Prognostic value of CD4+T cell in patients with severe COVID-19

xuesong wen¹, Lei Gao², dan jiang², xiaocheng cheng¹, bin he², yue chen², peng lei², xiaowei tan¹, shu qin², guoqiang cai², and dongying zhang²

¹Chongqing Medical University First Affiliated Hospital Department of Neurology ²Chongqing Medical University First Affiliated Hospital

May 18, 2020

Prognostic value of CD4⁺T cell in patients with severe COVID-19

To the Editor

The decline of T lymphocytes in peripheral blood is a typical laboratory characteristic of patients with COVID-19, especially in severe patients^{1,2}. T-lymphocytes play a critical role in antiviral immunity. $CD4^+T$ lymphocyte subsets secretes high level of effector cytokines, especially interferon- γ (IFN- γ), which are essential for virus clearance³. However, there is no research concerning whether CD4⁺T predicted outcomes of COVID-19 patients.

Methods

Medical records from 157 patients with confirmed severe COVID-19 were collected in in Hubei General Hospital during the management by national medical team. A flow chart (Figure S1) describes patient inclusion. CD3+T cells count, CD4+T cells count, CD8+T cells count and lymphocyte count were classified as low group and high group according to the laboratory reference values (low group: CD4+T<404 cells/ul). The study was registry with clinicaltrials.gov identifier NCT04292964. All study procedures were approved by the local ethics committee (approval NO. 20200701). All patients in the study were followed up from admission till death or discharge. The outcome was defined as the in-hospital death rate.

Results

Baseline characteristics

According to the normal value of $CD4^+T$ cells, the 105 severe COVID-19 patients were divided into two groups: low $CD4^+T$ cell count (<404 cells/ul) group and high $CD4^+T$ cell count ([?]404 cells/ul) group. Compared with patients in the high group, in terms of laboratory findings, patients in the low $CD4^+T$ cell count group showed lower median platelet count, lymphocyte percentage, lymphocyte count, estimated glomerular filtration rate, total cholesterol, low density lipoprotein, $CD3^+T$ cell count, $CD4^+T$ cell count,

Survival curves of in-hospital death

The low CD4⁺T cells count group (<404 cells/ul) had a higher in-hospital death rate than the high CD4⁺T cells count group ([?]404 cells/ul) during the follow-up period (log rank<0.001, Figure S2).

Results of Cox proportional hazards analyses of in-hospital death

Cox proportional hazard regression analysis was performed to test the associations between the low CD4⁺T cells count group and in-hospital death for severe COVID-19 patients. Results of univariate analyses indi-

cated that patients with CD4+T<440 cells/ul exhibited a 15.72-fold increase in in-hospital death compared to patients with CD4+T[?]440 cells/ul (hazard ratio (HR) :15.72; 95% confidence intervals (CI):3.67-67.35). Meanwhile, age, history of hypertension, white blood cell count, platelet count, lymphocyte count, lymphocyte count low group, creatinine, estimated glomerular filtration rate, D-dimer, sodium ions, $CD3^+T$ cells low group, $CD8^+T$ low group, presenting ground-glass opacity or local patchy shadowing on CT imaging, required mechanical ventilation or glucocorticoids or intravenous immunoglobulin treatment or antifungal treatment were correlated with the risk of in-hospital death in patients with severe COVID-19 (table 2).

Multivariate survival analysis was performed to identify the independent factors correlated with prognosis. In each model, $CD4^+T$ (the low group vs. the high group) was significance which demonstrated that presenting with $CD4^+T$ cells count below 404 cells/ul was an independent risk factor for in-hospital death. In addition, variables like white blood cell count, age and platelet count also showed significance for independently predicting in-hospital death in this study (Table S1).

