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Abstract

Multiple functional and hard-to-quantify sensorial product attributes that can be satisfied by a large number of cosmetic

ingredients are required in the design of cosmetics. To overcome this challenge, a new optimization-based approach for expediting

cosmetic formulation is presented. It exploits the use of a hierarchy of models in an iterative manner to refine the search for

creating the highest-quality cosmetic product. First, a systematic procedure is proposed for optimization problem formulation,

where the cosmetic formulation problem is defined, design variables are specified, and a set of models for sensorial perception and

desired product properties are identified. Then, a solution strategy that involves iterative model adoption and two numerical

techniques (i.e., generalized disjunctive programming reformulation and model substitution) is applied to improve the efficiency

of solving the optimization problem and to find better solutions. The applicability of the proposed procedure and solution

strategy is illustrated with a perfume formulation example.

Introduction

The chemical industry designs and produces a vast number of chemical products to serve the society. Chem-
ical products are classified as molecular products, formulated products, functional products, and devices.1,2

Among them, formulated products such as cosmetic and paint are formed by mixing selected ingredients in
a formula, which may possess certain microstructures of their own (e.g., powder and emulsion). The formula
(i.e., ingredient selection and composition) has a significant impact on formulated product quality. Thus, the
major aim of formulated product design is to find a formula that exhibits consumer-desired properties.2,3

As a major component of formulated products, cosmetics are applied to the human body for cleansing,
beautifying, promoting attractiveness, or altering appearance. They are sold in many forms. Table 1 lists
the commonly used cosmetic product forms such as cream and gel. The global cosmetic market valued at
$532 billion in 2017 is large, but competitive and dynamic.4 Many cosmetic products exist on the market but
they tend to have short product life. To succeed in this environment, rapid formulation of new and improved
cosmetics is crucial. The quality of cosmetics can be broadly represented by two types of attributes. One is
sensorial attributes (e.g., smell and sight) perceived by five human senses during and after the application
of cosmetics. The other is functional attributes (e.g., stability and safety), which ensures that cosmetics can
be assuredly used with the desired functions. Table 2 lists the relevant sensorial and functional attributes
of four cosmetic products with different product forms. For instance, the senses of how lipstick is felt by
the lips and how the lips look after application are part of the lipstick quality. Meanwhile, lipsticks should
be stable, safe, and not broken in use. It is known that the sensorial quality is the dominant consideration
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for consumers to choose one cosmetic product over another.5,6 Thus, it needs to be explicitly considered in
cosmetic formulation.

[insert Table 1 here] and [insert Table 2 here]

Creating a qualified cosmetic formula with desirable attributes is challenging because there exist a large
number of cosmetic ingredients leading to numerous possible recipes. Many attributes involve complex
physicochemical phenomena, some of which are not yet fully understood. More importantly, it is hard
to quantify or predict consumers’ sensations since they are elusive, subjective, and affected by consumer
status.7 In this case, the use of any single model or tool cannot capture the cosmetic formulation problem
in its totality.8 The design of related personal care products such as shampoo and toothpaste faces similar
issues. Currently, new cosmetics are usually developed by experimental trial-and-error. This is expensive
and time-consuming. The search space is limited and there is no guarantee that an optimal formula is
found.5 For expediting new cosmetic formulation, it is highly desirable to develop an effective model-based
optimization approach to complement the efforts of experienced cosmetic formulators.

Model-based computer-aided mixture/blend design (CAMbD) methods have been applied extensively. The
ingredients are generated using the group contribution (GC) approach. Linear and simple nonlinear mixing
rules are applied to predict mixture properties. The CAMbD methods are usually applied to mixtures with
less than six ingredients such as solvent mixtures9–12 and blended fuels.13–17 This is because much greater
computational effort is needed as the number of ingredients increases.12,13 Since the number of ingredients
in cosmetic products is typically larger than 15 and can be up to 50,18 it is highly desirable to develop
alternative methods for cosmetic formulation.

From a product design perspective, several model-based methods have been proposed and applied to cos-
metics and the highly related personal care products. Omidbakhsh et al.19 built statistical models to design
disinfectant. Disinfection effect is first correlated with ingredient composition and then composition is opti-
mized to design a new disinfectant with maximal disinfection effect. Smith and Ierapetritou20 optimized the
formula of an under-eye cream using regressed polynomial functions that correlate product attributes with
ingredient composition and operating conditions. Bagajewicz et al.21 started with a base-case formula of skin
lotion and optimized its composition for maximum profit in a competitive market. In these studies, cosmetic
formulation is treated as a nonlinear programming problem. Only the composition of pre-selected ingredients
is optimized without considering the selection of other ingredient alternatives. Obviously, a more superior
formula can be easily missed without considering all the available ingredients. Conte et al.3,22 combined
computer-aided modeling with experimental testing to formulate sunscreen spray. Ingredients are selected
using databases, knowledge-base, and GC methods. Kontogeorgis et al.5 extended this integrated modeling-
experimental approach to formulate emulsified products. Zhang et al.23 proposed an integrated framework for
formulated product design considering the optimal identification of ingredients, composition, microstructure,
etc. Arrieta-Escobar et al.24 incorporated heuristics and mixed-integer nonlinear programming (MINLP) to
identify the optimal ingredients and composition of hair conditioner. By integrating different methods and
tools, the above studies can properly select ingredients from a set of candidates with optimized composition.
However, only certain mixture properties (e.g., color and greasiness) related to sensorial attributes have
been considered.5,24 Only recently has machine learning been used to predict sensorial perceptions.25–27

Even less is available on how sensorial satisfaction can be explicitly quantified, modelled, and incorporated
into product formulation.25 By integrating machine learning models, a grey-box optimization problem was
formulated and solved using genetic algorithm (GA) for food product design.25 This method is applied with
simplified property models involving a limited number of equations, because GA is inefficient in handling a
large number of complex constraints that are common in cosmetic formulation problem.23 In addition, GA
cannot guarantee ε-optimality.

To fill this gap, a novel optimization-based approach is developed for the formulation of cosmetics. Figure 1
illustrates the overall methodology. For given consumer needs and a set of potential chemical ingredients, an
MINLP problem is formed by integrating (rigorous and short-cut) mechanistic models, data-driven surrogate
models, and mathematical equations derived from heuristics. The objective is to maximize the sensorial
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perception. Then, a novel solution strategy that involves an iterative adoption of a hierarchy of models and
different numerical techniques is applied to solve the optimization problem efficiently. Then, the optimal
formula can be verified by experiments. The paper is organized as follows. A systematic procedure is first
introduced for problem formulation. Then, the iterative procedure for model adoption and optimization
solution strategy are described. Finally, a perfume example is discussed to illustrate the applicability of the
proposed approach.

