snakes

Figure 4. Population structure of the genus Toxicodryas . Top: Bar plot of population structure and mem-
bership probabilities for K=5 analyzed in LEA. Bottom: Geographic representation of population structure
for K=5.
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Figure 5. Posterior means for A) the effective estimated migration surface and B) the effective estimated
diversity surface for all populations of Toxicodryas . In A) blue represents areas of high migration and orange
represents areas of low migration, and in B) blue represents areas of high diversity and orange represents
areas of low diversity. Genetic diversity and migration rates are plotted on a log10 scale. Sample localities
are denoted by black points.
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Figure 6. Four demographic models tested using DelimitR. Model 1: no divergence, Model 2: divergence
without gene flow, Model 3: divergence with secondary contact, and Model 4: divergence with gene flow.
Model 2 was chosen for Toxicodryas blandingii , and Model 4 was chosen for the two Central African clades
of T. pulverulenta .
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Figure 7. Paleo-distribution models showing A) the suitable habitat forToxicodryas during the last glacial
maximum (LGM). The shade of blue represents agreement between global climate models (GCMs) with the
darkest blue indicating agreement between all three GCMs and the lightest blue indicating support from only
one GCM. B) The suitable habitat for Toxicodryas during the mid-Holocene. The shade of green represents
agreement between GCMs with the darkest green indicating agreement between all three GCMs and the
lightest green indicating support from only one GCM. C) The stability of suitable habitat across the LGM,
mid-Holocene, and present, with red indicating high stability and blue indicating low stability.
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