Discussion

In the present study, among 105 patients with severe COVID-19, 44.8% patients (47/105) showed decreased CD4⁺T cells count and the in-hospital death was markedly higher in patients with decreased CD4⁺T cells count than in patients with normal CD4⁺T cells count (42.6% vs 3.4%, P < 0.001). In addition, our study found that increased age, increased white blood cell count, and decreased platelet count were associated with in-hospital death, which were similar with several studies. Verity, et al. estimated that the total case fatality rate increased with age, possibly because they often had other chronic diseases⁴. Wang, et al. suggested that white blood cell count and neutrophil count of dead patients were higher than those of surviving patients, which may be related to cytokine storm caused by the invasion of SARS-Cov-2⁵. Meanwhile, A meta-analysis showed that there was a significant reduction in platelets in patients dying from COVID-19, and low platelet count was associated with mortality in patients with COVID-19; The reason may be the decrease of the number of pulmonary vascular beds and the change of morphology that lead to deranged platelet defragmentation⁶.

Several recent studies indicated that T-lymphocytes^{1,7}was reduced in most patients with COVID-19. It was believed that SARS-CoV-2 may act mainly on lymphocytes, especially T-lymphocytes^{2,8}. At present, the potential mechanisms undergoing CD4⁺T cells count decrease induced by SARS-CoV-2 infection is still unknown. Researchers suggested the decrease in the number of T-cells in patients with COVID-19 may be due to the negative effects of high concentrations of TNF- α , IL-6, IL-10 in serum on the survival or proliferation of T-cells⁷. In addition, Previous studies have shown that, in SARS patients, the formation of autoimmune antibodies or immune complexes induced by viral infection and the use of steroids may play an important role in lymphocytic decline⁹.

In conclusion, the main finding of this study is the high prognostic value of decreased CD4⁺T cells count in patients with severe COVID-19. Thus, in this acute-care setting, CD⁺4 T cells count can provide early prognostic information in patients with severe COVID-19.

References

1. Wei-jie Guan, Zheng-yi Ni, Yu Hu, Wen-hua Liang, Chun-quan Ou, Jian-xing He, Lei Liu, Hong Shan, Chun-liang Lei, David SC Hui et al. Clinical characteristics of 2019 novel coronavirus infection in China. medRxiv 2020.02.06.20020974; doi: https://doi.org/10.1101/2020.02.06.20020974.

2. Chen G, Wu D, Guo W, Cao Y, Huang D, Wang H, Wang T, Zhang X, Chen H, Yu H et al. Clinical and immunologic features in severe and moderate Coronavirus Disease 2019. *J Clin Invest*. 2020 Mar 27. doi: 10.1172/JCI137244.

3. Sarawar, S. R., M. Sangster, R. L. Coffman, P. C. Doherty. Administration of anti-IFN-gamma antibody to beta 2-microglobulin-deficient mice delays influenza virus clearance but does not switch the response to a T helper cell 2 phenotype. J. Immunol. 1994. 153: 1246–1253.

4. Verity R, Okell LC, Dorigatti I, Winskill P, Whittaker C, Imai N, Cuomo-Dannenburg G, Thompson H, Walker PGT, Fu H et al. Estimates of the severity of coronavirus disease 2019: a model-based analysis. Lancet Infect Dis. 2020 Mar 30. doi: 10.1016/S1473-3099(20)30243-7.

5. Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, Wang B, Xiang H, Cheng Z, Xiong Y et al. Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China. JAMA. 2020 Feb 7. Doi: 10.1001/jama.2020.1585.

6. Lippi G, Plebani M, Henry BM. Thrombocytopenia is associated with severe coronavirus disease 2019 (COVID-19) infections: A meta-analysis. Clin Chim Acta. 2020 Mar 13; 506: 145-148. Doi: 10.1016/j.cca.2020.03.022.

7. Diao B, Wang CH, Tan YJ, Chen XW, Liu Y, Ning LF, Chen L, Li M, Liu YP, Wang G et al. Reduction and Functional Exhaustion of T Cells in Patients with Coronavirus Disease 2019 (COVID-19). MedRxiv, 2020.02.18.20024364; doi:https://doi.org/10.1101/2020.02.18.20024364.

8. Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, Qiu Y, Wang J, Liu Y, Wei Y et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet. 2020 Feb 15;395(10223):507-513.

9. Yang M, Li CK, Li K, Hon KL, Ng MH, Chan PK, et al. Hematological findings in SARS patients and possible mechanisms (review). Int J Mol Med. 2004;14(2):311-5.