[insert Figure 1 here]

Systematic Procedure for Optimization Problem Formulation

Figure 2 shows the 3-step procedure. In Step 1, the cosmetic formulation problem is defined where the
desired product form, product attributes, and product specifications and properties are determined based on
market study and product knowledge. In Step 2, potential ingredient candidates and relevant microstructural
descriptors (if applicable) are generated to specify the design variables. Step 3 identifies a set of mechanistic
models and surrogate models and converts heuristics into mathematical equations. For each step, the sources
of the input are shown on the left and the outputs are on the right. The details are described below.

[insert Figure 2 here]

Step 1: Problem Definition

When a new cosmetic design project is launched, the product type and form such as a facial powder or lipstick
are first decided by the marketing team based on the target market, potential consumers, competing products,
etc. The quality of the new cosmetic product depends on its sensorial and functional attributes. Usually,
the consumer-desired attributes can be specified through interview and survey with potential consumers.
The sensorial perceptions given by a cosmetic are the most essential for its satisfaction and repeated use
by consumers.6 In practice, sensorial perception is assessed through sensorial evaluation. A number of
panelists assess various cosmetic samples using well-defined protocols and their perceptions are quantified
using sensorial ratings. Then, an overall sensorial rating can be obtained to represent the degree of satisfaction
of the cosmetic.7 Note that in addition to perception, other factors such as packaging and price affect
consumer’s purchase decision. These factors are not considered in this work and the objective function is to
maximize the overall sensorial rating (q).

max q (1)

In addition, the functional attributes are also needed to be satisfied. Each cosmetic has its unique functional
attributes. For instance, a hair spray should dry rapidly and perfume should be transparent (Table 2).

The product attributes can be translated into relevant physicochemical properties (e.g., melting point for
lipstick) and product specifications (e.g., sun protection factor for sunscreen product) using engineering know-
how. For the four cosmetics in Table 2, the last column lists various properties related to their sensorial
and functional attributes. How a lipstick is sensed by the lips is affected by its viscosity. The pH of a skin
cream affects its safety. Then, a set of design targets (i.e., lower and upper bounds) on the properties can be
identified based on the engineering know-how and product in-house data. These bounds serve as constraints
in the optimization problem.

PLk ≤ P k ≤ PUk, k ∈ K (2)

where P k is the k -th desired property. K is the set of properties. PLk and PUk are the lower and upper
bounds, respectively. Note that the nomenclature is presented in Supporting Information.

3
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Step 2: Ingredient Candidate Generation

To provide multiple desired attributes, many chemical ingredients are needed. Cosmetic ingredients are
classified into different types based on their functionalities. Table S1 lists the ingredient types that are
widely used in various cosmetics and their functions.7,28 For instance, an abrasive in a facial cleanser is made
up of solid particles used for physically cleaning hard surface such as epidermis. Three types of moisturizers
(i.e., emollient, humectant, and occlusive) can be used to provide hydration effect. Emollient can improve the
skin’s water-oil balance, humectant inhibits water evaporation, and occlusive can form a water-repellent layer
to reduce water loss. For a cosmetic, the needed ingredient types can be identified based on the fundamental
formulation science and the desired product attributes.

For each ingredient type, a set of ingredient candidates can be generated using databases29,30 and computer-
aided tools.14,31 Regarding each of the ingredient types in Table S1, the last column lists two commonly used
ingredient candidates. For instance, lactic acid and triethanolamine are often used as an acidic and alkaline
pH buffers, respectively. With the years of development in the cosmetic industry, hundreds of ingredient
candidates exist for each ingredient type. To reduce the search space, the candidates can be pre-screened
using ingredient screening tools based on cost, regulations, availability, etc. to generate a more organized
pool of ingredient candidates

IA = {IA,1, IA,2, . . . , IA,a}
IB = {IB,1, IB,2, . . . , IB,b}

· · ·
IZ = {IZ,1, IZ,2, . . . , IZ,z}

(3)

where IA, IB ,. . . , IZ are ingredient types.IA,1, IA,2,. . . , IA,a, etc. represent the generated ingredient can-
didates. Here, the subscripts a, b, andz denote the number of candidates in each ingredient type. Each
candidate has different properties (e.g., density, solubility and pH) which can be collected from the litera-
ture, database, and experiment. The selection of ingredients is intuitively a discrete-continuous optimization
problem. Each ingredient candidate can be assigned a binary variable Si to control ingredient selection and
a continuous variable (e.g., volume fraction Vi) to denote its composition. If the i -th candidate is selected,
Si is equal to 1 andVi is constrained by its lower (V Li) and upper (V Ui) bounds. Otherwise, Si and Vi are
equal to 0.∑
i Vi = 1 (4)

V Li • Si ≤ Vi ≤ V Ui • Si,i ∈ {IA,1, IA,2, . . . , IZ,z} (5)

In addition to ingredients, microstructure can affect the properties when certain product forms are used.
Typically, the major microstructural features can be characterized by some geometric descriptors that
can be correlated with the mixture properties by experiment and multi-scale modeling to account for the
microstructure-property relationship.32 The last column of Table 1 lists the relevant microstructure descrip-
tors for various commonly used cosmetic product forms. For example, the oil droplet size affects the viscosity
and texture of a moisturizing lotion in the form of an oil-in-water emulsion.33 The emulsion type and par-
ticle shape can be decided using heuristics.34 Geometric descriptors ms such as particle size are continuous
variables

msL ≤ ms ≤ msU (6)

where msL and msU are the lower and upper bounds, respectively. The microstructure is decided by both
the formulation and manufacturing process design.35
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Step 3. Model Identification

Model for Sensorial Perception

Surrogate model that captures the input-output data is built to predict the sensorial rating. After a surrogate
model is trained, its analytical form can be used for optimization.

q = f
(
VIA,1

, IIA,2
. . . , VIZ,z

,ms
)

(7)

The first task is to collect training data. The input data can be the cosmetic recipes and the microstructures,
namely (VIA,1

, VIA,2
, . . . , VIZ,z

,ms). The output data is the corresponding sensorial rating (q). Here, the
historical data of sensorial evaluations can be utilized. When the historical data is scarce, additional data
sampling is required. By far, many efficient sampling approaches have been used in the cosmetic industry
such as Latin-hypercube sampling, Plackett-Burman, full-fractional, etc. Referring to the “one in ten” rule,
the number of data samples is preferably ten times more than the number of ingredient candidates. The
second task is to build an accurate surrogate model. Currently, multiple types of surrogate models can
be utilized such as linear regression, kriging, artificial neural network (ANN), radial basis function, etc.
Among them, some surrogate models (e.g., random forest) cannot provide available derivative information
while the derivatives of many other surrogate models are symbolically available such as linear regression,
ANN with tansig kernel function, etc.36 Here, a surrogate model with available derivative information is
preferred because solving a discrete-continuous optimization problem with no derivative information is very
challenging. The hyperparameters of the surrogate model structure should be carefully tuned. The heuristics
and experience reported in the literature can be consulted.36,37 Afterward, model accuracy needs to be
validated. The widely used validation methods include K-fold cross validation and holdout method. If the
model is not sufficiently accurate, the type of surrogate model and the hyperparameters should be re-selected.

