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Abstract

Even though antimicrobial-resistant bacteria have begun to be detected in wildlife, raising important issues related to their

transmission and persistence of clinically important pathogens in the environment, little is known about the role of these

bacteria on wildlife health, especially on endangered species. The Brazilian merganser (Mergus octosetaceus) is one of the

most threatened waterfowl in the world, classified as Critically Endangered by the International Union for Conservation of

Nature. In 2019, a fatal case of sepsis was diagnosed in an 8-day-old Brazilian merganser inhabiting a zoological park. At

necropsy, major gross lesions were pulmonary and hepatic congestion. Using microbiologic and genomic methods, we identified

a multidrug-resistant (MDR) extended-spectrum β-lactamase (ESBL) CTX-M-8-producing Escherichia coli (designed as PMPU

strain) belonging to the international clone ST58, in celomic cavity, esophagus, lungs, small intestine and cloaca samples.

PMPU strain harbored a broad resistome against antibiotics (cephalosporins, tetracyclines, aminoglycosides, sulfonamides,

trimethoprim, and quinolones), domestic/hospital disinfectants, and heavy metals (arsenic, mercury, lead, copper, and silver).

Additionally, the virulence of E. coli PMPU strain was confirmed using a wax moth (Galleria mellonella) infection model, and

it was supported by the presence of virulence genes encoding toxins, adherence factors, invasins and iron acquisition systems.

Broad resistome and virulome of PMPU contributed to therapeutic failure and death of the animal. In brief, we report for

the first time a fatal colibacillosis by MDR-ESBL-producing E. coli in critically endangered Brazilian merganser, highlighting

that besides colonization, critical priority pathogens are threatening wildlife. E. coli ST58 clone has been previously reported

in humans, food-producing animals, wildlife, and environment, supporting broad adaptation and persistence at human-animal-

environment interface.

1. INTRODUCTION

Antimicrobial resistance (AMR) is one of the major Global Health challenges of the 21st century, and
annually kills thousands of people in the world (Cassini et al., 2019; Hernando-Amado, Coque, Baquero,
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& Mart́ınez, 2019). One Health and Global Health approaches are necessaries to combat the emergence,
evolution and spread of AMR (Hernando-Amado et al. , 2019). In this regard, wildlife has been suggested
as reservoirs, disseminators or bio-indicators of AMR in the environment (Borges et al., 2017; Dolejska &
Literak, 2019;Sacristán et al. , 2020); however, threatened wildlife species are being colonized by antibiotic
resistant bacteria, but there are critical data gaps and research needs to understand the role and the real
impact of AMR on wildlife (Larsson et al. , 2018; Fuentes-Castillo et al., 2020; Ramey & Ahlstrom, 2020).

The Brazilian merganser (Mergus octosetaceus Vieillot, 1817) is one of the most threatened avian species in
the Americas and one of the most threatened waterfowl in the world, classified as Critically Endangered by
the International Union for Conservation of Nature (Lamas & Lins, 2009; BirdLife International, 2019). It is
estimated that its population does not exceed 250 mature individuals in nature but, thanks to conservation
breeding programs, it has been possible to successfully reproduce the species ex-situ (BirdLife International,
2019).

In this study, using microbiological and whole genome sequencing tools, we investigated a fatal sepsis cau-
sed by an antibiotic-resistant bacterium in a critically endangered Brazilian merganser. In this regard, the
resistome (antibiotics, heavy metals, and disinfectants), virulome, and epidemiological characteristics of the
pathogen were analyzed.

2. MATERIALS AND METHODS

2.1. Brazilian merganser

As part of the Brazilian merganser Conservation Program, the Itatiba Zoological Park (Sao Paulo state,
Brazil) carries out a successful breeding project. In October 2019, an 8-day-old Brazilian merganser born
in the breeding program became ill presenting respiratory symptoms (dyspnea, prostration, hyporexia and
weight loss). The duck received prophylactic antibiotic treatment (i.e., Enrofloxacin – Chemitril, Chemitec –
15mg/kg, IM, q. 12h), with unsuccessful results. The animal died presenting incoordination and opisthotonos,
less than 24 hours after the first clinical signs.