Author names: Xue-song Wen^{1*}, Lei Gao¹, Dan Jiang^{1,2}, Xiao-cheng Cheng¹, Bin He¹, Yue Chen¹, Peng Lei¹, Wei-xiao Tan¹, Shu Qin¹, Guo-qiang Cai¹, Dong-ying Zhang¹

Affiliations: ¹Department of Cardiovascular Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China

²Department of Cardiovascular Medicine, The First Branch of the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China

*: Xue-song Wen is first author

Author contributions: W.X. participated in study design, analyzing data analysis and manuscript writing. G.L., C.X., J.D., H.B., C.Y., L.P., and T.X. were involved in data collection. Q.S., C.G. and Z.D. were responsible for the study concept, design and final approval of manuscript. All authors have read and approved the final manuscript. W.X. is the first author.

correspondence:zhangdongying@cqmu.edu.cn.

Funding: None.

Conflict of Interest: None.

Table 1. Baseline patient characteristics of different degrees of CD4⁺ T cell.

Variables		$CD4^+T < 404/ul$	$CD4^{+}T[?]4$
	All(n=105)	(n=47)	(n=58)
Male/female(n)	53/52	31/16	22/36
Age(years)	62.0(49.0-69.50)	66.0(54.0-75.0)	57.5(46.75-6
Smoking history—No, %	4(3.8%)	1(2.1%)	3(5.2%)
History of alcohol intake—No, %	1(1.0%)	1(2.1%)	0(0%)
Symptoms and signs—No, %	Symptoms and signs—No, %	Symptoms and signs—No, %	Symptoms
Fever on admission	90(85.7%)	40(85.1%)	50(86.2%)
Nasal congestion	1(1.0%)	1(2.1%)	0(0%)
Headache	4(3.8%)	2(4.3%)	2(4.3%)
Cough	65(61.9%)	29(61.7%)	36(62.1%)

