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Abstract

We established three simulated erosion severities with topsoil depths of 10, 20 and 30 cm in a Mollisol farmland under a maize-

soybean rotation system with no-tillage. After three consecutive years of field experiment, the decrease in topsoil thickness from

30 to 10 cm resulted in 9-22% of decrease in maize yield but not soybean. Compared to the 30 and 20-cm topsoil thickness, the

10-cm topsoil significantly lowered root and shoot biomass of maize at the jointing (V7) and milk stages (R3) and of soybean at

the mid-seed filling stage (R6). Compared to the 30-cm topsoil, the 10-cm topsoil decreased available nitrogen and phosphorus

in soil by 42% and 36% under maize, and by 25% and 19% under soybean, respectively, while the shallow topsoil also decreased

N, P and K uptake per unit root length with the decreases being less for maize than soybean. Compared to the 30-cm topsoil,

the 10-cm and 20-cm topsoil significantly increased the activities of urease, phosphatase and invertase in maize-grown soil,

but not in soybean-grown soil except for the activity of urease in 10-cm topsoil. Maize was more sensitive to soil erosion than

soybean due to the greater decreases in soil nutrient availability and its capability of nutrient uptake. The greater stimulation of

nutrient mineralization processes in soil did not alleviate the nutrient constraint to maize yield under severe erosion conditions.

ABSTRACT

Soil erosion decreases topsoil depth, and hence soil fertility and crop productivity in agricultural systems.
However, it is not clearly elucidated how different crop species adapt to the soil erosion regarding root
function, nutrient uptake and rhizosphere biochemical properties, which is pivotal to cropping strategy
under soil erosion. We established three simulated erosion severities with topsoil depths of 10, 20 and 30
cm in a Mollisol farmland under a maize-soybean rotation system with no-tillage. After three consecutive
years of field experiment, the decrease in topsoil thickness from 30 to 10 cm resulted in 9-22% of decrease in
maize yield but not soybean. Compared to the 30 and 20-cm topsoil thickness, the 10-cm topsoil significantly
lowered root and shoot biomass of maize at the jointing (V7) and milk stages (R3) and of soybean at the
mid-seed filling stage (R6). Compared to the 30-cm topsoil, the 10-cm topsoil decreased available nitrogen
and phosphorus in soil by 42% and 36% under maize, and by 25% and 19% under soybean, respectively,
while the shallow topsoil also decreased N, P and K uptake per unit root length with the decreases being less
for maize than soybean. Compared to the 30-cm topsoil, the 10-cm and 20-cm topsoil significantly increased
the activities of urease, phosphatase and invertase in maize-grown soil, but not in soybean-grown soil except
for the activity of urease in 10-cm topsoil. Maize was more sensitive to soil erosion than soybean due to the
greater decreases in soil nutrient availability and its capability of nutrient uptake. The greater stimulation of
nutrient mineralization processes in soil did not alleviate the nutrient constraint to maize yield under severe
erosion conditions.
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Introduction

It is estimated that 15.1% of global land suffers degradation, of which 83.6% results from soil erosion (Lal,
2001; Gao et al., 2015). Soil erosion is a gradual process of removal, transport and deposition of topsoil
caused by wind and water (Liu et al., 2010). The reduction of topsoil thickness is one of significant impacts
of erosion on farmland. Topsoil thickness is a major indicator of soil quality and productivity (Sui et al.,
2013). The reduction of topsoil thickness worsens soil physical, chemical and biological properties, and thus
reduces crop productivity (Christensen and McElyea, 1988; Larney et al., 2000; Sarapatka et al., 2018).
Therefore, preventing soil erosion and understanding the response of crop yields to the erosion is important
in assessing the vulnerability of agriculture to erosion (Lal et al., 2000; Bakker et al., 2004).

It is difficult to establish the relationship of soil erosion and crop productivity as the process of degradation is
slow (Bakker et al., 2004; Zhou et al., 2015). Previous studies have been conducted to assess the effects of soil
erosion on crop productivity through artificial erosion approaches such as cut-and-fill experiments (Larney et
al., 2000; Jagadamma et al., 2009), transects characterized by different erosion phases (Kosmas et al., 2001;
Rejman and Iglik, 2010) and variable past erosions (Graveel et al., 2002; Fenton et al., 2005). Furthermore,
simulation modeling has been established to estimate the long-term effect of soil erosion on plant growth
(Pierce et al., 1983; Duan et al., 2016). For instance, Wang et al. (2009) demonstrated that soybean
yield was exponentially decreased with increasing soil erosion depth due to the loss of soil organic matter
and nutrients using the Agriculture Land Management Alternatives with Numerical Assessment Criteria
(ALMANAC) model. However, these researches did not clarify the relationship of soil erosion and crop
productivity, which may exhibit linear, concave and convex response curves (Bakker et al., 2004). Besides
different experimental methods, the response of crop yield to soil erosion also depends on variables such as
crop type, soil properties, management practices and climate characteristics (Bakker et al., 2007).