2.2. Necropsy and sampling

Full necropsy examination was carried out at the Laboratory of Wildlife Comparative Pathology, Depart-
ment of Pathology, School of Veterinary Medicine and Animal Science of the University of São Paulo, Brazil,
according to Matushima (2007). Representative samples of major organs/tissues, including esophagus, pro-
ventriculus, small and large intestines, pancreas, spleen, liver, lungs, trachea, heart, aorta, and kidney were
collected and fixed in 10% neutral buffered formalin. Central nervous system was not sampled to preserve
the cranium for museum collection. Tissue samples were processed routinely and embedded in paraffin wax.
Sections (5 μm) were stained with hematoxylin and eosin. Additionally, selected samples from celomic cavity,
oral cavity, esophagus, lungs, small intestine, and cloaca were aseptically sampled using sterilized swabs and
deposited in Amies transport medium with charcoal for posterior microbiological analysis.

2.3. Isolation, bacterial identification, and antimicrobial susceptibility testing

Cloacal, celomic and oral cavity and tissue swab samples were streaked onto blood and MacConkey agar
plates and incubated overnight at 35±2 °C. Bacterial isolates were identified by the MALDI-TOFMS system
(Bruker Daltonik), and clonal relationships among Escherichia coli isolates were determined by enterobacte-
rial repetitive intergenic consensus (ERIC)–PCR (Da Silveira et al., 2002).

Antimicrobial susceptibility testing was performed by the disk diffusion method using human and veterina-
ry antimicrobials (CLSI, 2018, 2020), including amoxicillin/clavulanate, ceftriaxone, cefotaxime, ceftiofur,
ceftazidime, cefepime, cefoxitin, aztreonam, imipenem, meropenem, ertapenem, nalidixic acid, enrofloxacin,
gentamicin, amikacin, trimethoprim-sulfamethoxazole and tetracycline. E. coli ATCC 25922 was used as
control strain. Extended-spectrum β-lactamase (ESBL) production was screened by the double-disk synergy
test (DDST) (Jarlier, Nicolas, Fournier,& Philippon, 1988).

2.4. Whole genome sequence (WGS) analysis

2
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For selected ESBL-producing E. coli strain, genomic DNA was extracted using a PureLinkTM Quick Gel
Extraction Kit (Life Technologies, Carlsbad, CA), and a genomic paired-end library (75 x 2 bp) was pre-
pared using a Nextera XT DNA Library Preparation Kit (Illumina Inc., Cambridge, UK) according to
the manufacturer’s instructions. The whole genome was sequenced on the NextSeq platform (Illumina).
De novo genome assembly and contig annotation was carried out using CLC Genomics Workbench 12.0.3.
Multilocus sequence type (MLST), plasmid replicons, resistome and serotype were identified using MLST
v2.0 (Larsen et al. , 2012), PlasmidFinder v2.1 (Carattoli et al. , 2014), ResFinder v3.2 (Zankari et al.
, 2012), and SerotypeFinder v2.0 (Jenkins, 2015) tools, respectively, from Center for Genomic Epidemi-
ology (http://www.genomicepidemiology.org/). Clinically important virulence factors were detected and
compared by ABRicate v0.9.8 (https://github.com/tseemann/abricate) using data from the Escherichia
coli Virulence Factors (https://github.com/phac-nml/ecoli vf) and the Virulence Factor Database (VFDB)
(http://www.mgc.ac.cn/VFs/). Heavy metal (HM) and biocides genes were detected using the BacMet2
experimentally confirmed database (http://bacmet.biomedicine.gu.se). For whole genome of selected ESBL-
producing E. coli identified in this study, a minimum spanning tree was constructed in Enterobase using
the MSTree V2 algorithm and the wgMLST scheme (https://enterobase.warwick.ac.uk/species/index/ecoli).
This scheme consists of 25,002 pan-genome genes present in E. coli genomes, which represented most
of the diversity in Enterobase at the time (March 2020) (https://bitbucket.org/enterobase/enterobase-
web/wiki/Escherichia%20Statistics). All images were generated with iTOL v.5.5 (https://itol.embl.de).

