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Abstract

Natural predators of arthropods provide an important ecosystem service by preying on crop-damaging species. However,
measuring the positive impact of natural pest predators is still challenging. We present a framework to estimate the pest-
consumption pressure by natural predators across space and project it onto geographical maps. We use DNA metabarcoding
and species distribution modelling to integrate predator density estimations with their energetic requirements and direct pest
predation, which yields a comprehensive measure of pest-consumption pressure per time-frame and area. We showcase it on a
European bat assemblage, and show that bats consume a variety of pests whose predation pressure varies throughout space.
We also report that the impact of different predators depends on spatial scale, and that pest predation pressure is negatively
correlated with agricultural intensity. Our framework can be used to estimate broad-scale effects of natural predators on pest

arthropods as well as to design research and management strategies.

Introduction

Arthropods cause a yearly damage estimated at over $540 billion on crops worldwide (Painiet al. 2016),
an impact that is expected to increase under warming climatic conditions (Deutsch et al.2018). While
historically tackled through active physical, chemical and biological measures (Thacker 2002), the economic
cost and environmental impact of these control measures have led to the recognition of the need for more
sustainable solutions to improve the quality and yield of crops (Pickett & Bugg 1998). Natural enemies of
crop-damaging arthropods are essential allies for pest control (Thomson & Hoffmann 2010), and as such,
there is an increasing interest in developing efficient strategies to maximise the ecosystem service they provide
(Gurr & Wratten 2012).

The large abundance and spatio-temporal variability of pest arthropod populations complicate measuring
the impact natural predators have on their populations and affected crops (Rhainds & English-Loeb 2003).
However, acknowledging the pest-consumption pressure natural predators exert on pest arthropods is a first
step to identify target predators and geographic areas in which natural predator-based management strategies
could be prioritised. The estimation of the predation pressure on pest populations requires quantifying the
average absolute consumption of pest arthropods by individual natural predators coupled with the density of
predators across landscape (Maine & Boyles 2015). Conducting such estimations is complicated, as predator
population densities and dietary habits vary across taxa, time and space (Krauel et al. 2018; Baroja et
al. 2019; Weier et al. 2019). Nevertheless, the combined use of recently developed molecular and spatial
ecology tools might enable conducting large-scale approximations with a resolution never seen before. Species
distribution modelling allows refining continental-level predator density estimations across space, while DNA
metabarcoding enables detecting and quantifying the large-scale consumption of pest species by predators
(Aizpurua et al.2018; Kamenova et al. 2018).



Here we present a new analytical framework that uses such technological developments to model pest-
consumption pressure by natural predators across space (and potentially time) and project it into high-
resolution geographical maps. Our approach relies on predator energy budget estimations, molecular di-
etary data, regional population density estimates and species distribution modelling to estimate the pest-
consumption pressure, which is expressed as the mass of pest prey consumed by predators per time-period
and area (e.g. grams/day/km?). The framework integrates strategies to account for the uncertainty of the
data, so that the reliability of the final measurements can also be assessed.

We showcase the potential of our framework by combining DNA metabarcoding-derived pest consumption
data, species distribution modelling, demographic information and energy budget estimates of a European
bat assemblage. Bats are one of the taxa with the highest potential for pest control, as nearly all species
in temperate regions are insectivorous and many can form aggregations of thousands of individuals (Fenton
& Simmons 2014). We analyse the spatial variability of pest predation pressure, and overlay the spatial
estimations with agricultural intensity maps to identify zones with different ecosystem service provision
potential by the analysed bats. We report the details of the employed model including full code, showcase it
with real data, discuss strategies to improve the predation pressure estimates and suggest potential practical
applications of the proposed framework.

Materials and methods

We present a methodological framework that relies on i) spatial distribution of population densities derived
from region- or country-specific population size estimates refined with spatial distribution models, ii) the daily
mass of insect intake estimated for each species based on energy budgets and average energy contribution
of arthropods, and iii) proportion of consumed pest species as determined by DNA metabarcoding (Fig. 1).
The model yields estimates of daily pest consumption in terms of consumed pest mass per time period and
area, following Equation 1:

Cyxy = Nyy * I * Py yEquation 1

In which Cyy is consumption of pest arthropods (g) per area, Ny, is the density of bats in each cell
(individuals/km?), I is the total intake of arthropods (g) per day and Py is the proportion of pest species
in respect to the total consumed prey (0-1). C, N and P values vary across grid cells, while I is constant
for each predator species. We have implemented all functions required to perform the calculations in a
new R package, namely P3Mapper. The entire pipeline used for generating all the data shown in this
manuscript has been added to Appendix S1 in Supporting Information. Ny , is calculated using the function
predator_ density() , I is calculated usingfood intake() and Py, is generated usingpest proportion() . All
three elements can be inputted as value distributions (e.g. average and standard distribution). The modelling
approach makes a number of assumptions: (i) all values (e.g. predator body mass, prey energy content)
are normally distributed, (ii) the habitat suitability projections derived from the species distribution models
reflect demographic variation across space, (iii) prey detection reflects prey consumption, and (iv) the dietary
profiles obtained in a location are representative of the surrounding area and change linearly across space
between characterised locations. The implications of these assumptions and the precautions required to
interpret the data are addressed in the discussion section.

We showcase our framework using dietary and spatial data of seven European insectivorous bat species:
Miniopterus schreibersii(MSc), Myotis capaccinii (MCa), Myotis daubentonii (MDa),Myotis emarginatus
(MEm), Myotis myotis (MMy),Rhinolophus euryale (REu) and Rhinolophus ferrumequinum(RFe). For our
analyses, we iterated the analysis of each predator species 100 times to account for the data uncertainty and
natural variability of the analysed features, and thus measure the dispersion of the conducted estimates. In
each iteration one value was randomly chosen from each of the distributions, so after the iteration process
100 different pest consumption estimates were generated. The resulting mean value represents the most
probable estimation, while the dispersion quantifies the uncertainty of the estimation. The normalised
dispersion of the data was measured by means of the coefficient of variation (CV), which was obtained by
dividing standard deviation by the corresponding average value. All GIS procedures, statistical analyses



and visualisations were carried out in the R statistical environment, and all general estimates are shown as
average and standard distribution values (X+£SD).

Spatial predator density estimates

The predator _density() function estimates spatial predator density across space by combining population
estimates with species distribution models (Fig. 1). This function transforms georeferenced population esti-
mates into smooth spatial data using inverse distance weighted (IDW) interpolation, as implemented in the
R package gstat. IDW determines cell values using a linearly weighted combination of a set of sample points
in which weight is a function of inverse distance (Pebesma 2004). As the distribution of predators across
space is not homogeneous, but depends on a range of environmental conditions, spatial density distributions
are refined through combining them with species distribution models (Araijo & Guisan 2006) and cropping
them with TUCN-recognised distribution ranges (IUCN 2010).

For our analyses, we generated population density estimations from bat species population sizes per country
or region, retrieved from journal articles, books, ITUCN website and technical reports (Table S1). The number
of estimated individuals per country was divided by the total area of the country to obtain density estimation
distributions of number of bats per km?, and the values were georeferenced to geographic centroids for each
country or region before mapping them across space. Species distribution models generated through an
ensemble approach using biomod2 (Thuiller et al.2013) were obtained from Alberdi et al. (2020). Models
included between 113 and 591 occurrence records per species and multiple filters to minimise the impact of
spatial autocorrelation and erroneous identifications, as detailed in the original publication.

Food intake estimates

The food_intake() function estimates the daily ingested mass of arthropod prey per predator individual
based on the relationship between the daily energy requirement of the predator and energy content of dietary
items (Equation 2). Daily energy requirements are estimated following the mass-independent normalisation
constant and allometric scaling exponent determined by Nagy et al. (1999). The function requires a value
distribution (average and standard deviation) of the body mass of the predator, a value distribution of the
energy content of prey and the ‘a’ and ‘b’ constants determined for the predator taxa in the allometric
equations proposed by Nagy et al. (1999). It yields a vector of prey consumption estimations of the length
specified by the number of iterations.

I= (a*wpredatorb) / eprey Equation 2

In which I is the daily food intake mass, Wpredator 15 the body mass of the predator, ‘a’ and ‘b’ are the
constants from the allometric equations proposed by (Nagy et al. 1999) and eprey is the energy content of

prey.

For our analyses, we retrieved energy content of dry matter and water percentage estimations of 11 arthropod
orders from the literature (Table S2), from which mean and standard deviation values were generated and
inputted into the model. We also obtained predator body mass values from the literature, while the ‘a’ and
‘b’ constants for the energy budget estimates of predators were obtained from Equation 4 by Nagy et al.
(1999) on Chiropterans.