The negative effects of soil erosion on crop productivity can be attributed to the loss of soil organic carbon and
plant nutrients, especially nitrogen (N), phosphorous (P), and potassium (K) (Kaspar et al., 2004; Herbrich
et al., 2018). Quinton et al. (2010) reported that topsoil erosion decreased 23–42 Tg of nitrogen, 2.1–3.9
Tg of organic P and 12.5–22.5 Tg of inorganic P per year on the global scale. Plants obtain nutrients from
soil mainly through roots; however, root growth in the soil vary with soil physical, chemical, and biological
properties (Wang et al., 2015; Shinohara et al., 2016; Herbrich et al., 2018). It has been reported that a
reduction of topsoil thickness caused by soil erosion results in decreases in soil organic matter (Liu et al.,
2003; Srinivasan et al., 2012; Li et al., 2019a; Miao et al., 2019), available nutrients (Bakker et al., 2004; Sui
et al., 2013; Xiong et al., 2018) and the effective rooting zone (Graveel et al., 2002). In addition, soil enzymes
play an important role in soil quality and soil nutrient availability to plants (Jia et al., 2005; Stott et al.,
2010; Sarapatka et al., 2018). Researchers have used soil enzyme activities as indicators of soil deterioration
caused by erosion (Chaer et al., 2009; Sui et al., 2013; Nosrati, 2013). However, there are limited studies
on nutrients uptake of crop and activities of enzymes as affected under zero tillage and residue cover in the
eroded areas of China (Sui et al., 2013).

As an important grain production area, northeast China produces 18.7% of China’s total grains of which
45% and 33% are soybean, and maize, respectively (National Bureau of Statistics of China, 2012). However,
soil erosion increasingly becomes a major limiting factor for productivity of agricultural land in this region
(Liu et al., 2010). Zhang et al. (2008) showed that the average thickness of topsoil layer decreased from
43.7 cm in 1982 to less than 30 cm in 2002. Sui et al. (2009) reported that the yield reduction in maize and
soybean were 13% and 9% for the removal of every 10-cm topsoil. A survey with soil erosion in cropland in
northeastern China over the past 300-year history conducted by Xie et al. (2019) showed that the soil loss
of cropland exponentially increased due to the increasing cropland acreage in the steep slope areas.

In this study, we constructed three levels of topsoil depth in a Mollisol with the same physical, chemical
and biological properties to explore how maize and soybean responded to topsoil erosion under zero tillage,
residue cover and maize-soybean rotation conditions. The objectives were (1) to quantify the influence of
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topsoil thickness on crop yield; (2) to compare nutrient uptake of crops under three topsoil depths; (3) to
analyze the effect of topsoil thickness on root development and biochemical characteristics in the rhizosphere
of the crop plants.

2. Materials and methods

2.1. Experimental design

A field experiment was established in 2015 in a farming field (47°53’ N, 153deg33’ E), Heilongjiang Province,
northeast China. The soil was a typical Mollisol with glacial parent material. The field site had 40 years
of cultivation history with a 5deg slope and 30 cm of A horizon. The annual average temperature in the
region is 1.5degC, ranging from -37degC in the winter to 32degC in the summer. The average temperature
is 18.1degC and rainfall during the growing season (from May to September) 424 mm.

The experiment deployed a split-block design with three simulated topsoil depths (10, 20 and 30 cm) as the
main plot and crop species (maize and soybean) as sub-plot treatments. Each treatment had three replicates.
Each plot had an area of 10.4 m x 7.5 m. We first removed all topsoil of experiment plots, mixed, and then
back-filled up to 10, 20 and 30 cm in depth with a bulk density of 1.1 g cm-3. As the average depth of topsoil
in the Mollisol region is 32.7 cm, this study treated the topsoil depth of 30 cm as the control, and 10-cm
and 20-cm topsoil depths as erosion treatments. The reconstructed soil layer was naturally incubated for
one year. Maize and soybean crops were grown in a rotation module, in which both maize and soybean were
grown in the same season. Zero-tillage was deployed. The maize and soybean stalks were returned to the
surface of field plots after harvesting.

