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Abstract

The land Surface Soil Moisture (SSM) products derived from microwave remote sensing have a coarse spatial resolution, therefore

downscaling is required to obtain accurate SSM at high spatial resolution. An effective way to handle the stratified heterogeneity

is to model for various stratifications, however the number of samples is often limited under each stratification, influencing the

downscaling accuracy. In this study, a machine learning-based geostatistical model, which combines various ancillary infor-

mation at fine spatial scale, is developed for spatial downscaling. The proposed support vector area-to-area regression kriging

(SVATARK) model incorporates support vector regression and area-to-area kriging by considering the nonlinear relationships

among variables for various stratifications. SVATARK also considers the change of support problem in the downscaling interpo-

lation process as well as for solving the small sample size in trend prediction. The SVATARK method is evaluated in the Naqu

region on the Tibetan Plateau, China to downscale the European Space Agency’s (ESA) 25-km-resolution SSM product. The

1-km-resolution SSM predictions have been produced every 8 days over a six-year period (2010-2015). Compared with other

two methods, the downscaled predictions from the SVATARK method performs the best with in-situ observations, resulting in a

23.6 percent reduction in root mean square error and a 10.7 percent increase in correlation coefficient, on average. Additionally,

anomalously low SSM values, an indicator of drought, had a record low anomaly in mid-July for 2015, as noted by previous

studies, indicating that SVATARK could be utilized for drought monitoring.
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Abstract: The land Surface Soil Moisture (SSM) products derived from microwave remote sensing have a
coarse spatial resolution, therefore downscaling is required to obtain accurate SSM at high spatial resolution.
An effective way to handle the stratified heterogeneity is to model for various stratifications, however the
number of samples is often limited under each stratification, influencing the downscaling accuracy. In this
study, a machine learning-based geostatistical model, which combines various ancillary information at fine
spatial scale, is developed for spatial downscaling. The proposed support vector area-to-area regression
kriging (SVATARK) model incorporates support vector regression and area-to-area kriging by considering
the nonlinear relationships among variables for various stratifications. SVATARK also considers the change
of support problem in the downscaling interpolation process as well as for solving the small sample size in
trend prediction. The SVATARK method is evaluated in the Naqu region on the Tibetan Plateau, China
to downscale the European Space Agency’s (ESA) 25-km-resolution SSM product. The 1-km-resolution
SSM predictions have been produced every 8 days over a six-year period (2010-2015). Compared with
other two methods, the downscaled predictions from the SVATARK method performs the best with in-situ
observations, resulting in a 23.6 percent reduction in root mean square error and a 10.7 percent increase in
correlation coefficient, on average. Additionally, anomalously low SSM values, an indicator of drought, had
a record low anomaly in mid-July for 2015, as noted by previous studies, indicating that SVATARK could
be utilized for drought monitoring.

Key Words: Downscaling, Support vector regression, Area-to-area kriging, Soil moisture

1 Introduction

Land surface soil moisture (SSM) is an essential hydro-ecological parameter for monitoring energy, water, and
carbon cycles (Seneviratne et al., 2010; Bateni and Entekhabi, 2012). Continuous SSM at fine spatial resolu-
tions provides crucial information for hydrological models, precipitation forecasting models, land-atmosphere
models, drought and flood forecasting, and vegetation growth monitoring (Krishnan et al., 2006; Wang et al.,
2016; Dorigo et al., 2017). In general, soil moisture is acquired by using in-situ measurements (Dobriyal et
al., 2012), including wireless sensor networks (Kerkez et al., 2012) and Cosmic-ray Soil Moisture Observing
System (Zreda et al., 2012), which have helped overcome the sparse sampling and poor dynamic limitations
of traditional in-situ methods. These ground-based measurements methods require continuous financial sup-
port and suitable ground conditions and are limited to small monitoring areas. With the development of
active and passive microwave remote sensing techniques (Petropoulos et al., 2015), it becomes possible and
more convenient to acquire SSM information dynamically at different spatiotemporal resolutions over large
areas. A series of SSM products derived from various satellite-based microwave sensors has been released
(Njoku et al., 2003; Parinussa et al., 2014; Meissner et al., 2018). However, with spatial resolutions of tens
of kilometers, the current microwave-based SSM products are limited to large-scale monitoring applications.

Many approaches have been developed for downscaling these coarse scale SSM products. Some of these
benefit from ancillary information that captures the variations of SSM at fine resolution, combined with
correlated variables (Ge et al., 2019). There are two main sources of ancillary variables: active microwave
data and visible/infrared data. Change detection based downscaling algorithms (Piles et al., 2009; van der
Velde et al., 2015) and Bayesian merging methods (Zhan et al., 2006; Wu et al., 2017) have been proposed to
downscale the coarse SSM by using active microwave data. The active microwave technique is highly sensitive
to SSM and can even penetrate clouds, however it is greatly affected by soil roughness and vegetation. An
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alternative downscaling approach is to use fine resolution optical/thermal data. A number of downscaling
algorithms have been developed to generate fine-resolution SSM, such as Disaggregation based on Physical
And Theoretical scale Change (Merlin et al., 2015; Malbéteau et al., 2016), trapezoid-based methods (Yang
et al., 2015; Babaeian et al., 2018), regression-based approaches (Duan et al., 2016; Liu et al., 2018) and
geostatistical methods (Mukherjee, 2015; Jin et al., 2018). For downscaling with optical/thermal data, the
statistical correlation between SSM and ancillary variables or physically based models have been explored
(Peng et al., 2017).