2.5. In vivo virulence assays in the greater wax moth (Galleria mellonella) infection model

In vivo virulence behavior of ESBL-producing E. coli was evaluated using the G. mellonella infection model
(Tsai, Loh, & Proft, 2016). The non-virulent E. coli ATCC 25922 and the hypervirulent meningitis/sepsis
associated K1 E. coli strain (MNEC RS218) (Achtman et al., 1983; Santos, Zidko, Pignatari, & Silva, 2013)
were used as non-virulent and hypervirulent controls. In brief,G. mellonella larvae, of nearly 250 to 350 mg,
were inoculated with 105 CFU of each strain. Survival of two G. mellonella groups (each group composed
by 20 larvae) inoculated with each strain were evaluated for 96 h. Data were analyzed by the log rank test,
with p < 0.05 indicating statistical significance (Prism GraphPad Software, San Diego, CA, USA).

3. RESULTS AND DISCUSSION

3.1. Pathological findings

The main gross finding was dark reddish coloration in the lungs, draining a marked amount of serosanguineous
fluid. Microscopically, hemodynamic disturbances were observed in the lungs, highlighting a marked con-
gestion of blood vessels and alveolar capillaries, and mild acute alveolar hemorrhage (Figure 1a). In liver,
moderate congestion in zone I and II was detected (Figure 1b). Finally, in kidney, corticomedullar conges-
tion was also observed. Histopathological alterations were not perceived in the remaining organs/tissues
analyzed.

3.2. Bacterial isolation, identification, and antimicrobial resistance profile

E. coli was isolated from celomic cavity, esophagus, lungs, small intestine, and cloaca. Clonal relatedness
analysis (ERIC-PCR) and antimicrobial resistance profile confirmed the infection by an identicalE. coli
clone. All E. coli strains were ESBL producers and displayed a resistant profile to human and veterinary
broad-spectrum cephalosporins, tetracyclines, aminoglycosides, sulfonamides, trimethoprim, and quinolones,
remaining susceptible to carbapenems, cephamycin and monobactams. E. coli strain from lung tissue sample
was selected to WGS analysis and designed as PMPU strain.

3.3. E. coli PMPU strain carried a wide resistome to antibiotics, heavy metals, and disinfec-
tants

PMPU strain belonged to sequence type ST58 and serotype O102:H30. This strain harbored a resistome
against antibiotics, heavy metals, and disinfectants. WGS analysis identified the presence of genes encoding
resistance to cephalosporins (bla CTX-M-8 andbla TEM-1B), tetracyclines [tet(A) ], aminoglycosides [aph(3”)Ib

3
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and aph(6)-Id ], sulfonamides (sul2 ), and trimethoprim (dfrA8 ). In addition, PMPU strain showed muta-
tions in gyrA (Ser-83-Leu and Asp-87-Asn) and parC (Ser-80-Iso) genes, conferring resistance to quinolones.
Moreover, genes conferring resistance to heavy metals (i.e., lead, arsenic, copper, silver, antimony, zinc, tel-
lurium, tungsten, magnesium, cobalt, nickel, manganese, cadmium, mercury, iron, molybdenum, chromium,
selenium, and vanadium), and biocides commonly used as disinfectants in domiciliary and hospital settings
[i.e., quaternary ammonium compounds (QACs), acridines, chlorhexidine, sodium dodecyl sulphate, ethid-
ium bromide, hydrochloric acid, hydrogen peroxide, and sodium hydroxide] were found (Figure 2). Regarding
to plasmidome in PMPU strain, IncI1 and IncQ1 plasmid replicons were detected.

E. coli ST58 is a globally disseminated clone previously reported in humans, food-production animals,
wildlife and the environment, supporting a broad adaptation, persistence and a worldwide dissemination of
this clone (McKinnon, Roy Chowdhury, & Djordjevic, 2018; Borges, Tarlton, & Riley, 2019; Zurfluh et al.,
2019; EnteroBase, 2020; De Carvalho et al., 2020). In Brazil, E. coli ST58 has been isolated from humans,
poultry, peri-urban wild animals, and polluted mangrove ecosystem (Sacramento et al., 2018; Borges et al.,
2019; De Carvalho et al., 2020). On the other hand, MDR or ESBL-producing E. coliserotype O102:H30 has
been recurrently identified in hospitalized human patients, mainly with urinary tract infection (Gonçalves
et al., 2009; Cergole-Novella et al., 2010; Cergole-Novella, Pignatari, & Guth, 2015).