Models for Target Properties

Three types of models can be applied for predicting the target properties: rigorous mechanistic model, short-
cut model, and surrogate model. Typically, the formulation and application of cosmetics involve various
phenomena (e.g., kinetics, thermodynamics, and transport). For any property, the associated phenomena
should be first identified based on the basic engineering sciences and domain knowledge, followed by the
identification of the relevant mechanistic models. Generally, rigorous models are the most accurate but
more complex and sometimes with unknown parameters. The perfume diffusion model38 and ingredient
percutaneous absorption model39 are examples. Instead of accounting fully the physical phenomena, simple
short-cut model captures the property’s dependence on the most influential factors. Usually, short-cut model
is sufficiently accurate within pre-specified conditions. Note that both rigorous and short-cut models involve
many intermediate variables for describing the relevant phenomenon. The rigorous or short model for k -th
desired property (P k) can be represented as

P k = Gk(IMk
IA,1

, IMk
IA,2

, . . . , IMk
IZ,z

),k ∈ K (8)

IMk
i = IMGk (Vi,ms),i ∈ {IA,1, IA,2, . . . , IZ,z} (9)

where IMm
i denotes the intermediate variable related to the i -th ingredient candidate (e.g., vapor pressure

and activity coefficient). If there are no suitable mechanistic models but data are available, surrogate models
can be adopted,40 although the model validity is often limited to the range of available data. The input data
should be the sampled cosmetic recipes and microstructure. The output data are the target properties. For
the k -th property (P k), its surrogate model is

P k = gk(VIA,1
, IIA,2

. . . , VIZ,z
,ms),k ∈ K (10)

Accordingly, for any desired property, a set of models (rigorous, short-cut, and surrogate) should be identified
for use in the optimization.

5
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The use of heuristics is often inevitable in cosmetic formulation.24,41 The reason is that some phenomena
have not been identified or are poorly understood. For instance, a hydrocolloid thickener with a weak gel
network structure is preferred for use in emulsion-based product to generate thixotropic behavior, although
no formal justification has been given.34 In addition, heuristics can effectively help reduce the search space.
Many heuristics, although not all, can be transformed into mathematical design constraints for use in the
optimization. Table 3 shows the widely used forms of heuristics and the associated equations for formulated
product design. For instance, if the number of ingredients for certain type of ingredient is suggested, an
inequality constraintTL ≤

∑
i Si ≤ TU, i ∈ IX can be generated.

[insert Table 3 here]

Iterative Model Adoption and Optimization Solution Strategy

Figure 3 presents an iterative model adoption framework to generate an optimization problem that can be
solved efficiently. The strategy is to first employ the most accurate rigorous mechanistic model for property
prediction. This is expected to provide a reliable solution. In case a rigorous model is not available, the
relatively simple but less accurate short-cut model can be adopted. The surrogate model is used when there
is no suitable mechanistic model. Through this strategy, the cosmetic formulation problem can be explicitly
expressed as an MINLP optimization problem below.

q = f(VIA,1
, VIA,2

, . . . , VIZ,z
,ms)Sensorial rating (11)

s.t. PLk ≤ P k ≤ PUk, k ∈ K = MM ∪ SM Design target

Pm = Gm(IMm
IA,1

, IMm
IA,2

. . . , IMm
IZ,z

),IMm
i = IMGm(Vi,ms), m ∈MM Mechanistic model

P s = gs(VIA,1
, VIA,2

, . . . , VIZ,z
,ms),s ∈ SM Surrogate model

H
(
SIA,1

, SIA,2
, . . . , SIZ,z

, VIA,1
, VIA,2

, . . . , VIZ,z

)
≤ 0Heuristics in Table 3

msL ≤ ms ≤ msU Design variables

Si ∈ {0, 1}i,
∑
i Vi = 1,V Li • Si ≤ Vi ≤ V Ui • Si,i ∈ {IA,1, IA,2, . . . , IZ,z}

where Pm is the m -th property predicted using a (rigorous or short-cut) mechanistic model. MM is the set
of properties predicted using mechanistic-based models. P s is the s -th target property (P s) predicted using
a surrogate model.SM is the set of properties predicted using surrogate models.

[insert Figure 3 here]

The computational difficulty of the MINLP problem depends on the number of ingredient candidates and
the complexity of the adopted models. A large number of ingredient candidates often create a combinational
problem. Many rigorous models (e.g., thermodynamic and transport phenomena models) involve nonlinear
and nonconvex equations. Along with complex surrogate models (e.g., neural network), the optimization
problem is prone to convergence failure if the problem is directly solved using standard MINLP solvers. Some
of these problems can be handled with advanced algorithms. For instance, Schweidtmann and Mitsos42,43

recently developed and applied an efficient global solver for ANN embedded MINLP problems. Alternatively,
the problem can be resolved by reformulating the optimization problem.44 Two techniques are proposed for
enhancing optimization convergence and finding better solutions (Figure 3). If the problem can be directly
solved, the solution is sent for experimental validation. Otherwise, generalized disjunctive programming
(GDP) can be used because of the need to calculate the multiple intermediate variables in the mechanistic
models. If the GDP problem still cannot be solved or better solutions are needed, the model(s) in use are
replaced with alternative model(s) and repeat the calculations.

6
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GDP reformulation

As can be seen in Eq. 11, even if i -th ingredient candidate is not selected, its intermediate variables
(IMm

i ) must be calculated. Also, forcing Vi to 0 may lead to singularity atVi = 0 for some models (e.g.,
logarithmic function). Thus, when mechanistic models are employed and multiple intermediate variables are
calculated through complex equations, the redundant constraints and singularities can lead to convergence
failure. Similar to the tray selection problem in distillation column design,44cosmetic formulation problem
can be formulated using GDP. As an alternative way to program discrete-continuous problem, GDP is a
logic-based method containing Boolean and continuous variables. Constraints are expressed as disjunctions,
algebraic equations, and logic propositions.44 The following disjunction can be used to express the bounds
and intermediate variables for Eq. 11.

 Yi
V Li ≤ Vi ≤ V Ui

IMm
i = IMGm(Vi,ms)

∨
 ¬Yi

Vi = 0
IMm

i = 0

,i ∈ {IA,1, IA,2, . . . , IZ,z} (12)

where Yi is the Boolean variable for ingredient selection. If thei -th ingredient is selected, the bounds on
Vi are fulfilled and its intermediate variables IMm

i are calculated. Otherwise, they are not calculated and
simply set as 0.