Chauhan et al. (2003) proposed an empirical polynomial fitting downscaling approach using a polynomial
regression at coarse spatial resolution to obtain the fine-spatial-resolution SSM. Since then, further poly-
nomial fitting downscaling methods have been presented by employing multiple data sources or different
ancillary parameters (Piles et al., 2014; Knipper et al., 2017), such as land surface temperature (LST),
vegetation information, brightness temperature, albedo, evapotranspiration and terrain indices. Meanwhile,
geographically weighted regression, which takes into consideration local characteristics (Song et al, 2019),
and machine learning algorithms have been introduced into downscaling. Machine learning algorithms such
as random forest and support vector regression (SVR) perform better in capturing the nonlinear relationships
among variables and have been widely applied to downscaling SSM (Zhao et al., 2018; Abbaszadeh et al.,
2019). Some studies directly combined the fine-resolution trend and coarse-resolution residual to predict the
fine-resolution SSM (Im et al., 2016; Wei et al., 2019). Interpolation techniques such as bilinear interpolation
and kriging interpolation have been generally used in residual analysis for approximating the actual fluctua-
tions (Song and Jia, 2016; Chen et al., 2019). Geostatistical methods with a focus on the spatial correlation
between variables have been increasingly applied in downscaling (Kaheil et al., 2008; Djamai et al., 2016).
However, these downscaling approaches ignore the change in supports before and after downscaling. Due to
the stratified heterogeneity in geographical variables, downscaling models for various stratifications establis-
hed in the scaling process (Ge et al., 2019) are limited to the smaller samples captured by the model. The
SVR approach, benefiting from its high generalization ability, could provide a solution to the small sample
size problem (Srivastava et al., 2013).

Considering all the previous machine learning algorithms, this paper proposes a new machine learning-based
geostatistical model that integrates SVR and area-to-area kriging (ATAK) to achieve spatial downscaling by
fusing various ancillary variables. The proposed support vector area-to-area regression kriging (SVATARK)
can tackle the modifiable areal unit problem, as well as model the complex nonlinear relationship among
variables in the downscaling process. The downscaling approach was employed to predict 1-km-resolution
SSM data by downscaling ESA’s 25-km-resolution SSM product, Climate Change Initiative (CCI), with
consideration of land cover types. Downscaled SSM predictions were produced every eight days over the
Naqu region in the central Tibetan Plateau (TP), and were evaluated using in-situ SSM measurements.
A comparison of the SSM residuals obtained from the ATAK method versus the residuals from bilinear
interpolation and kriging interpolation indicated advantages of the SVATARK downscaling approach.

The remainder of the paper is organized as follows. Section 2 describes the downscaling methodology, inclu-
ding the downscaling strategy during the experiment. Both the study area and the data sets are introduced
in Section 3. Section 4 validates the downscaled predictions and discusses the comparison results. Finally,
some conclusions are summarized in Section 5.

2 Methodology

The proposed SVATARK downscaling method mainly consists of both trend and residual models. In this
section, we briefly describe the downscaling model components SVR and ATAK and the experimental downs-
caling scheme.
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2.1 Support vector regression method

Support vector machines (SVMs) have been widely applied to classification and regression, which minimize
both empirical risk and structural risk to seek the best compromise between the complexity and learning
capability of a model (Srivastava et al., 2013; Sujay and Deka, 2014). For regression, SVR was first intro-
duced by Vapnik et al. (1997). Let χ = {xi, yi; i = 1, · · · , n} be the training dataset with ancillary vectors
xi and corresponding targets yi. The input space χ can be mapped into some feature space Φusing the
nonlinear function ϕ = χ→ Φ. In the feature space Φ, the training data may exhibit linearity, which can be
approximated by linear regression. The general form of the nonlinear SVR function can be expressed as:

f (ω, b) = ω • ϕ (x) + b, (1)

where ω and b are the parameter vectors. The kernel functionK (xi, xj) = 〈ϕ(xi) • ϕ(xj)〉can be used to
calculate the inner products in the feature spaceΦ. By introducing i andαi in the dual form to solve the
optimization problem in SVR, the regression function of the nonlinear SVR allowing the kernel function is
expressed as:

f (xi) =
∑n
i=1 (k − αk)K (xi, xk) + b. (2)

More details about the nonlinear SVR can be found in Smola and Schölkopf (2004). It is well known that the
kernel function and its hyper-parameters have a great impact on the performance of nonlinear SVR model. In
our study, ε-SVR is used with the Gaussian radial basis function as its kernel function. The relevant penalty
coefficient and gamma can be optimized by minimizing the model error. The SVR was implemented in R
“e1071” package (Meyer et al., 2015). Owing to the stratified heterogeneity, the SVR models are established
for different land cover types, considering that different underlying surfaces might influence the relationship
among SSM and ancillary variables.