We further investigated the genomic relatedness among E. coli PMPU isolate identified in this study and
123 assembled genomes of E. coli belonging to ST58 from different sources of origin and countries, available
in EnteroBase database (https://enterobase.warwick.ac.uk/). In the minimum spanning tree of the whole
genome analysis based on the wgMLST scheme from EnteroBase, E. coli PMPU isolate showed high genetic
relatedness compared to livestock isolates from Japan (ESC QA8442AA AS and ESC QA8026AA AS) and
Belgium (ESC QA7365AA AS), an animal companion isolate from Canada (dog; ESC YA3357AA AS), and
an environment isolate from Japan (ESC HA7644AA AS) (Figure 3). These phylogenetically related isolates
were collected between 2013 and 2018, supporting rapid adaptation and dissemination of this E . coli clone.

3.4. Virulome of ESBL-positive E. coli ST58 colonizing Brazilian merganser is associated with
a virulent behavior

Virulome analysis of ESBL-producing E. coli PMPU strain highlighted virulence factors, including adherence
factors (fim, eaeH , lpfAO113 , csgBCDEFG ), invasins (iss ,ibeBC ), cytolytic pore-forming toxin (hlyE
), iron acquisition systems (entBCEFS , fepABCD ) and chemotaxis (cheABRMWYZ , motAB ), among
other virulence factors commonly found in commensal and pathogenic E. coli strains (Table 1). The virulent
potential of PMPU strain was confirmed in the G. mellonella infection model, where strains inoculated at
1 × 105 CFU killed 100% of wax moth larvae within 50h, showing a more virulent behavior than E. coli
ATCC 25922, but no more than hypervirulent meningitis-causing E. coli MNEC RS218 (Figure S1). G.
mellonella has been successfully utilized as anin vivo model to assess the pathogenic potential of clinically
important bacterial pathogen. Therefore, responses to bacterial infections observed in this model could closely
mimics responses displayed by mammalian models (Jander, Rahme, & Ausubel, 2000; Kavanagh & Reeves,
2004; Lange et al., 2019). In this study, virulent performance of E. coli PMPU strain was correlated with
virulence factors commonly identified in pathogenic E. coli lineages from humans and poultry, highlighting
adherence factors (fimBCEFGHI, eaeH , lpfAO113 , csgBCDEFG ) (Osek, Weiner & Hartland, 2003; Dale
& Woodford, 2015; Torres, 2016; Sarowska et al., 2019), invasins (iss , ibeBC ) (Sarowska et al., 2019), toxin
(hlyE ) (Wyborn et al., 2004), iron acquisition systems (entBCEFS , fepABCD ) (Torres, 2016; Robinson,
Heffernan, & Henderson, 2018) and chemotaxis factors (cheABRMWYZ ,motAB ) (Pettersen, Mosevoll,
Lindemann, & Wiker, 2016). In this regard, adherence factors and invasins found in the E. coli PMPU strain
may have contributed to the colonization in different tissues of the bird; and, the cytolytic pore-forming
toxin hlyE could be related to hemodynamic disturbances and tissue damage found in the histopathology
(Oscarssonet al, 1999; Lai et al, 2000; Lithgow, Haider, Roberts, & Green, 2007). On the other hand, the
immature immune system in a 8-day-old Brazilian merganser, the artificial incubation conditions (Ruiz-
Castellano et al., 2016), as well as use of disinfectants may contributed to the selection of a virulent E. coli
resistant to a wide range of antibiotics and disinfectants, establishing a disseminated infection with a fatal
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end. In order to avoid new infections due toE. coli widely resistant to antimicrobials and disinfectants, a
cleaning of the environments was carried out using peracetic acid concentrated at 0.2%. After this, no new
cases of deaths occurred due to this bacterium.