Maize (Zea mays L. cv. Xinggen 5) and soybean (Glycine max (L.) Merr. cv. Dongsheng 1) were sown
in early May 2016, 2017 and 2018. For maize, 150 kg ha-1 of diammonium phosphate, 75 kg ha-1 of urea,
and 50 kg ha-1 of potassium sulfate were applied before sowing, and 225 kg ha-1 of urea was applied at the
five-leaf collar (V5) stage. For soybean, the fertilizer application rates were 150 kg ha-1, 50 kg ha-1 and 50
kg ha-1 for diammonium phosphate, urea and potassium sulfate, respectively. Sowing rates were 5 and 25
seeds m-2 for maize and soybean, respectively. Maize plants were harvested at the jointing stage (V7) and
milk stages (R3), and soybean plants were at the initial flowering (R1) and mid-seed-filling stage (R6).

2.2. Measurements

2.2.1. Biomass and seed yield

At each harvest, we randomly selected thirty plants of maize and soybean in each plot. The aboveground
was cut and separated into leaves and stem. All plant samples were oven-dried at 105degC for 30 min and
then 80degC for 72 h. In each plot, root samples were taken at three locations of each plot, i.e. top, middle
and down sides of the plot with a root sampler (8 cm of diameter x 10 cm of depth) to sample roots up to 30
cm of soil depth at each location. The root samples were washed with tap water until free of soil, and were
placed in a plexiglass tray with 4 mm of clean water in depth. Total root length, surface area and diameter
were analyzed with the Win-RHIZO 2004 (Regent Instruments, Quebec, Canada) (Costa et al., 2002; Jin et
al., 2012). After scanning, root samples were oven-dried to determine dry weight.

At the full maturity, two central rows of each plot were hand-harvested for yield estimation in 2016, 2017
and 2018. Grain yield was adjusted to 130 g kg-1 moisture content.

2.2.2. Plants nutrient analysis

Plant simples were ground using a ball mill (Retsol MM2000, Retsch, Haan, Germany). Subsamples of
shoots and roots were digested with a mixture of nitric and perchloric acid (4:1) (Jin et al., 2012). The
concentrations of K in the digest solution was determined with a flame photometer (Liu et al., 2020). The
P concentration were measured by SKALAR San++ continuous flowing analyzer after acidic digestion (Xu
et al., 2018). The concentrations of N in plant tissues were determined using an Elementar CNS analyser
(Vario EL III, Elementar Analysensysteme GmbH, Germany) (Li et al., 2019b).
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2.2.3. Available nutrientsin the rhizosphere

The rhizosphere soils were collected by shaking the roots and the soil adhering to the roots was considered
as rhizosphere soil (Nazih et al., 2001). All soil samples were stored in a refrigerator at 4 degC for further
analysis.

Soil available N (NH4
+ and NO3

-) was determined with the methods described by Miah et al. (1998). Soil
Olsen P was obtained by extraction in NaHCO3 and analyzed by the Mo-Sb colorimetric method (UV2550,
Shimadzu, Japan) (Bao, 2000). Available K was extracted with neutral 1 M NH4OAc, and K concentration
was measured by a flame photometer (Chen and Gabelman, 1995).

2.2.4. Enzyme activities in the rhizosphere

The activities of urease, phosphatase and invertase in rhizosphere soil were determined by indophenol colori-
metric method, disodium phenyl phosphate and 3,5-dinitrosalicylic acid colorimetric methods, respectively
(Ge et al., 2007).

2.3. Statistical analysis

Data were analyses with SPSS 13.0 software (Chicago, IL). Two-way ANOVA was used to determine the
effects of topsoil depth, crop type and their interactions on seed yield, crop biomass, nutrient uptake, soil
available nutrient and enzyme activity. Treatment means were compared using the Duncan’s multiple range
test (P < 0.05).

3. Result

3.1. Crop yield

Compared to the 30-cm topsoil depth, maize yield under the 10-cm topsoil depth decreased by 22%, 11%
and 9% in 2016, 2017 and 2018, respectively (P < 0.05, Fig. 1a). Yield under the 20-cm topsoil depth
significantly decreased only in 2016 (P < 0.05, Fig. 1a). Soybean yield did not decrease under the 10-cm
topsoil depth, compared to the 30-cm topsoil depth. However, the 20-cm topsoil depth significantly increased
yields in 2016 and 2018 (P< 0.05, Figs 1b & S1).