2.2 Area-to-area kriging method

The area-to-area kriging is a case of areal interpolation, which changes the supports before and after the
interpolation (Kyriakidis, 2004). A linear combination of areal data is used to predict other areal values.
The target areal value z over a given unit uαis estimated with the K neighboring observations at units ui:

z (uα) =
∑K
i=1 λi(uα) • z(ui), (3)

where λi(uα) is the weight assigned toz (ui) , which can be calculated by minimizing the prediction error
variance. The corresponding kriging system is written as:{∑K

j=1 λj (uα) • C (ui, uj) + µ(uα) = C (ui, uα) , i = 1, · · · ,K∑K
j=1 λj (uα) = 1

, (4)

where µ(uα) is the Lagrange multiplier,C (ui, uj) andC (ui, uα) are block-to-block covariance terms. The
most important step for the implementation of ATAK is to obtain the point support covariance for deriving
the covariance terms. A deconvolution procedure can be used to achieve the point support covariance
Goovaerts (2008). In our study, 25 neighboring pixels were employed to predict the target area of ATAK.
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2.3 Support vector area-to-area regression kriging

The proposed SVATARK is based on SVR for trend prediction and ATAK for residual prediction. Let Z (Si)
andXk (Si) be the target and k ancillary random variables at coarse pixel Si. The nonlinear regression model
between Z (Si) andXk (Si) can be obtained using Equation (2), denoted by fSVR (•). Assuming that the
statistical relationship among variables is scale-invariant, the trend component of the fine spatial resolution
can be estimated by using the coarse regression function:

m (sj) = fSVR(xk(sj)), (5)

where xk(sj) represent k ancillary variables of fine pixelsj .

The residual component of the fine spatial resolution is estimated using Equation (3), interpolating the
coarse residual with I neighboring coarse pixels e (Si):

e(sj) =
∑I
i=1 λi(sj) • e(Si)

=
∑I
i=1 λi(sj) • [Z (Si)− fSVR (Xk (Si))],

(6)

where λi(sj) are the weights assigned to Ineighboring coarse pixels for the prediction at fine resolution.

Combining Equations (5) and (6), the SVATARK downscaling model prediction z(sj) can be expressed as:

z(sj) = m(sj) + e(sj)

= fSVR(xk(sj)) +∑I
i=1 λi(sj) • [Z (Si)− fSVR (Xk (Si))].

(7)

2.4 Downscaling strategy

LST, Normalized Difference Vegetation Index (NDVI), land cover (LC), Blue Sky Albedo (BSA), Digital
Elevation Model (DEM), aspect and slope were used as ancillary variables to downscale the CCI SSM
product over thirty-six months (during May to October, 2010-2015). Considering the relatively low coverage
of daily remotely-sensed observations, the 8-day composites of all variables were employed by using average
aggregation to maintain stability and representativeness of each variable. A spatial-temporal prediction
method (Gerber et al., 2018) was adopted to replace the missing values for LST and BSA due to cloud cover.
Prior to performing the downscaling algorithm, a bias correction step (Djamai et al., 2016) was used for
remotely-sensed SSM data to reduce the influence of the original SSM product. The downscaling procedure
is shown in Figure 1, including the downscaling and validation processes.

After all data processing steps, including resampling aggregation, gap filling and bias correction, the 25-
km and 1-km variables with full spatial coverage for each 8-day period was achieved, as well as the 8-day
in-situ measurements within 1 km × 1 km grids. Three downscaling methods were implemented, involving
the proposed SVATARK method and two benchmark methods. The two benchmark methods interpolate
coarse regression residuals by applying kriging and bilinear interpolation, denoted by SVRK and SVRB
respectively. In the trend prediction process, the SVR models were established for each land cover type. In
the experiments, SSM values for water bodies and permanent snow and ice were not included. The downscaled
SSM were validated by ground-measured SSM with four classical statistical metrics, including correlation
coefficient (R ), mean absolute error (MAE ) (m3·m-3), root mean square error (RMSE ) (m3·m-3) and slope
(SLOP ).

5
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————————————————–

Please Insert Figure 1 here.

————————————————–

3 Study area and data description

3.1 Study area

The study area is 3 x 3° ranging from 30.0° to 33.0°N and 90.5° to 93.5°E in the Naqu region located in the
center of the Tibetan Plateau (TP), China. Due to the influence of the South Asian summer monsoon, the
annual precipitation is approximately 500 mm in most of the central TP, with 75% of precipitation events
occurring between June and August (Yang et al., 2013). Soil thawing and freezing take place around each
May and November, respectively. As seen in Figure 2, most of the study area has a main vegetation type
of high elevation alpine grasslands. The period of interest is during the growing season (May 1 to October
31) during 2010 to 2015. In the following dynamic analysis, five ground stations were employed, and three of
them were identified as Station A, Station B and Station C. The network area covers all of the ground sites.

————————————————–

Please Insert Figure 2 here.

————————————————–

3.2 In-situ measurements

The Naqu network was established in July of 2010 for monitoring SSM and soil temperature, and comprises
of 57 ground stations. The ground stations provide SSM and soil temperature at four different depths of
0-5, 10, 20 and 40 cm, with 30-min and daily sampling intervals. The data are published by the National
Tibetan Plateau Data Center from August 1, 2010 to October 31, 2014 (http://data.tpdc.ac.cn/en/data).
The available daily SSM data at depths of 0–5 cm was collected during the period of interest to evaluate the
downscaling performances. Not all in-situ measurements were available during the study period at the 57
ground stations because some stations have been out of operation. The mean and standard deviation (SD)
values of in-situ SSM are shown in Figure 3 during the available study period for both daily and eight-day
cases.

