METHODOLOGY FOR ASSESSING THE OPPORTUNITY OF FLOODING OF FORMER OPEN-PITS IN THE CONTEXT OF LAND RECLAMATION

Izabela Maria Apostu¹ and Maria Lazar¹

¹University of Petrosani

May 15, 2020

Abstract

As a result of open-pit mining exploitations, impressive size gaps occur in the landscape. Their flooding leads to the occurrence of so-called open-pit lakes and represents an interesting way to reclaim the degraded land. Because there is still no way to evaluate the opportunity of flooding the open pits, a methodology for assessing this opportunity was developed in order to identify the open-pits that are suitable for flooding. For this purpose, more criteria have been established that allow a complex assessment of the flooding opportunity. The methodology also aims to ensure maximum safety conditions in the former mining perimeter, the socio-economic and cultural requirements of local communities and the harmonization of the land in accordance with adjacent ecosystems.

Hosted file

Apostu_Lazar_EN_FINAL.pdf available at https://authorea.com/users/322475/articles/451431-methodology-for-assessing-the-opportunity-of-flooding-of-former-open-pits-in-the-context-of-land-reclamation

Hosted file

Table_1.docx available at https://authorea.com/users/322475/articles/451431-methodology-for-assessing-the-opportunity-of-flooding-of-former-open-pits-in-the-context-of-land-reclamation

Hosted file

 $\label{local_com_users} Table_2. docx \quad available \quad at \quad \texttt{https://authorea.com/users/322475/articles/451431-methodology-for-assessing-the-opportunity-of-flooding-of-former-open-pits-in-the-context-of-land-reclamation}$

Hosted file

Table_3.docx available at https://authorea.com/users/322475/articles/451431-methodology-for-assessing-the-opportunity-of-flooding-of-former-open-pits-in-the-context-of-land-reclamation

Configuration of the remaining gap

Geomorphology and orography of the area Necessity of appearance of a water body in the area

Necessity to restore the aquifer resources

Hydrology and hydrogeology of the region Stability conditions of the final slopes of the remaining gap

Accessibility and distance to the areas of interest

Investments for the recovery and rehabilitation of the remaining gap

Population requirements

FIGURE 1 Assessing criteria

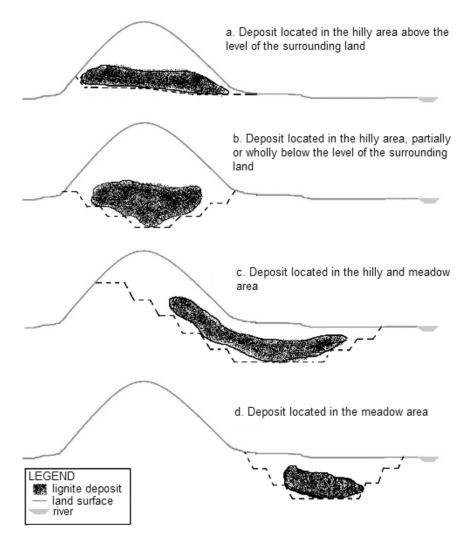


FIGURE 2 The shape of the open-pit according to the location of the deposit in relation to the forms of relief

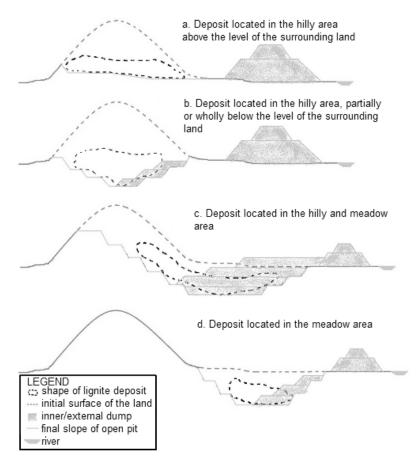


FIGURE 3 The shape of the remaining gaps according to the location of the deposit and the way of construction of the inner and external dumps