3.2. Root and shoot biomass

Root biomass of maize under the 10-cm topsoil was 35% and 10% lower at V7 and R3, respectively, compared
to the 30-cm topsoil depth (P< 0.05, Fig. 2a). Similarly, shoot biomass also decreased with the decrease in
topsoil depth except for 20-cm topsoil depth at R3 (P < 0.05).

In comparison, root biomass of soybean was significantly increased by 27% and 34% under the 20-cm topsoil
depth at R1 and R6, respectively, than under the 30-cm topsoil depth. However, the 20-cm and 10-cm topsoil
depths resulted in 27% and 36% of decrease in shoot biomass at R6, respectively, compared to 30 cm topsoil
depth (P < 0.05, Fig. 2d).

3.3. Nutrient uptake

In maize, 10 cm of topsoil depth decreased shoot N, P and K uptake by 13%, 15% and 54% at V7, respectively,
compared to 30 cm of topsoil depth. There was no difference in the N and K uptake between 30 cm and 20
cm of topsoil depths. An increase in N, P and K uptake was found under 20 cm of soil depth compared to
30 cm of soil depth at R3 (P < 0.05, Fig. 3).

In soybean, nutrient uptake did not decrease with decreasing topsoil depth at R1 except for shoot K uptake.
However, at R6, N, P and K uptake significantly decreased under 20 cm and 10 cm of topsoil depth, compared
to 30 cm of topsoil depth (P < 0.05, Fig. 3d, e, f).

Root had a similar trend in N, P and K uptake in response to different soil depths (Fig. S1).

3.4. Specific nutrient uptake rate
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In maize, the N, P and K uptake per unit root length under 10 cm of topsoil depth significantly decreased
by 44%, 46% and 57% at V7, respectively, compared to 30 cm of topsoil depths (P < 0.05, Fig. 4). There
was no difference in the P and K uptake per unit root length between 30 cm and 20 cm of topsoil depths
at V7. An increase in the N and K uptake per unit root length was found under 20 cm of topsoil depths
compared to 30 cm of soil depth at R3.

In soybean, the N, P and K uptake per unit root length under 10 cm of topsoil depth was 46%, 42% and
50% lower than under 30 cm of topsoil depths at R1, respectively. The N, P and K uptake was 71%, 69%
and 74% lower under 20 cm and 53%, 45% and 57% lower under 10 cm of topsoil depths than under 30 cm
of topsoil depth at R6, respectively (P < 0.05, Fig. 4d, e, f).

The total root length in top 10-cm layer increased with decreasing topsoil depth for maize at V7 and soybean
at R1. The total root length was maximum under 20-cm topsoil depth for maize at R3 and soybean at R6
(Fig. S2).

3.5. Available nutrients in the rhizosphere

The concentrations of available N and P in the rhizosphere of maize were 42% and 36% lower, respectively,
under the 10-cm than the 30-cm topsoil depth (P < 0.05, Fig. 5a, b). Topsoil depth did not affect available
K (P > 0.05, Fig. 5c). In comparison, the concentrations of available N, Olsen P and available K in
the rhizosphere of soybean were 12%, 25% and 19% lower under the 10-cm than the 30-cm topsoil depth,
respectively (P < 0.05, Fig. 5a, c). However, there was no difference in concentrations of available N, P and
K between the 30-cm and 20-cm topsoil depths (P > 0.05, Fig. 5c).

3.6. Enzyme activities in rhizosphere

In the rhizosphere of maize, the activities of urease and phosphatase were 21% and 57% higher under 20
cm than 30 cm of topsoil depth. In addition, decreasing the topsoil depth to 10 cm further increased the
activities of urease, phosphatase and invertase which were 22%, 162% and 14% higher compared to 30 cm
of topsoil depths.

In soybean rhizosphere, urease activity was by 22% higher, but phosphatase activity 58% lower under the
10-cm than the 30-cm topsoil depth. The activities of phosphatases and invertase were 49% and 19% lower
under 20 cm than 30 cm of topsoil depth, respectively (P< 0.05, Fig. 6c).

4. Discussion

Decreasing topsoil thickness decreased the seed yield of maize but not soybean. The great reduction of
root and shoot biomass at V7 was associated with the maize yield reduction under shallow topsoil depths
compared to thick topsoil (Fig. 2), because biomass production at this growth stage was essential to maize
yield formation (Russo et al., 2004; Herrmann et al., 2013). Similarly, Lin et al. (2019) found that there
was no difference in soybean yield between “light” and “moderate” erosion sites, but 11% of yield loss was
observed in maize grown in the “moderate” erosion sites. These results demonstrated that the increasing soil
erosion reduced crop productivity and the reduction magnitude might be dependent of crop species (Bakker
et al., 2007; Gao et al., 2015; Lin et al., 2019).