Relative pest consumption estimates

The pest_proportion() function generates spatial estimates of the proportion of pest insects consumed by
interpolating DNA metabarcoding-based georeferenced prey consumption data. The function incorporates
a bootstrapping step that generates value distributions that reflect uncertainty of the data by randomly
incorporating one sample from a different location in each iteration. Relative pest consumption measurements
per site are then converted into a spatial raster of relative pest consumption using IDW interpolation. The
function requires a count (i.e. OTU, ASV) table that specifies the relative detection of prey in each sample,
a binary raster that delimits the geographic range of the predator, and tables specifying the relation between



OT7Us and pest species, characterised samples and their sampling sites, and the geographic coordinates of
the sites.

For our analyses, pest consumption information was obtained from the dietary metabarcoding data (Alberdi
et al. 2020) generated using ZBJ-ArtFlc/ZBJ-ArtR2c primers (Zeale et al. 2011). The dataset includes
dietary information of over 350 individual bats belonging to the seven analysed species sampled in 40 locations
distributed throughout Europe. The technical procedures employed to obtain the samples and generate the
data are explained in the original publication. Of critical relevance for this study, the employed procedures
ensured maximum reliability of taxonomic identifications, as only high quality (Qavg>30) sequences that
appeared in at least two of the three PCR replicates per sample were retained, and sequences identical to
those detected in the extraction and library blanks of the corresponding processing batch of each sample were
removed. In addition, taxonomy assignment was based on two reference databases, BOLD (Ratnasingham
& Hebert 2007) and Genbank (Bensonet al. 2013), limited to matches over 99% identity between query and
reference sequences, and ambiguous identifications were discarded. Pest arthropods were identified through
a thorough bibliographical research that included scientific journal articles, books, specialised websites and
technical reports (Table S3). Prey identified at species level were classified in two groups:Innocuous , species
that do not regularly affect agricultural activities; and Pests , species that regularly affect agricultural
productivity with varying economic impacts.

Ecosystem service indices

We computed two spatial indices to analyse different features of pest predation pressure and its potential
impact on agricultural productions. The Ecosystem Service Evenness (ESE) index measures whether the
ecosystem service is evenly provided by the analysed assemblage of predators or majorly concentrated in
a single predator. It is calculated as shown in Equation 3, in which, Dy, is the Shannon diversity, or Hill
number of g-value 1 (Alberdi & Gilbert 2019), calculated from the relative contribution of each predator to
the total pest predation pressure in each grid cell, and Ry y is the predator richness calculated as the number
of predators present in each grid cell. When the ecosystem service is provided by a single predator the ESE
value is 0, while ESE approaches 1 as the service becomes more evenly distributed across multiple predators.

The Ecosystem Service Potential (ESP) index measures the potential of the analysed predators to provide an
ecosystem service by quantifying the joint incidence of agricultural activity and pest predation pressure. It is
calculated as shown in Equation 4, in which Ay y is agriculture intensity, Cy y is the pest predation pressure
in each grid cell, Cp, is the minimum pest predation pressure in the considered area, and Cp.x is the
maximum pest predation pressure in the considered area. When both the presence of agricultural intensity
and predation pressure are maximum ESP takes a value of 1, while approaching 0 when both variables
decrease. In our showcasing system agricultural intensity was characterised as the fraction of cropland area
(FCA) retrieved from earthstat.org (Ramankutty et al.2008). Overall ESE index, ESP index and predator
richness were computed by averaging the values across the considered region.

ESEyxy = (*Dxy - 1) / (Rxy - 1) Equation 3
ESPX?Y - AIva * ((C&y' Cmin) / (Cmax - Cmin)) Equation 4

Results

We generated a map of total pest predation pressure provided by the seven studied bats (Fig. 2a), as well as
species-specific maps (Fig. 2b-h), with which we analysed the spatial and predator-species variation of the
ecosystem service they provided. Using DNA metabarcoding 103 prey taxa were identified as pests. Predation
pressure on crop-damaging arthropods was mainly exerted on Lepidopterans, as 14 out of the 15 most
consumed pest arthropods revealed by DNA metabarcoding were moths (Table S4). These included mostly
lepidopterans whose larval phase damage a wide range of agricultural systems, including vegetable gardens
(e.g.Agrotis segetum, Spodoptera exigua ), citrus plantations (e.g.Prays citri ), ornamental gardens (e.g.