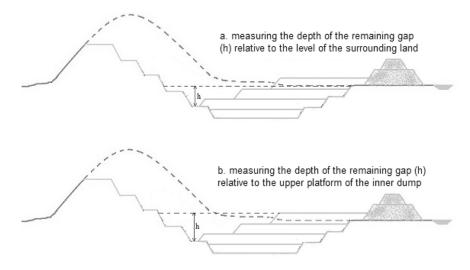


FIGURE 4 Measuring the depth of a remaining gap

Agricultural areas ($x = 9$; $c = 3$)	cultivated land, pastures, orchards, vineyards etc., including small households and farms		
Urban areas (x = 8; c = 4)	 cities, villages, institutional centers, shopping centers, parks and recreation areas, cemeteries, land fills etc. 		
Industrial areas $(x = 7; c = 2)$	 mining perimeters, deposits, other related constructions; industrial parks; industrial complexes etc. 		
Protected areas $(x = 6; c = 1)$	parks and natural reservations		
Natural areas $(x = 5; c = 1)$	• grassy meadows, meadows with shrubs, natural areas of plain, hill or mountain		
Forested areas $(x = 4; c = 1)$	deciduous, coniferous or mixed forests		
Lakes and river areas $(x = 3; c = 1)$	• streams, rivers, lakes etc.		
Poor lands (x = 2; c = 1)	 lands with a very thin layer of vegetal soil, sandy, arid, rocky etc. 		
Transport, communications and utilities (x = 1; c = 1)	streets, highways, railways, other roads, including airports, stations, parking lots; water, gas, electricity, networks etc.		

FIGURE 5 Types of land uses

Areas of activity with high water requirements (D3): Fish farming, Agriculture, Utilities: Water, Tourism

Areas of activity with medium water requirements (D2): Zooculture, Forestry, Manufacturing, Extractive industry

Areas of activity with low water requirements (D1): Utilities: Electricity and heat, Constructions, Education, Research, Health and Safety

Areas of activity that do not have special requirements for water (D0): Hunting, Trade, Utilities: Gas, Transport and Communications

FIGURE 6 Water requirements according to specific areas of activity

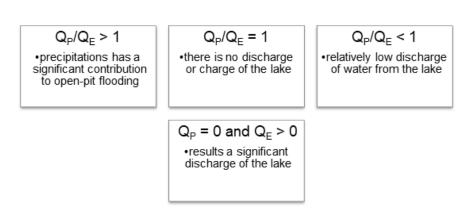


FIGURE 7 The amount of water contributing to the flooding

Insignificant investments

 Flooding, recovery and reintegration into the landscape occur naturally within an acceptable period of time

Reduced investments

 Flooding, recovery and reintegration into the landscape occur naturally, but some anthropogenic interventions are needed to accelerate the processes: leveling and resloping, use of existing objectives etc.

Medium investments

Flooding, recovery and reintegration into the landscape is done naturally and anthropically through water supply, being necessary other anthropic interventions: resloping, leveling, compaction, remodeling, accelerating the process of revegetation, reconstruction, transformation or development of existing objectives etc.

High and very high investments

 Flooding, recovery and reintegration into the landscape are mostly anthropogenic: water supply, resloping, leveling, compaction, remodeling of banks, revegetation, construction of new objectives etc.

FIGURE 8 Classification and quantification of investments according to the nature of the necessary works