The decreases in seed yield and biomass with the decrease of topsoil thickness might result from the reduction
of nutrient supply in soil (Sanaullah et al., 2012; Bista et al., 2018). Our present study showed that 10 cm of
topsoil depth decreased the N, P and K uptake per unit root length of both maize and soybean expect maize
at R3 (Fig. 4). As N, P and K are considered as the most important major nutrients for crop physiological
function and production capacity (Wang et al., 2017), this study showed the linear correlations of total and
specific nutrient uptake with total shoot biomass production (data not shown).

As soil nutrients are generally mainly distributed in the topsoil (Liu et al., 2013; Zhao et al., 2016), the
decrease of topsoil thickness also decreased root nutrient acquisition. It was evident that nutrient uptake
per unit root length of both crops was lower in 10 cm than 30 cm of topsoil depth at both vegetative and
reproductive stages. Zobisch et al. (1995) reported that 3-6 t ha-1 loss of topsoil resulted in 24% and 28%
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of decreases in P and K uptake in maize, and 15% and 16% in beans. In addition, soil erosion reduced soil
ammonium concentration by 66% at the Loess Plateau (Zheng et al., 2005), and soil organic C, total N and
total P by 33%, 28% and 27%, respectively, at an alpine grassland (Nie et al., 2013). In this study, the
decrease of the topsoil depth resulted in the substantial decreases in plant N and P uptake, and decreases
in the available N and Olsen P concentrations in rhizosphere soil as well, but not much in available K. Our
results indicated that the impact of the soil erosion on N and P cycles would constrain the crop productivity
(Fig. 5). The stimulation of the urease, phosphatase and invertase activities in the rhizosphere of maize
(Fig. 6) also indicated the scares of N and P availability to plants drove the biochemical processes of the N
and P mineralization. In comparison, soybean yield did not respond to the decrease of topsoil thickness in
this study. Similarly, Sui et al. (2009) found that soybean yield did not decrease by the removal of 5 cm
topsoil, which had decreased maize yield by 10% in a black soil. It appeared that maize was more sensitive to
topsoil erosion than soybean, which could be attributed to various capabilities of nutrient acquisition between
crops. Nitrogen uptake per unit root length of maize was dramatically decreased at V7 than soybean at R1
under 10 cm of topsoil depth in comparison to 30 cm. This also implied that soybean plants were capable
of fixing N2 particularly when soil N fertility decreased due to the erosion/removal of fertile topsoil. In
terms of P uptake, P availability under 10 cm of topsoil might not meet the nutrient demand of maize as
low availability of P in the rhizosphere of maize and stronger phosphatase activity which can mineralize soil
organic P for maize plants (Fig. 6). However, it did not occur in the rhizosphere of soybean. Some studies
had found that soybean not only alleviated N deficiency due to N2-fixation (Li et al., 2017), but also had less
P limitation than non-leguminous crops which had resulted from rhizosphere acidification during N2 fixation
to mobilize the non-labile P (Li et al., 2019b). Although low concentrations of available nutrients could
stimulate enzymatic catalysis, mineralized nutrients might not sufficiently mitigate nutrient constraints to
maize under erosion (Berhe et al., 2012). Since the quantity of enzymes is largely determined by microbial
activity and the content of soil organic matter (Wang et al., 2012; Nie et al., 2015), further study is needed
to understand how the soil microorganisms mineralize soil organic matter under topsoil erosion, considering
C input and soil nutrient supply in the maize-soybean rotation system.5. ConclusionIncreasing topsoil
erosion decreased yield of maize more severely than soybean. The deficiencies of N and P in maize under soil
erosion might greatly constrain the productivity even though the nutrient mineralization was stimulated.
Soybean was more resilient to topsoil erosion than maize. Increasing N and P supply would be applicable to
alleviate yield loss of maize grown in eroded soils.Acknowledgement: This research was partially funded
by the National Key R&D Program of China [2017YFC0504200; 2017YFD0300300], the National Natural
Science Foundation of China [41671274], and partially supported by the Professional Association of the
Alliance of International Science Organizations (grant number ANSO-PA-2020-12).