————————————————–

Please Insert Figure 3 here.

————————————————–

3.3 Coarse-resolution surface soil moisture product

In 2012, the ESA CCI project for SSM was established to fulfill global long-term SSM monitoring by mer-
ging multiple available active and passive microwave-based SSM products (Wagner et al., 2012). That same
year, the first SSM product from the ESA CCI (v0.1) was publicly released. By involving new sensors and
improving the merging scheme, the subsequent SSM dataset has been updated over an extended spatiotem-
poral coverage. The daily SSM product provides a consistent SSM record from 1978 to the present. The
latest version (v04.4) of the ESA CCI SSM product at depths of 0.5–5 cm was used in this study, with
a spatial resolution of 0.25 degree (https://www.esa-soilmoisture-cci.org). The SSM data were interpolated
and resampled to 25 km × 25 km regular grids (Figure 2).

6
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3.4 MODIS products

The Moderate Resolution Imaging Spectroradiometer (MODIS) is a key instrument onboard the Terra and
Aqua satellites. Fine-resolution ancillary variables LST, NDVI, BSA and LC information were collected from
the Version 6 products of Aqua MODIS (https://lpdaac.usgs.gov/ ). The daily LST and 16-day NDVI were
provided by MYD11A1 and MYD13A2 at 1-km resolution, while the 16-day albedo and annual LC were
provided by MCD43A3 and MCD12Q1 at 500-m resolution. The BSA data were calculated from shortwave
radiation of MCD43A3, which uses a linear combination of the black-sky and white-sky albedo data, with
weights of 0.34 for the former and of 0.66 for the latter. All MODIS products were reprojected consistently
with the ESA CCI product. Missing values were filled using the aforementioned spatiotemporal prediction
method to ensure complete coverage. The LST and NDVI data were resampled and aggregated into 1 km
× 1 km and 25 km × 25 km regular grids. The average aggregations of BSA and modal aggregations of LC
were achieved at both fine and coarse grids.

3.5 DEM products

The DEM at 90-m resolution provided by the NASA Shuttle Radar Topographic Mission
(SRTM) within the study area was employed. The Void Filled DEM product was downloaded
fromhttps://www.usgs.gov/centers/eros. The DEM data were resampled into 1 km × 1 km and 25 km ×
25 km regular grids by using average aggregations. The basic terrain factors at 1 km and 25 km, including
aspect and slope, were calculated from the DEM information.

4 Results and discussion

4.1 Downscaled 1-km SSM

Figure 4 displays the 25-km SSM images in comparison with 1-km downscaled SSM predictions by three
different models (i.e., SVATARK, SVRK and SVRB) for May 1 of 2011, July 20 of 2013 and September
22 of 2015. It can be inferred that the 1-km downscaled results provide more detailed information and
variations of the SSM spatial distribution within each 25 km × 25 km grid. The SSM data at fine spatial
resolution can improve the characterization of the spatial variability of the SSM, which are useful for filling the
gap between low-spatial-resolution SSM satellite observations and the needs of catchment-based or regional
hydroecological studies. In the downscaled SSM images, the maximum and minimum values of SSM are
shown in blue and red, respectively. The blue areas are near the water bodies and in areas with low elevation.
Besides surface water, the negative correlation with elevation is another primary factor affecting the spatial
distribution of SSM under a sub-frigid zone. The results from the proposed SVATARK method showed
spatial patterns that were similar to those of the 25-km SSM, while SVRK and SVRB produced smoother
downscaled results. The coherence of the ATAK predictions ensures that the average of the disaggregated
predictions is equal to the original areal data, and confers the downscaled SSM of SVATARK a continuous
pattern. Visual comparison of the downscaled SSM products confirmed that the failure of SVRK to predict
extreme SSM and the failure of SVRB to properly capture high SSM were influenced by the kriging and
bilinear interpolations. SVATARK exhibits better results in modeling extreme SSM (both maximum and
minimum) than the other two downscaling methods.

————————————————–

Please Insert Figure 4 here.

————————————————–

The difference histograms of the downscaled results between SVATARK versus SVRB and SVRK are also
shown in Figure 4. The three groups of histograms do not indicate large differences, perhaps because the same
trend model was employed in all three downscaling methods. For the SVRB case, the minimum differences

7
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range from -0.068 m3·m-3 to -0.033 m3·m-3 and the maximums range from 0.027 m3·m-3 to 0.036 m3·m-3,
while the differences for SVRK span from -0.063 m3·m-3 to 0.085 m3·m-3.

Although only three days of downscaled SSM predictions are presented in Figure 4, it is evident that the
three downscaling approaches generate fine-resolution predictions with similar numerical distribution, which
is reflected in the similar performance of the cumulative distribution functions (CDFs) derived from thirty-
six-month data (Figure 5). Moreover, as found in the visual comparison, the CDFs and density plots of the
three downscaled predictions match well with those of the 25-km SSM product (Figure 5). When comparing
the differences of the density curves between 25-km SSM and the three downscaled SSM, SVATARK appears
to have the closest match. Over the study area, the downscaled SSM by SVATARK is quite similar to
the coarse SSM, both in spatial distribution and values. The following validations further demonstrate its
improved performance.

————————————————–

Please Insert Figure 5 here.