To solve a GDP problem, it is often transformed back into MINLP using big-M or convex-hull relaxation
to take advantage of standard MINLP solvers. It is found that the big-M method is more appropriate in
solving mixture design problem since singularity issue can still occur in the convex-hull relaxation.12 After
transforming the above disjunction using big-M approach, the cosmetic formulation problem is reformulated
below. Si has a one-to-one correspondence with Yi. bm is a sufficiently large parameter.

q = f(VIA,1
, VIA,2

, . . . , VIZ,z
,ms)(13)

s.t. PLk ≤ P k ≤ PUk, k ∈ K = MM ∪ SM

{

V Li − bm • (1− Si) ≤ Vi ≤ V Ui + bm • (1− Si)
−bm • Si ≤ Vi ≤ bm • Si

IMGm (Vi,ms)− bm (1− Si) ≤ IMm
i ≤ IMGm (Vi,ms) + bm(1− Si)

−bm • Si ≤ IMm
i ≤ bm • Si

Big-M constraint

Pm = Gm(IMm
IA,1

, IMm
IA,2

, . . . , IMm
IZ,z

),m ∈MM

P s = gs(VIA,1
, VIA,2

, . . . , VIZ,z
,ms),s ∈ SM

H
(
SIA,1

, SIA,2
, . . . , SIZ,z

, VIA,1
, VIA,2

, . . . , VIZ,z

)
≤ 0

msL ≤ ms ≤ msU , Si ∈ {0, 1}i,
∑
i Vi = 1,i ∈ {IA,1, IA,2, . . . , IZ,z}

Model substitution

Some rigorous mechanistic models are too complicated to be directly used for optimization even if they are
programmed using GDP. There is always a trade-off between model accuracy and traceability. In this case,
the complicated but accurate rigorous models can be replaced by simple short-cut model or surrogate model
to reduce the computational effort and to seek out even better solutions. A surrogate model is a good choice
when it is relatively easy to generate simulation data as training data from the rigorous model. Although

7
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the model accuracy is reduced, it is easier to solve and to obtain the global solution.42,45–47 After model
substitution, the newly generated optimization problem should be solved and the optimal solution obtained
can be denoted as V ∗

i . This solution must be validated using the original rigorous mechanistic models. If
the validation fails, the newly generated optimization problem should be re-solved by adding the equation
below to remove this solution (V ∗

i ) that fails validation. Otherwise, the solution can be sent for experimental
verification.∑
i (V ∗∗

i − V ∗
i )

2 ≥ tol (14)

Here, V ∗∗
i is the solution of a new round optimization. The parameter tol is a small tolerance.

Case Study: Liquid Perfume

As a popular cosmetic, perfume is a liquid mixture releasing pleasant scents. The global perfume market
is valued at $31.4 billion in 2018. Based on the volume fraction of fragrant compounds, perfume can be
classified into several types. Extrait contains 15-30%, Eau de parfum 10-20%, and Eau de cologne 3-5%.
For each type, thousands of products exist on the market. Most perfumes are made from various synthetic
fragrances for easy quality control. The experienced perfumers create new recipes by trial-and-error. Here,
the proposed framework and solution strategy are applied to formulate a new Eau de parfum.

Step 1: Problem definition

Table 2 shows that the most critical sensorial attribute of perfume is the smell. After applying the perfume,
the fragrant compounds begin to evaporate and are detected by an observer away from the location of
release. The scents change over time because each constituent is released at a different rate. This process
can last several hours. Based on the order in which the odors appear, the released scents are classified
as: top note, middle note, and base note. Top note is comprised of the scents perceived immediately after
perfume application and generally lasts 5-15 minutes. The scents in the middle note emerge after the top
note dissipates and remain for around an hour. The base note appears close to the end of middle note and
can last several hours. During the sensorial evaluation of a perfume, each note is assessed and rated. An
average rating can then be obtained to represent consumer preference.48 Thus, the objective function is to
maximize the overall sensorial rating on the smell of perfume (qs).

qs (15)

A perfume can be formulated to provide any specific scent with certain intensity. In this study, it is assumed
that the marketing team decides that a lemon-like odor should dominate in the top note of the new Eau de
parfum. There are no specific odors required for the middle and base notes as long as the overall sensorial
rating is maximized. Thus, the odor type with the highest intensity in the top note (OTTN) is

OTTN = lemon− like (16)

Moreover, since homogeneous liquid solution is transparent, all the perfume ingredients must be completely
miscible with each other. Perfume safety is related to its toxicity and flammability. Toxicity can be measured
by the median lethal dose (LD50). The larger theLD50 is, the safer the perfume is. Since a solution withLD50

larger than 5000 mg/kg can be regarded as non-toxic, this is chosen as the design target as defined in Eq.
17. Flammability depends on the flash point (Tfp), which is the lowest temperature at which liquid vapor
ignites given an ignition source. A higher flash point indicates lower flammability. Here, the flash point is
required to exceed 15 °C which is roughly the value of existing perfume products.

LD50 ≥ 5000 mg/kg (17)

Tfp ≥ 15 (18)

8
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Accordingly, four design targets are specified: constraints on LD50 and flash point, a homogeneous solution,
and a dominant lemon-like odor in the top note.

Step 2: Ingredient candidate generation

Table 4 lists the four required ingredients types and their functions.49 Various fragrances are used to provide
different scents. Based on the volatility, fragrance compounds can be classified into three types in accordance
with the top note, middle note, and base note. For instance, the top note fragrances are most volatile with a
vapor pressure typically larger than 0.1 mmHg. The vapor pressure of middle note and base note fragrances
are 0.001–0.1 mmHg and less than 0.001 mmHg, respectively.50

Referring to the perfume manual,51 48 common perfume ingredients are generated in the four ingredient
types (see Table 4). 17 candidates are top note fragrances, 16 candidates are middle note fragrances, and
13 candidates are base note fragrances. Each candidate has a different odor. For instance, as a top note
fragrance, limonene occurs naturally in the oil of citrus peels and offers a lemon-like odor. Coumarin is the
source of tonka bean’s distinctive aroma and is often added as a base note fragrance. An ethanol and water
mixture is by far the most common solvent in perfume.52 Ingredient selection is controlled by the binary
variable Si and ingredient composition is represented by volume fraction Vi. If thei -th ingredient is not
selected, Si and Vi are set to be 0. Otherwise, Si is equal to 1 and Vi is constrained by its lower and upper
bounds (V Li and V Ui).∑
i Vi = 1 (19)

V Li • Si ≤ Vi ≤ V Ui • Si (20)

Their values as well as the properties of 48 candidates (e.g., density, toxicity, etc.) are given in Table S2 in
Supporting Information. These are used as parameters in the optimization. Since perfume is a liquid solution,
no microstructural descriptors are considered.

[insert Table 4 here]

Step 3: Model identification

The third step is to identify the models for the average sensorial rating on perfume smell (qs) and the four
target properties. The models are elaborated below.