Captions

Fig. 1. Effect of topsoil depth on grain yields of maize and soybean in 2016, 2017 and 2018. The main
effects of topsoil depth, crop species and cropping year, and their interactions are all highly significant (P <
0.001). Values with means +- standard error (n=3). Within a growing season of each panel, values with a
same letter are not significantly different (P > 0.05).

Fig. 2. Effect of topsoil depth on root and shoot biomass of maize at the jointing (V7) and milk (R3)
stages, and of soybean at the initial flowering (R1) and seed-filling (R6) stages in 2017. Values with means
+- standard error (n=3). Within a growth stage of each panel, values with a same letter are not significantly
different (P> 0.05).

Fig. 3. Effect of topsoil depth on N, P and K uptake in shoot of maize at the jointing (V7) and milk (R3)
stages, and of soybean at the initial flowering (R1) and seed-filling (R6) stages in 2017. Values with means
+- standard error (n=3). Within a growth stage of each panel, values with a same letter are not significantly
different at (P> 0.05).

Fig. 4. Effect of topsoil depth on N, P and K uptake per unit root length of maize at the jointing (V7) and
milk (R3) stages, and of soybean at the initial flowering (R1) and seed-filling (R6) stages in 2017. Values
with means +- standard error (n=3). Within a growth stage of each panel, values with a same letter are not
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significantly different at (P > 0.05).

Fig. 5. Effect of topsoil depth on the concentrations of available N, P and K in the rhizosphere soil of maize
at the milk stage (R3), and of soybean at the seed-filling stage (R6) in 2017. Values with means +- standard
error (n=3). Within each panel, values with a same letter are not significantly different at P > 0.05 among
treatments in two crops (2-way ANOVA).

Fig. 6. Effect of topsoil depth on enzyme activities in the rhizosphere of maize at the milk stage (R3), and
of soybean at the seed-filling stage (R6) in 2017. Values with means +- standard error (n=3). Within each
panel, values with a same letter are not significantly different at P > 0.05 among treatments in two crops
(2-way ANOVA).

Table 1. Significant level (P ) of main effects and interactions of topsoil depth and crop species on grain
yield (2016, 2017, 2018), growth parameters (2017), nutrient uptake (2017), and concentrations of available
nutrients (N, P and K) and activities of enzymes in the rhizosphere soil (2017) of maize at the jointing (V7)
and milk (R3) stages, and of soybean at the initial flowering (R1) and seed-filling (R6) stages.

Fig. S1. Effect of topsoil depth on N, P and K uptake in root of maize at the jointing (V7) and milk (R3)
stages, and of soybean at the initial flowering (R1) and seed-filling (R6) stages in 2017. Values with means
+- standard error (n=3). Within a growth stage of each panel, values with a same letter are not significantly
different (P> 0.05).

Fig. S2. Effect of topsoil depth on total root length of maize at the jointing (V7) and milk (R3) stages,
and of soybean at the initial flowering (R1) and seed-filling (R6) stages in the top 30 cm of soil profile in
2017. Values with means +- standard error (n=3). Within a growth stage of each panel, values with a same
letter are not significantly different (P > 0.05).

Table S1. The effect of topsoil depth on the concentrations of N, P and K in root, stem and leaves of maize
at the jointing (V7) and milk (R3) stages, and of soybean at the initial flowering (R1) and seed-filling (R6)
stages in 2017. Values with means +- standard error (n=3). Values with a same letter are not significantly
different between topsoil depths (P > 0.05).
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Zöbisch, M. A., Richterby, C., Heiligtag, B., & Schlott, R. (1995). Nutrient losses from cropland in the
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Table 1. Significant level (P ) of main effects and interactions of topsoil depth and crop species on grain
yield (2016, 2017, 2018), growth parameters (2017), nutrient uptake (2017), and concentrations of available
nutrients (N, P and K) and activities of enzymes in the rhizosphere soil (2017) of maize at the jointing (V7)
and milk (R3) stages, and of soybean at the initial flowering (R1) and seed-filling (R6) stages.