————————————————–

4.2 Validation with the in-situ SSM measurements

The downscaled 1-km SSM of each algorithm were validated using the in-situ observations from 57 ground
stations over the Naqu region within the available days from 2010 to 2014. Figure 6 shows the comparisons
between ground observations and 1-km predictions of SVATARK, SVRK and SVRB. The SVRK model
produces more accurate predictions than those of the SVRB-based SSM data with an RMSE value of 0.10
m3·m-3, a MAE value of 0.07 m3·m-3 and a SLOP value of 0.70, but with slightly smaller R value of 0.64.
The comparison illustrates that the proposed SVATARK approach significantly outperforms the other two
downscaling approaches with the smallest RMSE andMAE values of 0.08 m3·m-3 and 0.06 m3·m-3, the
largest Rand SLOP values of 0.72 and 0.71. The scatterplot from the SVATARK approach visually gathers
along the 1:1 line and has the lowest dispersion. Because of the model prediction error, errors in input
variables and the representativeness errors of different supports, there are some discrepancies between the
1-km downscaled results and in-situ measurements. Although the spatiotemporal prediction approach can
help fill the missing values of remote-sensed data, the errors from this process can be propagated into the
final results. In future research, more error analyses, especially before downscaling, should be performed to
improve the downscaling accuracy. The improvements made by SVATARK are illustrated by an increase in
R (0.06 or 10.7% on average) and a decrease in RMSE (0.03 m3·m-3 or 23.6% on average) and slightly better
MAE and SLOP values. A general improvement can be seen in Figure 7-9.

————————————————–

Please Insert Figures 6-7 here.

————————————————–

Figure 7 presents the comparisons between ground observations and three downscaled results for each year.
The CDFs of SSM measured by in-situ and downscaled results derived from three different algorithms are
displayed in Figure 8. The performance shown by the four statistical metrics appears inconsistent from
year to year when comparing the results of SVRK and SVRB methods. The SVRK results are frequently
better than the SVRB’s during the five-year period. In general, the SVATARK model produces the two
highest statistical metrics (i.e., R andSLOP ) and the two lowest statistical metrics (i.e., RMSEand MAE
), followed the SVRK and SVRB models. The CDF comparison indicates that the downscaled results of
SVATARK models show minimum deviations from the CDF calculated from the ground observations.

————————————————–

Please Insert Figure 8 here.
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————————————————–

To explore the spatial distribution of the estimation errors, theMAE values from 2010 to 2014 of the 57
ground stations were calculated. Figure 9 visualizes the MAE of the downscaled results using SVATARK,
SVRK and SVRB for each ground station with color bars. The MAE values tend to be higher in the upper
left and middle part, likely due to higher topographic relief and the lack of the corresponding original
remotely-sensed observations, which could introduce errors from filling gaps. The SVATARK model has the
smallestMAE values at each station, suggesting a better performance than SVRK and SVRB. Further SSM
analyses at each station are shown in section 4.3. Although the above validations were all taken at stations of
grasslands, which is the main vegetation type in the Naqu region, the SVATARK method could theoretically
result in accurate downscaling predictions from other areas given its ability to learn for small samples and the
strong generalization of SVR, as well as the coherence of ATAK. The proposed method should be validated
and applied to other land cover types in future work.

————————————————–

Please Insert Figure 9 here.

————————————————–

In addition to the representativeness errors, there is a bias between the coarse SSM product and the in-
situ observations. To reduce the negative effect of the bias in the downscaled prediction accuracy, in this
experiment the mean difference between the 25-km SSM values and the point supports was removed before
downscaling. Considering that all the ground stations were installed on grasslands, this bias step was used
without consideration of the differences resulting from topography and LC types. However, the remotely-
sensed product might perform differently over various surfaces and therefore incorporation of the impact
of LC types may be beneficial for improving the bias correction accuracy. In addition, how to determine
whether bias needs to be applied to all coarse grids is still a problem, if the SSM can be effectively observed
at some grids.

4.3 Dynamic analysis of downscaled SSM

The downscaled maps and validation analyses described in this study illustrate that the downscaled SSM
results generally show a good performance compared with ground-based measurements and their spatial
pattern follows those of the coarse SSM. In this section, we investigate whether the fine-resolution SSM
predictions from the three downscaled methods also capture the temporal dynamics of ground-based SSM
observations during the study period. Figure 10 shows the temporal variations of 1-km downscaled SSM
derived from all three downscaling methods and in-situ observations at five ground stations (in Figure 2 and
Figure 9) and at network scale (i.e., network area in Figure 2). There is a significant seasonal variation in the
time series, generally reaching its highest value in August. By using average aggregation within the network
domain, the aggregated values of ground measurements and 1-km SSM were obtained. Two statistical metrics,
MAE andRMSE, were used to evaluate their performance.

————————————————–

Please Insert Figure 10 here.