ANN-based surrogate model for sensorial rating

A surrogate model is developed for predicting qs. Perfume sensorial data are generated by mat-
ching the general consumers’ preferences reflected in various perfume review websites. Here, the
data is used to represent consumers’ satisfaction. A total of 761 data samples are uploaded in
https://github.com/zx2012flying/Perfume-Case-Study. These data samples only involve the 48 ingredient
candidates in Table 4. For each data sample, the input data includes the selected ingredients and their vo-
lume fractions. The output data is the overall sensorial rating. For consistency, the ratings are scaled to [0,
100] with 100 denoting the best smell. The minimum and maximum ratings for these samples are 50.2 and
89.7, respectively. Based on these data, several surrogate models such as linear regression, artificial neuron
network (ANN), and support vector regression are built using the Surrogate Modeling Toolbox, Pyrenn, and
Scikit-learn packages in Python 3.6. The hyperparameters are tuned manually and the model accuracy is
evaluated through 10-fold cross validation. A three-layer ANN model (i.e., one input layer, one hidden layer,
and one output layer) was found to offer the highest accuracy. Figure S1 shows the schematic structure of
the ANN model. The tansig and purelin functions are applied in the hidden and output layer, respectively.
The number of neurons in the hidden layer is tuned to be 8. Figure 4 presents the histogram of the absolute
errors between the true values and predicted values (qtrues − qpres ). 90% of the deviations are less than 10.

9
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The mean average error (MAE) and mean average percentage error (MAPE) are equal to 4.8 and 6.9%,
respectively. This ANN model provides an accurate prediction of qs, which is explicitly expressed as

qs =
∑8
l=1 wol • fh(ahl) + bo (21)

fh (ahl) = 1− 2
1+e2×ahl

, l = 1, . . . , 8(22)

ahl =
∑48
i=1 whl, i • V i + bhl, l = 1, . . . , 8(23)

where wol and bo are the weights and bias in the output layer, respectively. fh is the tansig function in the
hidden layer. ahl is the intermediate variable in the hidden layer. whl, i and bhl are the weights and biases
in the hidden layer, respectively. These model parameters are provided in the Github platform mentioned
above.

[insert Figure 4 here]

LD50

LD50 of the perfume solution is calculated by Eq. 24. It depends on the toxicity of ingredients (LD50,i) and
the mass fraction (mi) converted from the volume fraction Vi.

LD50 = 1∑48
i=1

mi
LD50,i

(24)

mi = Vi•ρi∑48
j=1 Vj•ρj

(25)

where LD50,i and the density (ρi) for the 48 ingredient candidates are given in Table S2.

Flash point

The flash point (Tfp) of a flammable liquid mixture can be theoretically determined based on the Le Chate-
lier’s mixing rule.53∑48
i=1

FPPi

FPLFLi
= 1 (26)

where FPPi and FPLFLi are the partial pressure and lower flammability limit of the i -th ingredient
candidate at the flash point, respectively. FPLFLi is calculated by

FPLFLi = LFL∗
i −

0.182×(Tfp−298)
Hci

(27)

where Hci and LFL∗
i are the heat of combustion and lower flammability limit at 298 K (see Table S2),

respectively.FPPi is calculated via the vapor-liquid equilibrium in Eq. 28. The UNIFAC model is used to
calculate the activity coefficientΦΠγi at the flash point. The mole fraction xi is converted from mass fraction
mi. FPPsati is the saturated vapor pressure at flash point, which is calculated using the Antoine equation
in Eq. 31.

FPPi = ΦΠγi • xi • FPP sati(28)

ΦΠγi = funifac (xi, Tfp)(29)

xi = mi

MWi•
∑

j

mj
MWj

(30)

FPPsati = Ai − Bi

Ci+Tfp
(31)

The molecular weight MWi, UNIFAC parameters, and Antoine coefficients Ai, Bi, and Ci for the 48 ingre-
dient candidates are given in Table S2.

10
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Homogeneous solution

To ensure a homogeneous solution, the volume of selected organic fragrances must be less than their volume
solubility (SVi,ew) in the ethanol-water solvent system.

Vi

(V47+V48)
≤ SVi,ew, i = 1, . . . , 46(32)

It is found that it is quite hard to calculate SVi,ew using rigorous thermodynamic models due to the many
missing parameters. In the literature, several short-cut models have been developed to predictSVi,ew. The
log-linear mixture rule below is widely used.54

log SVi,ew = logSVi,w + β • log
SVi,e

SVi,w
, i = 1, . . . , 46(33)

β = V47

V47+V48
(34)

log
SVi,e

SVi,w
= M • logKow,i +N, i = 1, . . . , 46(35)

where SVi,e and SVi,w are the volume solubility in ethanol and water, respectively. Kow,i is the n-
octanol/water partition coefficient of the i -th candidate. M and N are the cosolvent constants. Based
on experimental data, their values have been regressed as 0.81 and 0.85, respectively.

Odor type in top note

The fragrance molecules in a perfume solution first evaporate into the air through the liquid-gas interface.
Then, the molecules diffuse in the air (assumed to be stagnant) and are detected at certain distance away. The
processes of evaporation, diffusion, and detection have been modelled using chemical engineering principles
and psychophysics.38,52,55 Perfume evaporation is simulated using Eq. 36 with an initial condition. The liquid
molar changes are equal to the moles of ingredients transported through the interface (i.e., z = 0).

dni,t

dt = CT •Di •Alg • ∂yi,t,z
∂z

∣∣∣
z=0

(36)

Initial condition: ni,t=0 = np • xi
After discretization, Eq. 37 is obtained.

ni,t+t−ni,t

t = CT •Di •Alg •
yi,t,z=z1−yi,t,z=0

z1
(37)

where np is the initial number of moles of perfume solution.CT = P/RT is a constant. Di and Alg are the
diffusivity of i -th candidate and interfacial area, respectively.t and z1are the time interval and the first
distance interval, respectively. These parameters are given in Table S2.ni,t is the number of moles of the i
-th candidate in the liquid at time t. yi,t,z is the molar fraction of i -th ingredient candidate in the air at
time t at distance z . It is calculated via vapor-liquid equilibrium.

yi,t,z=0 = γi,t • xi,t • Psati
P (38)

γi,t = funifac(xi,t, Tr) (39)

xi,t =
ni,t∑48
i=1 ni,t

(40)

where γi,t and xi,t are the activity coefficient and mole fraction of i -th ingredient candidate at time t ,
respectively. Psati is the saturated vapor pressure at room temperature Tr = 298 K.

After evaporation, fragrance diffusion is modelled based on Fick’s 2nd law of diffusion with one initial
condition and two boundary conditions (Eq. 41).

∂yi,t,z
∂t = Di • ∂

2yi,t,z
∂z2 (41)

Initial condition: yi,t=0,z = 0

Boundary conditions: Eq. 38, yi,t,z=zmax = 0

11
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The initial condition assumes that no fragrances exist in the air before diffusion begins (i.e., t = 0). The
boundary conditions indicate that vapor-liquid equilibrium is maintained at the interface at any time (i.e.,
Eq. 38) and no fragrances exist beyond the maximum distance (zmax = 2m). This model is discretized using
a non-uniform distance grid (Table S2) for reducing the computational difficulty. After discretization, we get

yi,t+t,z−yi,t,z
t = Di •

yi,t,z+zj+1
−yi,t,z

zj+1
−

yi,t,z−yi,t,z−zj
zj

0.5×(zj+1+zj)
,z ∈ [0, zmax] (42)

where zj and zj+1 are the distance intervals, respectively.