Year Measurements Growth stage Topsoil depth Crop species Depth × Species

2016 Grain yield R3/R6 0.016 P < 0.001 0.012
2017 Grain yield R3/R6 0.413 P < 0.001 0.597
2018 Grain yield R3/R6 0.002 P < 0.001 0.634
2017 Shoot biomass V7/R1 P < 0.001 P < 0.001 P < 0.001

R3/R6 P < 0.001 P < 0.001 P < 0.001
Root biomass V7/R1 P < 0.001 P < 0.001 P < 0.001

R3/R6 P < 0.001 P < 0.001 0.014
Total root length V7/R1 P < 0.001 P < 0.001 P < 0.001

R3/R6 P < 0.001 P < 0.001 P < 0.001
Root N uptake V7/R1 P < 0.001 P < 0.001 P < 0.001

R3/R6 0.001 P < 0.001 0.084
Root P uptake V7/R1 0.001 P < 0.001 P < 0.001

R3/R6 0.369 P < 0.001 0.011
Root K uptake V7/R1 P < 0.001 P < 0.001 P < 0.001

R3/R6 0.131 P < 0.001 0.461
Shoot N uptake V7/R1 P < 0.001 P < 0.001 P < 0.001

R3/R6 0.001 P < 0.001 P < 0.001
Shoot P uptake V7/R1 0.007 0.001 0.213

R3/R6 0.001 P < 0.001 P < 0.001
Shoot K uptake V7/R1 P < 0.001 P < 0.001 0.007

R3/R6 P < 0.001 P < 0.001 P < 0.001
Specific N uptake V7/R1 P < 0.001 P < 0.001 0.003

R3/R6 P < 0.001 P < 0.001 P < 0.001
Specific P uptake V7/R1 P < 0.001 P < 0.001 0.060

R3/R6 P < 0.001 P < 0.001 P < 0.001
Specific K uptake V7/R1 P < 0.001 0.002 0.860

R3/R6 P < 0.001 P < 0.001 P < 0.001
Rhizosphere N R3/R6 0.004 P < 0.001 0.027
Rhizosphere P R3/R6 0.002 0.001 0.797
Rhizosphere K R3/R6 P < 0.001 0.432 0.014
Rhizo urease R3/R6 0.006 P < 0.001 0.108
Rhizo phosphatases R3/R6 0.041 P < 0.001 P < 0.001
Rhizo invertase R3/R6 0.001 0.001 0.137
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Fig. 1. Effect of topsoil depth on grain yields of maize and soybean in 2016, 2017 and 2018. The main
effects of topsoil depth, crop species and cropping year, and their interactions are all highly significant (P
< 0.001). Values with means ± standard error (n=3). Within a growing season of each panel, values with a
same letter are not significantly different (P > 0.05).

Fig. 2. Effect of reduced topsoil depth on root and shoot biomass of maize at the jointing (V7) and milk
(R3) stages, and of soybean at the initial flowering (R1) and seed-filling (R6) stages in 2017. Values with
means ± standard error (n=3). Within a growth stage of each panel, values with a same letter are not
significantly different (P > 0.05).
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Fig. 3. Effect of topsoil depth on N, P and K uptake in shoot of maize at the jointing (V7) and milk (R3)
stages, and of soybean at the initial flowering (R1) and seed-filling (R6) stages in 2017. Values with means
± standard error (n=3). Within a growth stage of each panel, values with a same letter are not significantly
different at (P> 0.05).
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Fig. 4. Effect of topsoil depth on N, P and K uptake per unit root length of maize at the jointing (V7) and
milk (R3) stages, and of soybean at the initial flowering (R1) and seed-filling (R6) stages in 2017. Values
with means ± standard error (n=3). Within a growth stage of each panel, values with a same letter are not
significantly different at (P > 0.05).
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Fig. 5. Effect of topsoil depth on the concentrations of available N, P and K in the rhizosphere soil of maize
at the milk stage (R3), and of soybean at the seed-filling stage (R6) in 2017. Values with means ± standard
error (n=3). Within each panel, values with a same letter are not significantly different at P > 0.05 among
treatments in two crops (2-way ANOVA).
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Fig. 6.Effect of topsoil depth on enzyme activities in the rhizosphere of maize at the milk stage (R3), and
of soybean at the seed-filling stage (R6) in 2017. Values with means ± standard error (n=3). Within each
panel, values with a same letter are not significantly different at P > 0.05 among treatments in two crops
(2-way ANOVA).

Table S1. The effect of topsoil depth on the concentrations of N, P and K in root, stem and leaves of maize
at the jointing (V7) and milk (R3) stages, and of soybean at the initial flowering (R1) and seed-filling (R6)
stages in 2017. Values with means ± standard error (n=3). Values with a same letter are not significantly
different between topsoil depths (P > 0.05).