Noctua pronuba ), cereal fields (e.g. Helicoverpa armigera ), corn fields (e.g.Agrotis ipsilon ) and coniferous
plantations (e.g. Thaumetopoea pityocampa ). The relative pest predation estimates showed that Miniopterus
schreibersii and Rhinolophus euryale have the highest proportion (around 80%) of pest prey in their diet,
followed by Myotis emarginatus and R. ferrumequinum(slightly over 50%) and the rest of species (Myotis
daubentonii, M. capaccinii and M. myotis ) below 50% of their diet (Fig. 2m). Absolute pest consumption
was calculated based on daily food intake of predators (Fig. 21) estimated from their body mass (Table S5)
and energy content estimations of prey (Table S2).

The total estimated daily pest predation pressure of bats for the entire analysed area was 63.3£13.9 metric
tonnes (=10° grams) of pest arthropods, with 12.145.85 grams on average per km?. M. daubentonii contri-
buted the most (31.7+12.8 tonnes), followed by M. schreibersii (14.1+3.01) andM. myotis (8.28+2.31) (Fig.
2i). The contribution of the different features considered for estimating the total predation pressure differed
across the analysed species. The large contribution of M. daubentonii was driven by its large distribution
area and density (Fig. 2n), as it is one of the species with the lowest pest predatory pressure per bat (Fig.
2k). The contribution of the second ranked M. schreibersii was due to a mixture of high relative proportion
of pest prey (Fig. 2m), medium food intake (Fig. 21) and moderate density and distribution range (Fig.
2n). In contrast, M. myotis exhibited large food intake, low relative proportion of pest prey and moderate
distribution area.

The average Ecosystem Service Evenness (ESE) index was 0.59+0.15, which shows that pest predation
pressure was typically provided by multiple, yet not all, predators, though ESE index values varied across
space (Fig. 3). Although in most of the regions pest predation pressure was provided by many predator
species (high ESE index; Fig. 3a), in some others the ecosystem service was provided by a few (Fig. 3b-
¢) or just a single (ESE index of 0; Fig. 3d) species. Total pest predation pressure exhibited an inverse
correlation with the fraction of cropland area (r = -0.23; t = -23.34, df = 9998, p-value < 0.001; Fig. 4a).
This pattern was observed in all predators, yet with different intensities (Fig. 4b-c). Finally, the Ecosystem
Service Potential (ESP) index enabled identifying the factors that enabled the uncommon joint presence of
intensive agriculture and large pest predation pressure (Fig. 4e). The highest values were achieved in small
agriculturally intense patches surrounded by heterogeneous landscape (Fig. 4f-h), while lowest values were
observed in large cropland-dominated areas (Fig. 4i).

Discussion

The novel methodological framework we introduce enables scrutinising the spatial and predator-specific
variation of pest predation across space. Similar approaches have been recently employed to generate global
prey consumption estimates of birds and spiders (Nyffeler & Birkhofer 2017; Nyffeler et al. 2018), yet this
is the first time that high-resolution dietary information derived from DNA metabarcoding and spatially
refined predator density data are implemented in a single framework.

Possibilities and limitations of P3Mapper

Our framework is grounded on simplified relationships between energy budget of predators, energy content
of prey, and relative consumption of pest prey. As any other approach that models a complex system it
makes a number of assumptions. The model could be further refined to better reflect the complexity of the
analysed system, for instance, by adjusting energy content of prey to consumed arthropods, or tailoring
activity patterns to each predator. However, such refinements would introduce minimal variation in the
results while requiring generation of currently unavailable data.

In contrast, the impact predicted for biased or insufficient data is considerably larger. Hence, the framework
incorporates an iterative approach to account for the level of uncertainty of the data. For instance, despite the
large effort for characterising diet using DNA metabarcoding (over 350 individuals, seven species, 40 locations,
8 countries), relative pest prey consumption measurements in our case study are clearly insufficient to cover
the entire complexity of dietary variation across space, predator species and time. However, our framework
addresses such a shortcoming by assigning error ranges to relative pest consumption estimates using a



bootstrapping approach.

