Structural and Energetic Properties of H₃N-MX₃R Complexes

James Phillips¹, Anna Ley¹, Patrick Treacy¹, Benjamin Wahl¹, Brittany Zehner¹, Kelling Donald², and Samuel Gillespie²

¹University of Wisconsin Eau Claire

May 15, 2020

Abstract

We have explored the structural and energetic properties of a series of RMX₃-NH₃ (M=Si, Ge; X=F, Cl; R=CH₃, C₆H₅) complexes using density functional theory and low-temperature infrared spectroscopy. In the minimum-energy structures, the NH₃ binds axially to a halogen, while the organic group resides in equatorial site about the metal. Remarkably, the primary mode of interaction in several of these systems seems to be hydrogen bonding (C-H-N), rather than a tetrel N-M interaction. This is particularly clear for the RMCl₃-NH₃ complexes, and analyses of the charge distributions of the acid fragment corroborate this assessment. We also identified a set of metastable geometries in which the ammonia binds axial to the organic substituent. Acid fragment charge analysis also provide a clear rationale as to why these configurations are less stable than their R-equatorial counterparts. In matrix-IR experiments, we see clear evidence of the minimum-energy form of CH₃SiCl₃-NH₃, but analogous results for CH₃GeCl₃-NH₃ are less conclusive. Computational scans of the M-N distance potentials for CH₃SiCl₃-NH₃ and CH₃GeCl₃-NH₃, both in the gas phase and bulk dielectric media reveal a great deal of anharmonicity, and a propensity for condensed-phase structural change.

Hosted file

 $\label{lambda} H3N_MX3R_paper_sub.pdf available at https://authorea.com/users/322265/articles/451313-structural-and-energetic-properties-of-h3n-mx3r-complexes$

²University of Richmond