————————————————–

In the proposed SVATARK downscaling method, the values of MAE andRMSE at all five stations range
from 0.033 m3·m-3 to 0.065 m3·m-3 and from 0.041 m3·m-3 to 0.076 m3·m-3, respectively, where SVATARK
is found to be more accurate than the other two approaches. From the time series comparisons at different
ground stations (Figure 10(a-e)), the downscaled SSM predictions, especially of the SVATARK method,
show temporal consistency with the in-situ observations, although there is a significant bias between them.
This indicates that the downscaled SSM of SVATARK can describe the temporal changes of the in-situ
SSM. The discrepancies are mainly because of the large scale differences between 1-km predictions and

9



P
os

te
d

on
A

u
th

or
ea

18
M

ay
20

20
—

C
C

-B
Y

4.
0

—
h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
58

9
8
10

99
.9

89
85

48
3

—
T

h
is

a
p
re

p
ri

n
t

an
d

h
as

n
ot

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

at
a

m
ay

b
e

p
re

li
m

in
ar

y.

point observations. The best performance was obtained at Station D, which has the lowest MAE of all
stations. The variation in performance of various stations might be the result of the station’s location, which
would affect the soil type and have different accuracy of the input variables. The range of values for the
downscaled SSM are almost all less than the ground measurements’ range. This matches well with the fact
that the range of SSM decreases dynamically from fine to coarse scales (Abbaszadeh et al., 2019). Areal-
averaged downscaled SSM agrees well with the ground-based SSM in Figure 10(f). However, the discrepancies
between three downscaled SSM and ground observations in the network area seem smaller than those of the
stations, particularly for the SVRK and SVRB methods, perhaps due to the comparisons at the same scale.
The errors associated with upscaling the SSM from 1-km and point scale to network scale require further
research and exploration. Note that a better performance of the downscaled SSM is also obtained by using
SVATARK.

Soil moisture is a direct indicator of agricultural drought. In-situ observations of SSM may not be able to
assess drought conditions in a region, whereas the 1-km downscaled predictions could provide powerful data
support. A simple relative drought analysis was attempted using the downscaled SSM of SVATARK. The
pixels with anomalously low values in the downscaled images were counted by comparing the pixel values
on the same date every year. The mean and standard deviation were calculated for each pixel. Pixels with
a larger absolute value than the standard deviation were considered to be in a drought condition. The main
idea behind this assumption is to find the pixel which has a low value and relatively large variation in SSM
over the same period. Figure 11 shows the proportion of pixels with relatively smaller SSM in the downscaled
images using SVATARK during study period. Several proportions are larger than 0.30, meaning that thirty
percent of the 1 × 1 km pixels in the corresponding date have abnormally low values. The proportion values
suddenly increase in mid-July 2015, indicating relative drought conditions. These results are consistent with
Zhu et al. (2016). Although the SSM at 0-5 cm depth might have a limited ability to reflect soil drought
without deep soil moisture, this preliminary attempt demonstrates that the proposed downscaling method
could be used in drought remote sensing monitoring applications for a large area. The downscaled SSM could
also help understand how often and where these droughts occur. In this study only four types of ancillary
variables were employed, but rainfall (including its infiltration and runoff) also affects SSM variations, and
should be explored as an ancillary variable in the downscaling process in future work.

————————————————–

Please Insert Figure 11 here.

————————————————–

5 Conclusions

In this study, we proposed a machine learning-based geostatistical downscaling method. The proposed SVAT-
ARK relies on SVR that expresses the nonlinear relationship between target (i.e., SSM) and ancillary va-
riables (i.e., LC, LST, NDVI, BSA and terrain factors), and utilizes ATAK to achieve the predictions on
changed supports. SVATARK was compared to the benchmark methods SVRK and SVRB to obtain 1-km
predictions from a 25-km SSM product over the Naqu region during a thirty-six month period from 2010-
2015. The downscaled predictions were validated using ground stations. In general, the comparison results
indicate that the SVATARK downscaling approach obtained the greatest accuracy, and the dynamic analysis
of 1-km SSM reached the same conclusion. The downscaled predictions were used to capture the abnormally
low SSM by using a simple count analysis, which reveals the capability of monitoring the relative drought
and could be further generalized for large areas with systematic analysis methods. The proposed SVATARK
method is entirely general, and it can be employed to downscale or even upscale other continuous variables
owing to the changes in the supports in ATAK. Other machine learning or deep learning methods such as
such as random forest or neural network algorithms could be applied in trend predictions and could be inte-
grated with ATAK for spatial scaling. The comparisons among different artificial intelligence algorithm-based

10
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ATAK models will be explored in the future work.
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Djamai, N., Magagi, R., Göıta, K., et al. A combination of DISPATCH downscaling algorithm with CLASS
land surface scheme for soil moisture estimation at fine scale during cloudy days. Remote Sens. Environ.
2016, 184 , pp.1-14.

Dobriyal, P., Qureshi, A., Badola, R., Hussain, S.A. A review of the methods available for estimating soil
moisture and its implications for water resource management. J. Hydrol. 2012, 458-459 , pp.110-117.

Dorigo, W., Wagner, W., Albergel, C., et al. ESA CCI soil moisture for improved earth system understanding:
state-of-the art and future directions. Remote Sens. Environ. 2017, 203 , pp.185-213.

Duan, S.B., Li, Z.L. Spatial downscaling of MODIS land surface temperatures using geographically weighted
regression: Case study in northern China. IEEE Trans. Geosci. Remote Sens. 2016, 54 , pp.6458-6469.

Ge, Y., Jin, Y., Stein, A., et al. Principles and methods of scaling geospatial Earth science data. Earth Sci.
Rev. 2019, 197 , pp.102897.