Bat population estimates are also uncertain, due to the inherent complications of estimating densities of
elusive and nocturnal animals. To accommodate this, as well as the natural variation of the biological system
under study, our framework implements an iterative approach whereby the analysed data are randomly
sampled from value distributions. This approach enables quantifying the amount of variation of the estimates,
which for the overall pest predation pressure is relatively large (CV = 0.22) compared to other large-scale
estimations (Nyffeler et al.2018), yet variable across species (e.g. CVpaa = 0.40, CVyee = 0.21). These
differences are mainly driven by the uncertainty of population size estimations for different species, which
in the case of bats, largely depends on the roosting behaviour and echolocation properties of the species. M.
schreibersii roosts almost exclusively in underground cavities, in which large aggregations usually hang from
the ceiling (Ramos Pereira et al.2009). This makes it relatively easy to count the number of animals (Brown
et al.2008; Battersby 2010), and thus rather accurate estimates can be obtained. In contrast, M. daubentonii
creates smaller aggregations, uses a wider range of roosting resources and often shelters in small cavities
(Ngamprasertwong et al. 2014). This prevents accurate roost count-based estimations, which coupled with
the difficulties to accurately identify Myotisspecies using ultrasound detectors, complicates population size
estimates of M. daubentonii(Battersby 2010), hence increasing the uncertainty. In addition, our framework
refines the density distributions of predators across space by using species distribution models. We are
aware that a continental level spatial model that relies on climatic variables and broad habitat features
cannot accurately capture local-scale variation that depends on many other ecological variables. Within
these limitations though, we believe this is the best available tool to refine predator densities across space
in a continental scale.

Unlike measurement uncertainty, the part of the dispersion derived from the natural variability of the data
cannot be reduced. This is largely due to predators consuming multiple types of arthropods and different-
sized prey with varying energetic content, and body mass varying across predator individuals. Critically
though, our framework accommodates such data dispersion by not relying on specific values to represent
each element, but again using value distributions.

Showcasing system: bat predation on pest insects in Europe

We use our newly developed methodological framework to estimate the predation pressure of an assemblage
of natural predators, namely bats, on crop-damaging arthropods at the European scale. The widespread
consumption of pest arthropods by European insectivorous bats we report expands the taxonomic and
geographic breadth of similar previous observations (Aizpuruaet al. 2018; Cohen et al. 2020). Crop-damaging
arthropods are not only consumed by species that mainly forage in open areas, but pest consumption is
widespread across bats with different ecological features. The combination of the relative dietary weight of
pest arthropods with the energy budget of each predator estimates the consumption of pest arthropods to
be highest (between 6-7 g/day) inM. schreibersii , R. euryale and R. ferrumegquinum . The first two species
have similar body mass and exhibit narrow dietary niches limited to moths (Alberdi et al.2020), the taxon
that encompasses some of the most important flying arthropod pests (Bebberet al. 2014). In contrast, the
dietary niche of R. ferrumequinum is broader, with a lower incidence of pest arthropods, yet its larger body
size predicts a similar level of pest arthropod consumption as the other two. M. daubentonii , M. capaccinii
and M. myotis are the species with the broadest dietary niches, in part because they are able to gaff prey
either from the water surface, foliage or ground (Denzinger & Schnitzler 2013), which seems to be the cause
under the reduction on the relative incidence of crop-damaging arthropods in their diet.

However, the overall pest predation impact of each predator changes drastically when predator species’
population densities and distribution ranges are accounted for. For instance, despite its low relative predation
on pest arthropods, M. daubentonii is the species exerting the largest overall pressure due to its large
distribution area and population densities. In contrast, both Rhinolophus species exhibit poor overall and
per-grid-cell pest predation pressure, although they are two of the species with the highest estimated pest
consumption per individual bat. Such results highlight the complexity of the pest predation pressure exerted
by different predators, and show that the relevance of different predators on pest predation might differ



across geographic scales. For instance, despite Rhinolophus bats being almost irrelevant at a European scale,
they might be important assets for pest suppression at local scales, when agricultural fields are located close
to colonies of these species.

