Inverse scattering transform and multi-solition solutions for the sextic nonlinear Schrödinger equation

Xin Wu^{1}, Shou-Fu Tian ${ }^{1}$, and Jin-Jie Yang ${ }^{1}$
${ }^{1}$ China University of Mining and Technology

May 16, 2020

Abstract

In this work, we consider the inverse scattering transform and multi-solition solutions of the sextic nonlinear Schr \backslash " $\{0\}$ dinger equation. The Jost functions of spectrum problem are derived directly, and the scattering data with $\$ \mathrm{t}=0 \$$ are obtained according to analyze the symmetry and other related properties of the Jost functions. Then we take use of translation transformation to get the relation between potential and kernel, and recover potential according to Gel'fand-Levitan-Marchenko (GLM) integral equations. Furthermore, the time evolution of scattering data is considered, on the basic of that, the multi-solition solutions are derived. In addition, some solutions of the equation are analyzed and revealed its dynamic behavior via graphical analysis, which could be enriched the nonlinear phenomena of the sextic nonlinear Schr \backslash " $\{0\}$ dinger equation.

Hosted file

```
sNLS-MMAS-2020.pdf available at https://authorea.com/users/322670/articles/451623-
inverse-scattering-transform-and-multi-solition-solutions-for-the-sextic-nonlinear-
schr%C3%B6dinger-equation
```

figures/1-1/1-1-eps-converted-to.pdf
figures/1-2/1-2-eps-converted-to.pdf
figures/2-1/2-1-eps-converted-to.pdf
figures/2-2/2-2-eps-converted-to.pdf
figures/2-3/2-3-eps-converted-to.pdf