Virulent pathogens resistant to an increasing number of antimicrobials cause thousands of deaths in the
human population each year (Gu et al. , 2018; Cassini et al. , 2019; Centers for Disease Control, 2019). In
this concern, wildlife plays an important role in the epidemiology of antibiotic-resistant pathogens in the
environment (Alcalá et al. , 2016; Vittecoq et al., 2016; Sevilla et al. , 2020). However, little is known about
the impact of these MDR-pathogens on wildlife, especially on threatened wildlife species (Gonçalves et al. ,
2012; Larsson et al. , 2018; Ramey & Ahlstrom, 2020). In this study, we isolated a MDR ESBL-producingE.
coli with virulent behavior, belonging to international clone ST58 and serotype O102:H30, causing fatal
infection in a critically endangered Brazilian merganser. Of note, a MDR colistin-resistantE. coli ST58 was
recently isolated from a polluted mangrove ecosystem in Brazil (Sacramento et al. , 2018), being able to
become a serious threat to the associated wildlife and human population.

A better integration of environmental and wildlife issues is necessary to a successful One Health approach for
global AMR crisis (White & Hughes, 2019). In this context, to understand epidemiologically the evolution and
adaptation of AMR, wildlife veterinarians must increasingly report the challenges that arise when treating
antimicrobial-resistant pathogenic bacteria in wildlife species. Herein, we report a fatal colibacillosis by MDR-
ESBL-producing E. coli in critically endangered Brazilian merganser, highlighting that besides colonization,
critical priority pathogens are threatening wildlife.
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Characteristics Virulence genes
Adherence
Fimbriae fimBCEFGHI, cfaABCD, lpfAO113, matF, stgBCD, ycbFRSTUV
Flagella flgABCDEFGHIJKLN, flhABCDE, fliADEFGHIJKLMNOPQRSTYZ, flk
Pilus hofCB
Adherence hemorrhagic coli pilus ppdABCD, hofQ, ygdB, yggR, b2854, b2972
Adhesins eaeH, ecpRABCD, ehaABG
Curli fibers csgBCDEFG
Protectins and invasins
Colicin cib
Increased serum survival iss
Invasin ibeBC
Iron acquisition systems
Enterobactin entBCEFS, fes
Ferrienterobactin fepABCD
Toxins
Hemolysin E hlyE
Secretion systems components
Type II secretion system gspCDEFGHIJKLM, yghG
Type III secretion system espL3-4, espR1, espX1-5, eprHIJK
Others
Glutamate decarboxylase gadX
Lysine decarboxylase cadA
Chemotaxis cheABRMWYZ, motAB
Surface presentation of antigens epaOPQRS

FIGURE LEGENDS

Figure 1. Microscopic findings in an 8-day-old Brazilian merganser (Mergus octosetaceus ) with colibacil-
losis. In a: Lungs, note congestion of alveolar capillaries and perivascular edema (Black arrow). In b:
Liver, note hepatocellular swelling and intracytoplasmic vacuolation (Black arrow). Hematoxylin and eosin
staining.
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Figure 2. Resistome of multidrug-resistant CTX-M-8-producingEscherichia coli PMPU strain. Columns
show genes encoding resistance to antibiotics, disinfectants, heavy metals and acid or basic environment.

a Mutations in quinolone resistance-determining region (QRDR).

Figure 3. Phylogeny of CTX-M-8-producing Escherichia coli isolate from a Brazilian merganser (Mergus
octosetaceus ), in relation to an international E. coli collection. The image shows a minimum spanning tree
based on wgMLST of 123 worldwide distributed E. coli strains belonging to ST58, constructed by the MSTree
V2 tool from EnteroBase. The figure was generated with iTOL v.5.5 (https://itol.embl.de). Interactive
versions of the tree can be found at https://itol.embl.de/tree/20014463144294501588789515. Colored circles
represent sources of origin. Each isolate is indicated by the country of origin.

figures/Figure-2/Figure-2-eps-converted-to.pdf

10



P
os

te
d

on
A

u
th

or
ea

15
M

ay
20

20
—

C
C

-B
Y

4.
0

—
h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
58

9
5
53

80
.0

69
58

15
4

—
T

h
is

a
p
re

p
ri

n
t

an
d

h
as

n
ot

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

at
a

m
ay

b
e

p
re

li
m

in
ar

y.

figures/Figure-3/Figure-3-eps-converted-to.pdf

11