The fine-scale maps of pest predation our framework generates enable conducting spatial analyses and geo-
graphical comparisons of the intensity of the predation pressure. Pest predation pressure varies considerably
across predator taxa and space. The contribution of different species to the overall pressure differs drastically,
as the pressure estimated for M. daubentonii is ten times larger than that of R. euryale . However, these
patterns vary across space, as exemplified by the larger predation pressure of R. euryale in the Balkan area
compared to M. daubentonii , due to differences in their respective population densities. The Ecosystem
Service Evenness (ESE) index maps show that in some areas the pest predation pressure is dominated by
one or a few predators, while in other cases the pressure is evenly distributed across the species that comprise
the community. In fact, our data show that similar overall predation pressure on pest arthropods can be
achieved with a different number of predator species. The ESE index could therefore be used to guide ma-
nagers and policy makers on measures to be taken to enhance pest predation pressure by natural predators
like bats in different areas. If pest predation is mainly executed by a single species (i.e. ESE index close
to 0), species-specific measures might be taken, e.g. provision of bat boxes suited for the species. On the
contrary, in areas with higher ESE index values there is a multi-predator effect on pest predation produced
by functionally distinct species. This scenario will require more integral management strategies to conserve
and enhance the population status of an entire community (Gunnellet al. 2012).

Overlaying pest predation pressure estimates with agricultural intensity maps shows that the highest pressure
is achieved when the intensity of agricultural activities is lowest, and pressure steadily decreases as the
intensity increases. This is probably due to the advantage structurally complex heterogeneous landscapes
provide to bats. Bat activity is known to increase with farmland heterogeneity (Heim et al.2015; Monck-
Whipp et al. 2018), since heterogeneous landscapes typically provide commuting landmarks and increased
resources for sheltering and foraging. Besides, heterogeneous landscapes provide a more stable supply of
food through time, while intensive croplands are characterised for a higher level of insect density fluctuation
(Djaman et al.2019; Yang et al. 2020). This is the most probable reason for the high overall pest predation
pressure estimated for the Balkan peninsula, where the landscape is more heterogeneous, compared to other
areas in Furope. The small rebound observed at very high cropland intensity areas might be due to small
sample size, as only a few patches exhibit >90% of cropland cover.

Our framework does not provide information about suppression of pest arthropod populations by the analysed
predators, as it does not incorporate biomass estimations of crop-damaging arthropods. Such estimations
are largely absent in the literature and the large temporal fluctuations further complicates incorporating
them into such modelling approaches. As a first approximation to identify areas with high ecosystem service
potential, our framework provides the ESP index, which identifies areas where high agricultural intensity and
pest predation pressure coincide. The ESP index map (Fig. 4e) shows that the highest potential is achieved
in small patches of intense agriculture surrounded by other types of landscape (Fig. 4f-g), or edges of large
agriculturally intense patches (Fig. 4h). In contrast, large agriculturally intensive areas show small ESP (Fig.
4i), probably because the landscape offers no resources beyond large occasional prey availability for bats.
These observations are in line with previously reported results in which the heterogeneity of surrounding
landscapes shape the abundance and diversity of natural pest predators (Gurr et al.2017; Karp et al. 2018).

The overall pest predation pressure of the analysed predators across the whole continent sums up to a daily
consumption of 63.3+13.9 metric tonnes of pest arthropods. This number is lower than arthropod consump-
tion estimates performed previously for bats and other taxa (Nyffeler et al.2018), which probably responds
to three factors. First, we employ conservative demographic estimates to avoid inflating pest predation pres-
sure. Second, we use a stringent taxonomic identification to ensure maximum DNA sequence reliability and
species-level identification (Alberdi et al.2018). Lastly, we only consider a subset (7 species out of 51) of
the European bat community with continent-wide dietary and density information available. As we exclude
species that also exert predation pressure on pest arthropods (e.g. Puig-Montserratet al. 2015; Baroja et



al. 2019; Cohen et al.2020), the total predation pressure of bats on crop-damaging arthropods in Europe is
certainly larger than the numbers we report.