Variables		$CD4^+T < 404/ul$	$CD4^{+}T[?]4$
Sore throat	5(4.8%)	2(4.3%)	3(5.2%)
Sputum production	30(28.6%)	12(25.5%)	18(31.0%)
Fatigue	38(36.2%)	20(42.6%)	18(31.0%)
Shortness of breath	37(35.2%)	23(48.9%)	14(24.1%)
Nausea or vomiting	7(6.7%)	4(8.5%)	3(5.2%)
Myalgia or arthralgia	8(7.6%)	3(6.4%)	5(8.6%)
Chill	7(6.7%)	6(12.8%)	1(1.7%)
Throat congestion	2(1.9%)	0(0%)	2(3.4%)
Coexisting disorders—No, $\%$	Coexisting disorders—No, $\%$	Coexisting disorders—No, $\%$	Coexisting
Diabetes	16(15.2%)	10(21.3%)	6(10.3%)
Hypertension	23(21.9%)	14(29.8%)	9(15.5%)
Coronary heart disease	9(8.6%)	6(12.8%)	3(5.2%)
Hepatitis B infection	2(1.9%)	2(4.3%)	0(0%)
COPD	1(1.0%)	1(2.1%)	0(0%)
SBP (mmHg)	129.0(118.0-137.0)	128.0(118.0-138.0)	129.0(118.
DBP (mmHg)	80.0(73.0-84.0)	78.0(71.25-85.0)	80.0(73.0-8
Heart rate (min)	85.0(78.0-96.0)	84.0(78.0-97.0)	85.0(77.0-9
Laboratory findings	Laboratory findings	Laboratory findings	Laboratory
WBC $(\times 10^9/L)$	5.03(3.96-7.04)	5.59(3.86-8.20)	4.96(4.03-6
RBC $(\times 10^{12}/L)$	4.2(3.7-4.6)	4.1 ± 0.7	4.2 ± 0.6
Hb (g/L)	125.0(117.0-140.0)	128.0 ± 19.4	1.2 ± 0.0 125.0 ± 15.3
$PLT (\times 10^9/L)$	206.0(152.5-261.0)	176.0(125.0-229.0)	230.5(178.3)
LYM (%)	22.9(12.9-29.8)	14.2(6.3-23.5)	27.2(21.9-3
LYM (×10 ⁹ /L)	1.13 ± 0.5	0.79 ± 0.3	1.35 ± 0.4
$LYM < 1.1 \times 109 \text{ cells/L}$	52(49.5%)	40(76.9%)	12(23.1%)
ALT (U/L)	27.0(17.8-43.0)	24.0(17.0-40.5)	31.5(19.0-4)
AST (U/L)	29.0(20.0-42.0)	31.0(20.0-47.5)	25.5(20.3-3)
Cr (umol/L)	60.5(49.0-78.0)	68.50(53.8-85.8)	55.50(48.3-
eGFR (ml/min)	99.1(88.0-109.0)	90.5(59.0-107.22)	101.2(95.3-
UA (umol/L)	247.5(193.5-332.8)	253.0(182.0-343.8)	241.0(203.5
D-D (mg/L)	0.56(0.34-3.95)	0.70(0.355-8.19)	0.54(0.34-3)
K (mmol/L)	4.1(3.6-4.4)	4.1(3.5-4.4)	4.1(3.7-4.4)
Na (mmol/L)	142.0(139.0-145.0)	141.5(139.0-146.0)	142.0(140.0
Cl (mmol/L)	142.0(139.0-145.0) 105.0(102.7-108.1)	104.3(103.1-108.3)	142.0(140.0) 105.5(102.1)
TC (mmol/L)	3.64(3.27-4.32)	3.50(3.09-4.03)	· · ·
TG (mmol/L)	1.19(0.90-1.69)	1.23(0.95-1.63)	3.84(3.41-4) 1.15(0.86-1)
		· /	,
HDL (mmol/L)	0.90(0.76-1.06) 2.26(1.87,2.74)	0.90 ± 0.338 2 10(1 74 2 60)	0.90 ± 0.234
LDL (mmol/L) CD3 cells count	2.26(1.87-2.74)	2.10(1.74-2.60)	2.40(2.02-2)
CD3 cells count CD4 cells count	706.0(459.5-921.0)	437.0(224.0-606.0)	881.5(760.8
	437.0(268.5-561.0)	240.0(123.0-325.0)	546.5(475.0
CD8 cells count	241.0(131.0-333.5)	153.0(64.0-242.0)	293.0(226.7)
CD4/CD8	1.76(1.31-2.29)	1.60(1.11-1.96)	1.88(1.44-2
Abnormalities on chest CT—No,%	Abnormalities on chest CT—No,%	Abnormalities on chest CT—No,%	Abnormali
Ground-glass opacity	50(47.6%)	18(38.3%)	32(55.2%)
Local patchy shadowing	32(30.5%)	9(19.1%)	23(39.7%)
Treatment	Treatment	Treatment	Treatment
Oxygen inhalation	85(81.0%)	42(93.3%)	43(78.2%)
Mechanical ventilation	10(9.5%)	8(17.4%)	2(3.7%)
Glucocorticoids	42(40.0%)	26(53.1%)	23(39.7%)
Antiviral treatment	103(98.1%)	46(97.9%)	57(98.3%)

Variables		$CD4^+T < 404/ul$	$CD4^{+}T[?]4$
Intravenous immunoglobulin	49(46.7%)	26(55.3%)	23(39.7%)
Antibiotic treatment	77(73.3%)	40(85.1%)	37(63.8%)
Antifungal treatment	5(4.8%)	3(6.4%)	2(3.4%)
Clinical outcome	Clinical outcome	Clinical outcome	Clinical out
Death (No,%)	22(21.0%)	20(42.6%)	2(3.4%)

Abbreviations: COPD, Chronic obstructive pulmonary disease; SBP, systolic blood pressure; DBP, diastolic blood pressure; WBC, white blood cell count; RBC, red blood cell count; Hb, Hemoglobin; PLT, platelet count; LYM, lymphocyte count; ALT, alanine aminotransferase; AST, aspartate transaminase; Cr, creatinine; eGFR, estimated glomerular filtration rate; UA, uric acid; TC, total cholesterol; TG, triglyceride; HDL, high density lipoprotein; LDL, low density lipoprotein.