Gerber, F., De Jong, R., Schaepman, M.E., et al. Predicting missing values in spatio-temporal remote sensing
data. IEEE Trans. Geosci. Remote Sens. 2018, 56 , pp.2841-2853.

Goovaerts, P. Kriging and semivariogram deconvolution in the presence of irregular geographical units. Math.
Geosci. 2008, 40 , pp.101-128.

Im, J., Park, S., Rhee, J., et al. Downscaling of AMSR-E soil moisture with MODIS products using machine
learning approaches. Environ. Earth Sci. 2016, 75 , pp.1120.

11



P
os

te
d

on
A

u
th

or
ea

18
M

ay
20

20
—

C
C

-B
Y

4.
0

—
h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
58

9
8
10

99
.9

89
85

48
3

—
T

h
is

a
p
re

p
ri

n
t

an
d

h
as

n
ot

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

at
a

m
ay

b
e

p
re

li
m

in
ar

y.

Jin, Y., Ge, Y., Wang, J.H., et al. Downscaling AMSR-2 soil moisture data with geographically weighted
area-to-area regression kriging.IEEE Trans. Geosci. Remote Sens. 2018, 56 , pp.2362-2376.

Kaheil, Y.H., Gill, M.K., McKee, M., et al. Downscaling and assimilation of surface soil moisture using
ground truth measurements. IEEE Trans. Geosci. Remote Sens. 2008, 46 , pp.1375-1384.

Kerkez, B., Glaser, S.D., Bales, R.C., Meadows, M.W. Design and performance of a wireless sensor network
for catchment-scale snow and soil moisture measurements. Water Resour. Res. 2012, 48 , pp.W09515.

Knipper, K.R., Hogue, T.S., Franz, K.J., Scott, R.L. Downscaling SMAP and SMOS soil moisture with
moderate-resolution imaging spectroradiometer visible and infrared products over southern Arizona.Int. J.
Remote Sens. 2017, 11 , pp.026021.

Krishnan, P., Black, T.A., Grant, N.J., et al. Impact of changing soil moisture distribution on net ecosystem
productivity of a boreal aspen forest during and following drought. Agric. For. Meteorol. 2006,139 ,
pp.208-223.

Kyriakidis, P.C. A geostatistical framework for area-to-point spatial interpolation. Geogr. Anal. 2004, 36 ,
pp.259-289.

Liu, Y., Yang, Y., Jing, W., Yue, X. Comparison of different machine learning approaches for monthly
satellite-based soil moisture downscaling over Northeast China. Remote Sens. 2018, 10 , pp.31.

Malbeteau, Y., Merlin, O., Molero, B., et al. DisPATCh as a tool to evaluate coarse-scale remotely sensed
soil moisture using localized in situ measurements: Application to SMOS and AMSR-E data in Southeastern
Australia. Int. J. Appl. Earth Obs. Geoinf. 2016, 45 , pp.221-234.

Meissner, T., Wentz, F.J., Vine, D.M.L. The salinity retrieval algorithms for the NASA Aquarius version 5
and SMAP version 3 releases.Remote Sens. 2018, 10, pp.1121.

Merlin, O., Malbeteau, Y., Notfi, Y., et al. Performance metrics for soil moisture downscaling methods:
Application to DISPATCH data in central Morocco. Remote Sens. 2015, 7 , pp.3783-3807.

Meyer, D., Dimitriadou, E., Hornik, K., et al. e1071: Misc Functions of the Department of Statistics,
Probability Theory Group (Formerly: E1071). TU Wien. R package version 1.7-3, 2015.

Mukherjee, S., Joshi, P.K., Garg, R.D. Regression-Kriging technique to downscale satellite-derived land
surface temperature in heterogeneous agricultural landscape. IEEE J. Sel. Top. Appl. Earth Obs. Remote
Sens. 2015, 8 , pp.1245-1250.

Njoku, E.G., Jackson, T.J., Lakshmi, V., et al. Soil moisture retrieval from AMSR-E. IEEE Trans. Geosci.
Remote Sens. 2003, 41 , pp.215-229.

Parinussa, R.M., Wang, G., Holmes, T.R.H., et al. Global surface soil moisture from the microwave radiation
imager onboard the Fengyun-3b satellite. Int. J. Remote Sens. 2014, 35 , pp.7007-7029.

Peng, J., Loew, A., Merlin, O., et al. A review of spatial downscaling of satellite remotely sensed soil
moisture. Rev. Geophys. 2017,55 , pp.341-366.

Petropoulos, G.P., Ireland, G., Barrett, B. Surface soil moisture retrievals from remote sensing: current
status, products & future trends. Phys. Chem. Earth 2015, 83-84 , pp.36-56.

Piles, M., Entekhabi, D., Camps, A. A change detection algorithm for retrieving high-resolution soil moisture
from SMAP radar and radiometer observations. IEEE Trans. Geosci. Remote Sens. 2009, 47 , pp.4125-
4131.

Piles, M., Sanchez, N., Vall-llossera, M., et al. A downscaling approach for SMOS land observations:
Evaluation of high-resolution soil moisture maps over the Iberian Peninsula. IEEE J. Sel. Top. Appl.
Earth Obs. Remote Sens. 2014, 7 , pp.3845-3857.