Score	P = 0 - inopportune	P = 1 – reduced opportunity	P = 2 – average opportunity	P = 3 – high opportunity
C1	hilly or mountain area, the deposit is above the level of the surrounding land, practically does not result in a gap	hilly (or hilly and meadow area with extension to the hilly area) or mountain area, the deposit is partially or completely below the level of the surrounding land, reduced probability of occurrence of a remaining gap (it is likely to result in a remaining gap, but its dimensions are usually small)	hilly or hilly and meadow area, relatively high probability of occurrence of a remaining gap	meadow area, high probability of occurrence of a remaining gap
C2	practically does not result in a gap, h = 0 m	shallow depth of the remaining gap, h = 0 - 10 m	medium depth of the remaining gap, h = 10 - 30 m	high depth of the remaining gap, h > 30 m
C3	M _R ≤ 2; predominates lands without special water requirements and for which water supply is not a priority; it is not necessary to restore the aquifer resources;	2 < M _k ≤ 5; predominates lands with low water requirements, for which water supply is not a priority; average need for restoration of aquifer resources;	5 < M ₈ ≤ 7,5; predominates lands with average water requirements, for which water supply is a priority; high need for restoration of aquifer resources;	7.5 < M _R ≤ S predominates lands with high water requirements for which water supply i a priority, major need for restoration of aquife resources.
C4	for domain of activity that do not have water requirements (D0), there is no need of creating a lake	for domain of activity that have low water requirements (D1), reduced need of creating a lake	for domain of activity that have average water requirements (D2), the average necessity of creating a lake	for domain of activit that have high demand on water (D3), a majo need of creating a lake
C5	- Q= = 0, Q≡ = +, it results in a significant discharge of the lake - 1st class, mining perimeter with reduced possibility of flooding from aquifer formations; - mixture of aquifer rocks (sands, gravels, etc.)	- Q _P /Q _E < 1, results in a relatively small discharge of the lake, but that can be covered by the influx of water from the aquifer formations - class II, mining perimeter with average possibility of flooding from aquifer formations; - mixture of predominantly aquiferous rocks	- O₂-(O₂ = 1, results that rainfall does not contribute to the flooding of the remaining gap, but there is no loss of water from the lake - class III, mining perimeter with high possibility of flooding from aquifer formations; - mixture of predominantly aquiclude rocks	 Q⇒/Q_E > 1, results the rainfall has a significar contribution to floodin the remaining gap class IV, minin perimeter with majc possibility of floodin from aquifer formations
C6	4th class of stability, Fs <1, unstable slopes, with active displacements;	3rd class of stability, slopes with reduced stability / at the limit of stability, Fs = 1, slopes that can enter dangerous movement even as a result of the individual action of some triggering factors (such as the presence of water in the body of the slope as a result of heavy rainfall, explosions, earthquakes, vibrations from the vehicles of high tonnage machines or overloads given by overloading the berms / platforms, etc.);	2nd class of stability, slopes with high stability, slopes with high stability. Fs = 1.25 + 1.5, slopes at which possible displacements can be recorded in case of concomitant or individual action of some triggering factors, but which can be limited by arrangements;	1st class of stability, Fs 1.5, slopes with hig stability reserve, a which the probability of sliding is very low of even zero (only in cas of the simultaneou action of severe triggering factors ca slip phenomena).
C7	- dirt roads improved or unimproved, temporary, strictly for driving vehicles, closed to public traffic, hardly accessible - very long distance from the areas of interest (>50 km)	- paved roads, opened or closed to public traffic, accessible, very low traffic - relatively large distance from the areas of interest (10 - 50 km)	- semi-permanent roads, opened to public circulation, easily accessible, low traffic or medium - medium distance from the areas of interest (1 - 10 km);	- permanent road- opened to public traffic easy access, heavy of very intense traffic - low distance from the areas of interest (0 - km)
C8	high or very high investments	average investments	reduced investments	does not requir investment or involve very small, insignificar investments
C9		$P_f = (n_{var} - p_{lake}) \cdot c$		mvesiments

FIGURE 9 The matrix of evaluation of the opportunity of flooding of former open-pits

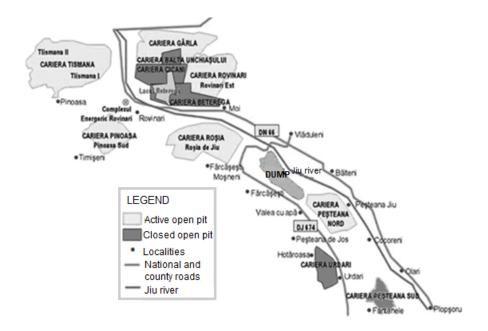


Figure 10 Rovinari Mining Basin (***, 2016-2019)

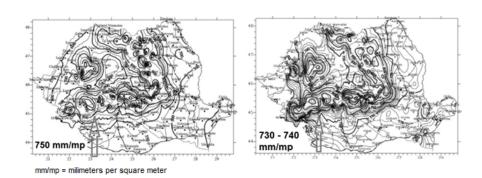


FIGURE 11 Average annual rainfall (left), potential evapotranspiration (right) (Păltineanu, Mihăilescu, Seceleanu, Dragotă, & Vasenciuc, 2007)

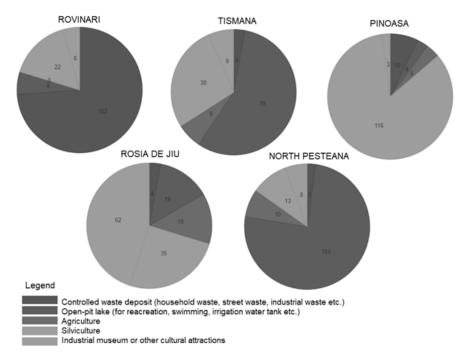


FIGURE 12 Partial survey results