Stage Soil nutrients Root (g kg-1) Root (g kg-1) Root (g kg-1) Stem (g kg-1) Stem (g kg-1) Stem (g kg-1) Leaf (g kg-1) Leaf (g kg-1) Leaf (g kg-1)

10 cm 20 cm 30 cm 10 cm 20 cm 30 cm 10 cm 20 cm 30 cm
2017 Maize 2017 Maize 2017 Maize 2017 Maize 2017 Maize 2017 Maize 2017 Maize 2017 Maize 2017 Maize 2017 Maize 2017 Maize
V7 N 15.0±0.6a 13.3±0.7a 14.6±0.5a 16.1±1.5a 16.7±2.0a 16.4±0.8a 25.0±0.8a 24.8±1.3a 24.7±0.1a

P 4.2±0.1a 3.8±0.2a 4.2±0.1a 5.0±0.4a 5.2±0.4a 5.1±0.1a 4.8±0.3a 4.8±0.3a 5.0±0.2a
K 6.4±1.4a 8.8±0.4a 9.2±0.4a 17.7±3.8b 26.6±0.1a 24.2±0.4ab 14.7±0.6a 18.3±0.9a 18.0±0.3a

R3 N 6.4±0.6b 8.6±0.4a 7.7±0.7ab 5.8±0.5a 7.0±0.5a 6.6±0.9a 20.7±1.7a 23.6±1.4a 21.5±0.7a
P 3.5±0.3a 3.3±0.1a 3.6±0.2a 2.7±0.2a 2.8±0.1a 2.8±0.1a 4.3±0.2a 4.4±0.3a 4.0±0.2a
K 6.3±0.3a 6.8±0.7a 6.0±0.3a 10.9±1.4a 14.2±2.4a 12.5±1.2a 9.4±0.6b 11.5±0.7a 11.5±0.2a

2017 Soybean 2017 Soybean 2017 Soybean 2017 Soybean 2017 Soybean 2017 Soybean 2017 Soybean 2017 Soybean 2017 Soybean 2017 Soybean 2017 Soybean
R1 N 14.4±0.2a 14.5±1.2a 14.9±0.6a 13.5±0.5a 15.8±2.2a 15.8±0.4a 46.2±1.4a 45.4±2.9a 46.7±0.6a

P 4.3±0.2a 4.8±0.1a 4.4±0.2a 3.8±0.1a 3.9±0.1a 4.1±0.1a 5.2±0.2a 5.5±0.2a 5.9±0.2a
K 3.6±0.4b 6.5±0.3a 5.9±0.6a 13.2±0.3a 14.0±0.7a 14.3±1.4a 10.3±0.6a 11.6±0.8a 12.1±2.1a

R6 N 10.6±0.2a 11.5±0.9a 8.2±0.5b 13.6±0.9a 12.4±0.7a 13.1±0.1a 38.3±1.4a 37.8±0.7a 40.1±0.2a
P 4.4±0.4a 3.8±0.1a 2.7±0.2b 4.6±0.5a 4.1±0.2a 4.2±0.3a 5.0±0.3a 4.9±0.2a 4.9±0.2a
K 2.2±0.3b 2.9±0.3b 4.9±0.6a 8.6±0.1b 7.7±0.5b 10.8±0.4a 15.8±0.6a 15.8±0.2a 17.2±0.7a
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Fig. S1. Effect of topsoil depth on N, P and K uptake in root of maize at the jointing (V7) and milk (R3)
stages, and of soybean at the initial flowering (R1) and seed-filling (R6) stages in 2017. Values with means
± standard error (n=3). Within a growth stage of each panel, values with a same letter are not significantly
different (P> 0.05).

19



P
os

te
d

on
A

u
th

or
ea

18
M

ay
20

20
—

T
h
e

co
p
y
ri

gh
t

h
ol

d
er

is
th

e
au

th
or

/f
u
n
d
er

.
A

ll
ri

gh
ts

re
se

rv
ed

.
N

o
re

u
se

w
it

h
ou

t
p

er
m

is
si

on
.

—
h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
58

98
14

37
.7

88
46

64
2

—
T

h
is

a
p
re

p
ri

n
t

an
d

h
a
s

n
o
t

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

a
ta

m
ay

b
e

p
re

li
m

in
a
ry

.

Fig. S2. Effect of topsoil depth on total root length of maize at the jointing (V7) and milk (R3) stages,
and of soybean at the initial flowering (R1) and seed-filling (R6) stages in the top 30 cm of soil profile in
2017. Values with means ± standard error (n=3). Within a growth stage of each panel, values with a same
letter are not significantly different (P > 0.05).
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