Any fragrance with a different concentration leads to a different intensity. Many theoretical models (e.g.,
Weber-Fenchner law, power law, and linear law) have been proposed for quantifying odor intensity. The
power law is chosen here because it fits experimental data well. The intensity of the i -th odorant is defined
as the ratio of its concentration in the air (ci in g/m3) to its odor recognition threshold value (ORTi), raised
to a poweroei.

52 With this, the odor intensity in the top note is determined based on the mole fraction of
fragrances in the air at 5 minutes (ttn) after application at a distance of 0.2 m (ztn).

ψi =
(

ci
ORTi

)oei
(43)

ci = yi,ttn,ztn •MWi • CT (44)

Given multiple odorants, the one with the highest intensity is more strongly sensed and can be regarded as
the major odor type. Thus, the dominant odor type in top note is expressed as

OTTN = i, if ψi = ψmax = {ψi}(45)

Heuristics

Following Table 3, constraints for the Eau de parfum formulation are derived from dozens of modern Eau
de parfum recipes.51It is found that the suggested number of ingredients for each fragrance note can be
represented by Eq. 46-48. Eq. 49 shows that Eau de parfum usually contains 10-20% organic fragrances. The
suggested volumetric proportions for top note and middle note are 15-25% and 30-40%, respectively (Eq.
50-51). The suggested volume fraction of water is 9-13%.49,52

3 ≤
∑17
i=1 Si ≤ 6 (46)

3 ≤
∑33
i=18 Si ≤ 6 (47)

2 ≤
∑46
i=34 Si ≤ 5 (48)

0.1 ≤
∑46
i=1 Vi ≤ 0.2 (49)

0.15 •
∑46
i=1 Vi ≤

∑17
i=1 Vi ≤ 0.25 •

∑46
i=1 Vi(50)

0.3 •
∑46
i=1 Vi ≤

∑33
i=18 Vi ≤ 0.4 •

∑46
i=1 Vi(51)

0.09 ≤ V48 ≤ 0.13 (52)

Iterative Model Adoption and Optimization Solution Strategy

The identified rigorous mechanistic models for LD50, flash point, and odor type, the short-cut model for
transparency, the surrogate model for sensorial rating as well as the heuristics in Eq. 46-52 are integrated to
form the perfume formulation problem below.

qs (53)

s.t. Eq. 21-23 ANN-based surrogate model for qs

Eq. 16-18 Design targets

12
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Eq. 24-45 Mechanistic models

Eq. 46-52 Heuristics

Eq. 19-20 Design variables

This problem is implemented in GAMS 24.7 on a laptop with Intel 3.30 GHz CPU. The global solver BARON
is used first and then the local solver SBB is employed if no optimal solutions are obtained from BARON.

GDP reformulation

Because of the complexity of the identified models and the number of intermediate variables, the problem is
directly programmed using GDP. The disjunction is explicitly expressed as


Yi

V Li ≤ Vi ≤ V Ui
Eq.25

Eq.27− 31
Eq.37− 44

∨


¬Yi
Vi = 0
mi = 0

FPLFLi, FPPi, FPγi, xi, FPPsati = 0
ni,t, yi,t,z, γi,t, xi,t, ci, ψi = 0

 (54)

The GDP problem is further reformulated using the big-M approach with the solver JAMS and then solved
by SBB. Different initial guesses are utilized. The second column of Table 5 lists the computational statistics.
It contains 46 discrete variables, 9783 single variables, and 18230 equations. It takes 3459 seconds to obtain
a local optimal solution.

[insert Table 5 here]

The perfume formula obtained is shown in the second column of Table 6. The maximum sensorial rating is
92.4. The new perfume consists of 3 fragrances in top note, 4 fragrances in middle note, and 3 fragrances in
base note. Their volume fractions vary in the range of 0.3-1.9% and the total volume fraction of fragrances
is 10.1%. Furthermore, this recipe fulfills the four design targets. The LD50 and flash point are 6815 mg/kg
and 15.1 °C, respectively. These are higher than their lowest acceptable design targets (5000 mg/kg and
15 °C in Eq. 17-18). The volume fractions of the 10 fragrances are less than their volume solubility shown
in Table S3. Thus, a homogeneous and transparent perfume solution can be obtained. Figure 5a shows the
odor profile during the first 350 seconds. The intensity of benzyl acetate (jasmine-like) and octyl acetate
(apple-like) are 2.6 and 0.5, respectively. The limonene with a lemon-like odor has the maximum intensity
of 2.8 after 5 minutes. Note that since the odor intensities of other fragrances are much less than those of
top note fragrances, they are not shown in the figure. Figure 6a shows the simulated diffusion profile of top
note fragrances within 2 meters at 5 minutes. Obviously, the maximum intensities are located at z = 0. The
maximal intensity of limonene can reach 33.5. As the distance increases, the intensity decreases and down
to zero beyond 2 meters. The simulated diffusion profiles of 4 middle note fragrances at 1 hour and 3 base
note fragrances at 5 hours are illustrated in Figure S2a and S2b, respectively.

[insert Figure 5 here], [insert Figure 6 here], and [insert Table 6 here]

Model substitution

The above result from GDP (92.4 in Table 6) is slightly larger than the maximal sensorial rating (89.7) of the
original 761 data samples. Although a local optimal solution has already been obtained, the GDP problem

13
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is still challenging to solve. In fact, the choice of the initial values greatly affects whether feasible solutions
can be obtained and the quality of local solution. It is found that the major computational difficulties come
from the rigorous mechanistic models for perfume evaporation (Eq. 36) and diffusion (Eq. 41), which requires
the handling of many highly nonlinear equations. For instance, the vapor-liquid equilibrium and UNIFAC
equations must be calculated at every time point (i.e., Eq. 38-40). Thus, in order to solve the formulation
problem more efficiently and find better solutions, model substitution is employed here.

Whether the top note of a perfume can be dominated by a lemon-like or non-lemon-like scent is a binary
decision. Thus, the prediction of the odor type can be transformed into a classification problem. In other
words, the complex mechanistic models (Eq. 36-45) for predicting the odor type in the top note is substituted
by a classification-based surrogate model. To do so, random sampling is applied to generate 15000 artificial
perfume recipes that account for the heuristic rules in Eq. 46-52. Among them, 7500 recipes consist of
0.25-0.75% limonene (lemon-like), 5000 recipes contain 0.75-1.25%, and 2500 recipes have 1.25-1.75%. These
recipes are used as the input data. For each recipe, their odor intensities in the top note are calculated
using Eq. 36-45. If a lemon-like odor has the highest intensity, the output is set equal to 1. Otherwise,
it is equal to 0. Then, a support vector classification (SVC) model with linear kernel function is trained.
Through 10-fold cross validation, the hyperparameter C indicating the regularization strength is tuned to be
10. Figure S3 presents the classification error distribution. For the 7500 data samples containing 0.25-0.75%
limonene, the classification accuracy is 93.3%. For the other half samples, the accuracy is 98.9 %. The overall
accuracy is 96.1%. These statistics indicate that this SVC model can serve as a relatively simple surrogate
for substituting the original complex mechanistic models. The SVC model consists of 2126 support vectors
and is expressed as

OTTN =
∑2126
c=1 αc •Kc + bs (55)

Kc =
∑48
i=1 SVc,i •VNi (56)

V Ni =
Vi−Vi,min

Vi,max−Vi,min
(57)

where αc and bs are the weights for support vector and a constant, respectively. SVc,i is the support
vector.Vi,max and Vi,min are normalization coefficients. These parameters are optimized automatically during
the training process and provided in the Github platform mentioned above.