Applicability of P3Mapper in other systems

The framework can be implemented in other taxa that enable gathering similar biological information,
such as birds or invertebrates. The main advantage of birds compared to bats is that population density
estimations are more reliable due to the higher detectability and better population monitoring infrastructure
(du Feu et al. 2016). However, pest arthropod intake estimations through DNA metabarcoding are more
complicated because most arthropod-eating species are omnivorous (Brandl et al. 1994), which complicates
food intake relative pest consumption calculations. In the case of insects, one of the main issues is the
difficulty to find DNA metabarcoding primers with broad taxonomic range and little taxonomic bias that
exclude the predator from being amplified; an issue that might require a considerable increase of sequencing
effort (Alberdi et al. 2018). The framework could also incorporate the temporal axis, which is important
for going deeper into the relationship between natural predators and pest population dynamics, as insect
biomass (Hallmann et al.2017), bat activity (Korineet al. 2020), pest arthropod consumption (Baroja et al.
2019) and energy requirements (Encarnagdo & Dietz 2006) fluctuate throughout the year. We do not report
temporal variability, because i) no reliable information about bat activity variation through time is available
~hence a fixed foraging time of 4h was assumed following (Kurta et al. 1989), and ii) the samples size of
relative pest consumption measures generated through DNA metabarcoding was too limited to implement a
temporal perspective — hence obtained averages are assumed to represent typical diets.

Conclusions

We introduce a methodological framework that enables estimating pest predation pressure at different scales,
as well as scrutinising the complex features that determine it and identifying the limitations of the currently
available data. It thus provides insights into the type of information that should be generated in order
to increase the accuracy and reduce the uncertainty of the estimations. Hence, we believe our framework
can be highly valuable as a baseline for more precise modelling approaches that rely on more abundant
and accurate data, as well as to generate initial approximations of the impact of natural enemies of pest
arthropods, identifying priority taxa and areas, and identifying potentially relevant relationships between
pest control and environmental features. Finally, our analyses provide a quantitative approximation to the
dimension of the ecosystem service bats provide, which serves to recognise the importance of bats not only for
the functioning of natural ecosystems but also for direct human interests. Now that bats are at the spotlight
due to their relationship with the covid19 outbreak, such a recognition is more necessary than ever.
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Appendix S1 : full code employed to generate the pest predation pressure estimations.

Table S1 : bat population density estimations per country and species.

Table S2 : energy content estimations of prey arthropods.
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Figure 1. Methodological workflow to generate pest predation pressure maps . The letters N, I, P
and C refer to the elements in Equation 1. N) Predator density maps are generated by combining ecological
niche or species distribution models with regional species density estimations. I) Foot intake estimations
are performed by combining predator species’ energetic requirements with the energetic value of consumed
prey. P) Proportion of pest prey in the diet is calculated from DNA metabarcoding data, after annotating
each detected prey as a pest or innocuous arthropod. C) The combination of all these data yields the
pest arthropod consumption estimate maps, which when overlaid with other spatial data (e.g. agricultural
intensity map) enable extracting geospatial information on pest predation pressure. The entire process is
iterated (e.g. repeated 100 times) sampling from value distributions to also measure the dispersion of the
employed data.
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Figure 2. Pest predation pressure maps and species-specific model parameter statistics . (a)
Map of the overall pest predation pressure estimated for the seven studied bat species. (b-h) Species-specific
pest predation pressure maps. Larger images with their respective standard deviation maps are shown in the
Supplementary files. Note the different colour scale of the main map and the species-specific maps, which
was altered to improve the visual comparison of species-specific maps. (i) Total daily pest consumption
estimated for each of the analysed bats. (j) Daily pest consumption estimated for each of the analysed bats
per km?. (k) Daily pest consumption estimated for individual animals from each of the analysed bat species.

(1) Daily food intake, (m) proportion of pest prey, and (n) density and geographic range estimated for each
of the analysed bats.
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Figure 3. Ecosystem Service Evenness (ESE) index and relative contribution of each studied
species to the overall predation pressure.(a) ESE index distribution across the study area and location
of the analysed regions. Note the index is meaningful only when more than one predator is present. (b-e)
Total predation pressure, relative contribution of each species and ESE index in (b) Central Italy, (c) Basque
Country, (d) Britany and (e) Northern England. Note that the combinations between predation pressure,
ESE index and predator richness (number of predators present) varies across the four regions.
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Figure 4. Relationship between pest predation pressure and agricultural intensity . (a) Pest pre-
dation pressure is largest in heterogeneous areas without croplands, and gradually decreases with increasing
fraction of cropland area. (b-¢) The pattern is similar for all analysed predators, although the intensity of
the variation varies. Overlying pest predation pressure maps (Fig. 2a-h) with an agricultural intensity map
(d), enabled calculating the Ecosystem Service Potential (ESP) index (e), which is shown to be highest when
a small agriculturally intense patch is surrounded by heterogeneous landscape (f-h), and lowest on large
patches dominated by cropland (i).
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