12



P
os

te
d

on
A

u
th

or
ea

18
M

ay
20

20
—

C
C

-B
Y

4.
0

—
h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
58

9
8
10

99
.9

89
85

48
3

—
T

h
is

a
p
re

p
ri

n
t

an
d

h
as

n
ot

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

at
a

m
ay

b
e

p
re

li
m

in
ar

y.

Seneviratne, S.I., Corti, T., Davin, E. L., et al. Investigating soil moisture–climate interactions in a changing
climate: a review.Earth Sci. Rev. 2010, 99 , pp.125-161.

Smola A.J., Scholkopf, B. A tutorial on support vector regression.Stat. Comput. 2004, 14 , pp.199-222.

Song C., Jia L. A method for downscaling Fengyun-3b soil moisture based on apparent thermal inertia.
Remote Sens. 2016, 8 , pp.703.

Song, P., Huang, J., Mansaray, L.R. An improved surface soil moisture downscaling approach over cloudy
areas based on geographically weighted regression. Agric. For. Meteorol. 2019, 275 , pp.146-158.

Srivastava, P.K., Han, D., Ramirez, M.R., Islam, T. Machine learning techniques for downscaling SMOS
satellite soil moisture using MODIS land surface temperature for hydrological application. Water Resour.
Manag. 2013, 27 , pp.3127-3144.

Sujay, R.N., Deka, P.C. Support vector machine applications in the field of hydrology: a review. Appl. Soft
Comput. 2014, 19 , pp.372-386.

van der Velde, R., Salama, M.S., Eweys, O.A., et al. Soil moisture mapping using combined active/passive
microwave observations over the east of the Netherlands. IEEE J. Sel. Top. Appl. Earth Obs. Remote
Sens. 2015, 8 , pp.4355-4372.

Vapnik, V., Golowich, S.E., Smola, A.J. Support vector method for function approximation, regression
estimation and signal processing. In Advances in neural information processing systems 1997, pp.281-287.

Wagner, W., Dorigo, W., de Jeu, R., et al. Fusion of active and passive microwave observations to create
an essential climate variable data record on soil moisture. ISPRS Ann. Photogramm. Remote. Sens. Spat.
Inform. Sci. 2012, 7 , pp.315-321.

Wang, H., Vicente-Serrano, S.M., Tao, F., et al. Monitoring winter wheat drought threat in northern china
using multiple climate-based drought indices and soil moisture during 2000–2013. Agric. For. Meteorol.
2016, 228-229 , pp.1-12.

Wei, Z.S., Meng, Y.Z, Zhang, W., et al. Downscaling SMAP soil moisture estimation with gradient boosting
decision tree regression over the Tibetan Plateau. Remote Sens. Environ. 2019, 225 , pp.30-44.

Wu, X., Walker, J.P., Rudiger, C., et al. Medium-Resolution Soil Moisture Retrieval Using the Bayesian
Merging Method. IEEE Trans. Geosci. Remote Sens. 2017, 55 , pp.6482-6493.

Yang, K., Qin, J., Zhao, L., et al. A multiscale soil moisture and freeze–thaw monitoring network on the
third pole. Bull. Amer. Meteorol. Soc. 2013, 94 , pp.1907-1916.

Yang, Y., Guan, H., Long, D., et al. Estimation of surface soil moisture from thermal infrared remote sensing
using an improved trapezoid method.Remote Sens. 2015, 7 , pp.8250-8270.

Zhan, X., Houser, P.R., Walker, J.P., Crow, W.T. A method for retrieving high-resolution surface soil
moisture from hydros L-band radiometer and radar observations. IEEE Trans. Geosci. Remote Sens.
2006,44 , pp.1534-1544.

Zhao, W., Sanchez, N., Lu, H., Li, A. A spatial downscaling approach for the SMAP passive surface soil
moisture product using random forest regression. J. Hydrol. 2018, 563 , pp.1009-1024.

Zhu, X.C., Shao, M.A., Zeng, C., et al. Application of cosmic-ray neutron sensing to monitor soil water
content in an alpine meadow ecosystem on the northern Tibetan plateau. J. Hydrol. 2016,536 , pp.247-254.

Zreda, M., Shuttleworth, W.J., Zeng, X., et al. COSMOS: the COsmic-ray Soil Moisture Observing System.
Hydrol. Earth Syst. Sci. 2012,16 , pp.1-21.

Hosted file

13



P
os

te
d

on
A

u
th

or
ea

18
M

ay
20

20
—

C
C

-B
Y

4.
0

—
h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
58

9
8
10

99
.9

89
85

48
3

—
T

h
is

a
p
re

p
ri

n
t

an
d

h
as

n
ot

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

at
a

m
ay

b
e

p
re

li
m

in
ar

y.

[2020.05.18]Figures.docx available at https://authorea.com/users/323452/articles/452113-

a-machine-learning-based-geostatistical-downscaling-method-for-coarse-resolution-soil-

moisture-products

14

https://authorea.com/users/323452/articles/452113-a-machine-learning-based-geostatistical-downscaling-method-for-coarse-resolution-soil-moisture-products
https://authorea.com/users/323452/articles/452113-a-machine-learning-based-geostatistical-downscaling-method-for-coarse-resolution-soil-moisture-products
https://authorea.com/users/323452/articles/452113-a-machine-learning-based-geostatistical-downscaling-method-for-coarse-resolution-soil-moisture-products