By substituting Eq. 36-45 with Eq. 55-57, the resulting perfume formulation problem (MINLP-SVC) is
solved using the global solver BARON. Table 5 shows the computational statistics. It consists of 2860 single
variables, 2920 equations, and 2928 nonlinear matrix entries. Clearly, the problem size and nonlinearity are
much less than those of the GDP problem. It takes 143 seconds to obtain the global solution given in the
last column of Table 6. The maximum sensorial rating is 98.3 which is better than the GDP result. The new
perfume formula consists of 13 different fragrances in different volume fractions. The total volume fraction
of fragrances is 20%. Moreover, the design targets onLD50 and flash point are fulfilled. As listed in Table
S4, all the ingredient’s volume fractions are less than their volume solubility in the ethanol-water solvent.
In addition, the major odor type in the top note is classified as 1 (i.e., lemon-like) by the SVC model.
As validated using the original mechanistic models (Eq. 36-45), Figure 5b shows the odor intensity in the
first 350 seconds. Again, only the top note fragrances are plotted. It is clear that the lemon-like fragrance
limonene has the maximum odor intensity (around 3.5) which is higher than those of other fragrances. This
validates the SVC results as well. In addition, Figure 6b shows the diffusion profile of 4 top note fragrances
at 5 minutes, which is simulated using the original mechanistic models. Figure S4a and S4b present the
simulated diffusion of 5 middle note fragrances at 1 hour and 4 base note fragrances at 5 hours, respectively.

Conclusion

This paper presents a new optimization-based approach for cosmetic formulation. A three-step procedure
is proposed to formulate the cosmetic formulation problem as an MINLP problem. For problem definition,
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the objective function (i.e., sensorial perception) and design targets are identified. Then, a pool of potential
ingredient candidates is generated for selection. Design variables include ingredient selection, composition,
and microstructure descriptors (not include in the example). Next, models are identified for predicting the
sensorial rating and target properties. Meanwhile, common heuristics are translated into mathematical equa-
tions which serve as constraints to narrow down the search space. To improve the optimization convergence
and to find better solutions, a solution strategy that involves an iterative model adoption and different nu-
merical techniques is proposed. The procedure and solution strategy are illustrated using a perfume case
study. Our approach is one of the first attempts to integrate multiple (rigorous, short-cut, surrogate, and
heuristic-based) models to account for both sensorial and functional attributes for optimal cosmetic formula-
tion. It can be used for other cosmetics and personal care products provided that the relevant models, data,
heuristics, etc. are available.

Product design involves a wide range of issues that include consumer preference, ingredient selection, supply
chain analysis, process design, government regulations, economics, corporate social responsibility, sustainabi-
lity and so on.56 These issues interact in an exceedingly complex manner as captured in the Grand Product
Design Model.57 While many detailed models exist to describe the separate issues, it is a daunting task
to solve the optimization problem for product design when a number of disparate issues are involved. It is
interesting to study how the approach described in this paper can be extended to the product design as a
whole. Efforts in this direction are underway.
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Figure 1. The General Methodology of Optimization-based Cosmetic Formulation
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Figure 2. Systematic Procedure for Optimization Problem Formulation
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Figure 3. Iterative Model Adoption and Optimization Solution Strategy

Hosted file

image3.emf available at https://authorea.com/users/322113/articles/451197-optimization-based-
cosmetic-formulation-integration-of-mechanistic-model-surrogate-model-and-heuristics

Figure 4. Absolute Error Distribution of ANN Model for Predicting Sensorial Rating
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Figure 5. Odor Profile of Top Note Fragrance Calculated Using Rigorous Mechanistic Models for Optimal
Perfume Recipe from (a) GDP Formulation (b) MINLP-SVC Formulation
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Figure 6. Simulated Diffusion of Top Note Fragrances at 5 Minutes for Optimal Perfume Recipe from (a)
GDP Formulation (b) MINLP-SVC Formulation
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Table 1. Dosage Form of Typical Cosmetic Products and the Microstructural Descriptors

Dosage form Dosage form
Typical cosmetic
products

Relevant
microstructural
descriptors

Solid Stick Lipstick, contour stick Droplet size
Tablet Foundation tablet,

eyeshadow
Tablet size, porosity,
pore size

Powder/granule Facial powder, blush Porosity, pore size,
particle size and shape

Semi-solid Paste Facial-mask paste, skin
paste

Emulsion type, droplet
size

Gel Eye gel, aftershave gel /
Ointment Hair pomade, facial

scrub
Droplet size

Cream Hair cream, hand
cream

Emulsion type, droplet
size

Liquid Lotion Body lotion, lip gloss Droplet size
Suspension Nail polish, mascara Particle size and shape
Solution Perfume, makeup

remover
/

Gas Aerosol Hair spray, shaving
foam

Droplet size

Table 2. Sensorial and Functional Attributes of Four Cosmetic Products

Sensorial attributes Functional attributes Relevant properties

Lipstick sight, touch no surface defect, hard to break, stable, safe color, color intensity, viscosity, strength, homogeneity, melting point, thixotropy, pH
Skin cream touch, smell, sight moisturizing, skin protection, ease of use, stable, safe viscosity, oiliness, odor, color, moisture content, anti-oxidation, adhesion, pH
Perfume smell transparent, safe odor intensity, odor type, flash point, toxicity, homogeneity
Hair spray sight, smell effective, rapid drying, easy to remove, stable, safe color, odor, adhesion, curl retention, drying time, flash point, toxicity

Table 3. Typical Heuristics and the Translated Constraints for Formulated Products

19

https://authorea.com/users/322113/articles/451197-optimization-based-cosmetic-formulation-integration-of-mechanistic-model-surrogate-model-and-heuristics
https://authorea.com/users/322113/articles/451197-optimization-based-cosmetic-formulation-integration-of-mechanistic-model-surrogate-model-and-heuristics
https://authorea.com/users/322113/articles/451197-optimization-based-cosmetic-formulation-integration-of-mechanistic-model-surrogate-model-and-heuristics
https://authorea.com/users/322113/articles/451197-optimization-based-cosmetic-formulation-integration-of-mechanistic-model-surrogate-model-and-heuristics


P
os

te
d

on
A

u
th

or
ea

14
M

ay
20

20
—

C
C

-B
Y

4.
0

—
h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
58

9
4
89

36
.6

31
10

62
1

—
T

h
is

a
p
re

p
ri

n
t

an
d

h
as

n
ot

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

at
a

m
ay

b
e

p
re

li
m

in
ar

y.