Table 2. Effects of various variables on in-hospital death in Cox regression analysis.

Characteristics	HR $(95\%$ CI)	P
Sex Male vs. Female	1.851(0.776-4.412)	0.165
Age, per 1 years	1.122(1.071-1.174)	< 0.001
History of hypertension Yes vs. No	4.621(1.999-10.682)	< 0.001
History of diabetes Yes vs. No	1.709(0.631 - 4.634)	0.292
History of CHD Yes vs. No	2.645(0.893-7.831)	0.079
History of COPD Yes vs. No	4.681(0.628-34.888)	0.132
History of HBI Yes vs. No	0.130(0.000-72.127)	0.527
SBP (mmHg)	1.010(0.988-1.032)	0.368
DBP (mmHg)	1.004(0.966-1.043)	0.840
Heart rate (min)	1.014(0.987-1.043)	0.314
WBC $(\times 10^9/L)$	1.236(1.140-1.340)	< 0.001
$RBC(\times 10^{12}/L)$	0.858(0.452 - 1.626)	0.638
Hb (g/L)	1.008(0.982 - 1.035)	0.531
PLT $(\times 10^9/L)$	0.986(0.979 - 0.993)	< 0.00
LYM $(\times 10^9/L)$	0.039(0.011 - 0.137)	< 0.00
LYM $< 1.1 \times 109$ cells/L	5.288(1.788-15.636)	0.003
ALT (U/L)	1.004(0.988-1.019)	0.630
Cr (umol/L)	1.029(1.016-1.044)	< 0.00
EGFR (ml/min)	0.971(0.957 - 0.984)	< 0.00
UA (umol/L)	1.003(0.9999-1.006)	0.129
D-D (mg/L)	1.029(1.016-1.043)	< 0.00
$K^+ (mmol/L)$	1.029(0.577 - 1.836)	0.923
Na^+ (mmol/L)	1.009(1.000-1.018)	0.044
TC (mmol/L)	0.695(0.397 - 1.217)	0.204
TG (mmol/L)	1.096(0.834 - 1.441)	0.512
HDL (mmol/L)	0.241(0.051-1.134)	0.072
LDL (mmol/L)	0.606(0.286-1.280)	0.189
CD3<723 cells/ul Yes vs. No	11.175(2.610-47.850)	0.001
CD4<404 cells/ul Yes vs. No	15.720(3.669-67.346)	< 0.00
CD8<220 cells/ul Yes vs. No	8.528(2.521-28.847)	0.001
CD4/CD8	1.054(0.845 - 1.316)	0.641
Ground-glass opacity Yes vs. No	0.288(0.106 - 0.781)	0.014
Local patchy shadowing Yes vs. No	0.204(0.048 - 0.872)	0.032
Oxygen inhalation Yes vs. No	26.743(0.213-3365.021)	0.183

Characteristics	HR (95%CI)	Р
Mechanical ventilation Yes vs. No	20.135(7.696-52.684)	< 0.001
Glucocorticoids Yes vs. No	6.120(2.255-16.610)	< 0.001
Antiviral treatment Yes vs. No	0.253(0.034 - 1.888)	0.180
Intravenous immunoglobulin Yes vs. No	4.257(1.569-11.550)	0.004
Antibiotic treatment Yes vs. No	35.287(0.748-1665.054)	0.070
Antifungal treatment Yes vs. No	4.016(1.183-13.628)	0.026

Abbreviations: COPD, Chronic obstructive pulmonary disease; CHD, coronary heart disease; HBI, Hepatitis B infection; SBP, systolic blood pressure; DBP, diastolic blood pressure; WBC, white blood cell count; RBC, red blood cell count; Hb, Hemoglobin; PLT, platelet count; LYM, lymphocyte; ALT, alanine aminotransferase; AST, aspartate transaminase; Cr, creatinine; eGFR, estimated glomerular filtration rate; UA, uric acid; TC, total cholesterol; TG, triglyceride; HDL, high density lipoprotein; LDL, low density lipoprotein.