Heuristics Constraints

Suggested number of ingredients L ≤
∑
i Si ≤U, i ∈ TIC

Suggested number of ingredients in certain type TL ≤
∑
i Si ≤TU, i ∈ IX

Ingredients with certain property is preferred PLi • Si ≤ Pi • Si ≤ PUi • Si, i ∈ TIC
Certain ingredients cannot be used simultaneously

∑
j Sj = 1

Certain ingredients should be used simultaneously Sj = Sk
Suggested concentration for certain type V TL ≤

∑
i Vi ≤ V TU, i ∈ IX

Suggested concentration for certain candidate V Li ≤ Vi ≤ V Ui, i ∈ TIC
Total ingredient candidate TIC = {IA,1, IA,2, . . . , IZ,z} Certain ingredient type IX = IA, IB , . . . , or IZ L, TL, VTL, V Li, and PLi are lower bounds. U , TU, VTU , V Ui, and PUi are upper bounds. Total ingredient candidate TIC = {IA,1, IA,2, . . . , IZ,z} Certain ingredient type IX = IA, IB , . . . , or IZ L, TL, VTL, V Li, and PLi are lower bounds. U , TU, VTU , V Ui, and PUi are upper bounds.

Table 4. Ingredient Types, Functions, and Ingredient Candidates for Perfume Example

Ingredient type Top note fragrance Top note fragrance

Function very volatile, appear
immediately to offer the first
impression, and last 5-15
minutes

very volatile, appear
immediately to offer the first
impression, and last 5-15
minutes

Candidates 1. allyl amylglycolate
(galbanum-like) 2.
alpha-phellandrene (pepper-like)
3. benzylidene acetal (green
leaf-like) 4. grapefruit acetal
(grapefruit-like) 5. isoamyl
propionate (apricot-like) 6. linayl
propionate (bergamot-like) 7.
methyl 2-octynoate (violet-like) 8.
methyl benzoate
(blackcurrant-like) 9. propyl
octanoate (coconut-like)

10. amyl butyrate (pear-like) 11.
benzyl acetate (jasmine-like) 12.
limonene (lemon-like) 13.
estragole (anise-like) 14. nerol
(neroli-like) 15. nonyl aldehyde
(rose-like) 16. octanal
(orange-like) 17. octyl acetate
(apple-like)

Ingredient type Middle note fragrance Middle note fragrance
Function The body of perfume, dominate

after top notes fade, and last up
to 1 hour

The body of perfume, dominate
after top notes fade, and last up
to 1 hour

Candidates 18. amylcinnamaldehyde
(jasmine-like) 19. cinnamic
alcohol (cinnamon-like) 20.
cyclohexylethanol (patchouli-like)
21. ethyl 4-phenylbutyrate
(plum-like) 22. ethyl o-anisate
(ylang ylang-like) 23.
gamma-decalacetone (peach-like)
24. methyl iso-eugenol
(carnation-like) 25. phenethyl
isobutyrate (rose-like)

26. 1-phenylethanol
(gardenia-like) 27. 2-undecanone
(orris root-like) 28. amyl
phenylacetate (cacao-like) 29.
cedryl acetate (woody-like) 30.
heliotropin (heliotrope-like) 31.
lilyall (lily-like) 32. linalyl
salicylate (musk-like) 33. methyl
anthranilate (neroli-like)

Ingredient type Base note fragrance Base note fragrance
Function Lowest volatility, appear close

to the end of middle notes to
offer the lasting impression, and
remain several hours

Lowest volatility, appear close
to the end of middle notes to
offer the lasting impression, and
remain several hours
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Ingredient type Top note fragrance Top note fragrance

Candidates 34. acetyl cedrene (woody-like)
35. alpha-ambrinol (amber-like)
36. amyl-iso-eugenol (incense-like)
37. coumarin (tonke bean-like)
38. patchouli alcohol
(patchouli-like) 39. phenethyl
phenylacetate (musk-like) 40.
sandal hexanol (sandalwood-like)

41. benzoin (benzoin-like) 42.
cedrol (cedar-like) 43. ethyl
vanillin (vanilla-like) 44. maltol
(caramel-like) 45. phenylacetic
acid (honey-like) 46. vetiverol
(vetiver-like)

Ingredient type Solvent Solvent
Function Dilute organic fragrant to

adjust odor release
Dilute organic fragrant to
adjust odor release

Candidates 47. ethanol 48. water

Table 5. Computational Results for the Perfume Case Study

GDP formulation MINLP-SVC formulation

Number of discrete variables 46 46
Number of single variables 9783 2860
Number of equations 18230 2920
Number of nonlinear matrix entries 42814 2928
Solver SBB BARON
CPU time (s) 3459 143

Table 6. Optimal Perfume Formula Obtained from Two Optimization Formulation

GDP formulation GDP formulation MINLP-SVC formulation MINLP-SVC formulation

Recipe Vi
* Recipe Vi

*

Top note fragrance benzyl acetate 1.6 octanal 2.0
limonene 0.5 benzyl acetate 1.5
octyl acetate 0.3 limonene 1.3

benzylidene acetal 0.3
Middle note fragrance heliotropin 1.9 lilyall 2.1

2-undecanone 1.6 phenethyl isobutyrate 1.7
1-phenylethanol 0.3 heliotropin 1.3
lilyall 0.3 amyl phenylacetate 1.0

1-phenylethanol 0.7
Base note fragrance sandal hexanol 1.9 phenylacetic acid 4.9

benzoin 1.4 maltol 1.6
coumarin 0.3 benzoin 1.3

phenylethyl phenylacetate 0.3
Solvent ethanol 77.6 ethanol 70.8

water 12.3 water 9.2
LD50 6815 mg/kg 6815 mg/kg 7139 mg/kg 7139 mg/kg
Flash point 15.1 °C 15.1 °C 15.1 °C 15.1 °C
Homogeneous All fragrances dissolved ** All fragrances dissolved ** All fragrances dissolved*** All fragrances dissolved***

OTTN Lemon-like Lemon-like Lemon-like Lemon-like
Sensorial rating 92.4 92.4 98.3 98.3
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GDP formulation GDP formulation MINLP-SVC formulation MINLP-SVC formulation

*Volume fraction in percentage (%) **Volume solubility data in Table S3 ***Volume solubility data in Table S4 *Volume fraction in percentage (%) **Volume solubility data in Table S3 ***Volume solubility data in Table S4 *Volume fraction in percentage (%) **Volume solubility data in Table S3 ***Volume solubility data in Table S4 *Volume fraction in percentage (%) **Volume solubility data in Table S3 ***Volume solubility data in Table S4 *Volume fraction in percentage (%) **Volume solubility data in Table S3 ***Volume solubility data in Table S4
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