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Abstract

Phase-field models have been the subject of a great deal of research in recent years. Investigations have revealed that the

phase-field model is capable of generating complex crack patterns. This is gained by replacing the sharp discontinuities with a

scalar phase damage field comprising the diffuse crack topology. In the previous models, cracks are blurred into the surrounding

areas due to introducing dependency of degradation function to a single parameter, strain threshold. The stable crack initiation

and propagation require estimation of complex higher-order degradation function, which should be solved either by a new

iteration scheme or using extremely small loading increment. However, this demands considerably high computational cost. In

this study, the nonlinear coupled system comprising the linear momentum equation and the diffusion-type equation governing

the phase-field evolution is solved concurrently through a Newton–Raphson approach. Moreover, an improved degradation

function and staggered iteration scheme are solved by a one-step paradigm is proposed. Such that the computational costs can

be reduced, and the stability of crack propagation can be improved. A phase-field model for ductile fracture is carried out in

the commercial finite element software Abaqus by means of UEL and UMAT subroutines. Post-processing of simulation results

is implemented through an added subroutine implemented in the visualization module. Several benchmark problems show the

proposed model’s ability to reproduce some essential phenomenological characteristics of ductile fracture as documented in the

experimental literature.
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Abstract

Phase-field models have been the subject of a great deal of research in recent years. Investigations have
revealed that the phase-field model is capable of generating complex crack patterns. This is gained by
replacing the sharp discontinuities with a scalar phase damage field comprising the diffuse crack topology.
In the previous models, cracks are blurred into the surrounding areas due to introducing dependency of
degradation function to a single parameter, strain threshold. The stable crack initiation and propagation
require estimation of complex higher-order degradation function, which should be solved either by a new
iteration scheme or using extremely small loading increment. However, this demands considerably high
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computational cost. In this study, the nonlinear coupled system comprising the linear momentum equation
and the diffusion-type equation governing the phase-field evolution is solved concurrently through a Newton–
Raphson approach. Moreover, an improved degradation function and staggered iteration scheme are solved by
a one-step paradigm is proposed. Such that the computational costs can be reduced, and the stability of crack
propagation can be improved. A phase-field model for ductile fracture is carried out in the commercial finite
element software Abaqus by means of UEL and UMAT subroutines. Post-processing of simulation results
is implemented through an added subroutine implemented in the visualization module. Several benchmark
problems show the proposed model’s ability to reproduce some essential phenomenological characteristics of
ductile fracture as documented in the experimental literature.

Keywords:

Finite element analysis, Ductile fracture, Crack propagation modeling, Crack path; Fracture mechanics

Symbol Name

Bu
I Strain-displacement Tensor

BϕI Strain-Phase field Tensor
El Total energy
Fu

I ext External force
Fu

I int Internal force
gp Plastic phase field function
He History variable
h Hardening modulus
K Stiffness matrix
l Length scale
Nu
I Displacement shape function

Nϕ
I Phase field shape function

n Calibration parameter
p Accumulated plastic strains
q Calibration parameter(Stabilization)
ruI Displacement field Residual
rϕI Phase field Residual
u Displacement field
α Internal hardening variable
ε Strain
εpeq,crit Critical plastic strain

εpeq Equivalent plastic strain
Γ crack set
η Stabilization parameter
µ, λ Lame constants
g (ϕ) Phase field function
g (ϕ,p) Plasticity dependent phase field function
ϕ Phase-Field parameter
ϕc Maximum value of damage
ψe Total elastic energy
ψp Plastic energy
ψe

+ Elastic energy(tension)
ψe
− Elastic energy(compression)

Ω Reference configuration
Gc Fracture toughness

2
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Introduction

Identification of failure mechanisms and the development of computational methods that precisely estimate
complex failure and fracture mechanisms in ductile materials has proven difficult, and many strategies with
varying success have been suggested. The phase-field method, also known as the variational approach
to fracture, is an approach that has continually been the topic of both scientific interest and paramount
importance in engineering applications, which has challenging mathematical and numerical implications.

However, the provision of computational predictive equipment allows for significant financial savings of the
cost of experiments, mainly in instances wherein those are extremely complicated, as well as for design
optimization.

Following the comprehension review in previous works1, several modeling approaches have been proposed
for ductile fracture. For brittle and ductile materials, the basic idea is typically primarily based on the
thermodynamic framework first delivered via Griffith.2 The propagation of pre-existing cracks in the phase-
field model agrees with the energetic considerations of classical Griffith theory.3,4 The variational approach
to brittle fracture, developed by Francfort and Marigo5, to find a solution to the fracture-using minimizing
potential energy-based totally on Griffith’s concept of brittle fracture. This method results in Mumford-
Shah6. Bourdin et al 7 approved straightforward numerical solutions. An alternative formulation, based on
continuum mechanics and thermodynamic theories, become provided by means of Miehe8 and Miehe et al .9

Besides an alternative derivation, Miehe et al 8introduced a crucial mechanism for distinguishing tensile
and compressive results on crack growth. The works of Larsen10, Larsen et al 11, Bourdin et al 12, Borden
et al 13, and Hofacker and Miehe14demonstrate that this technique can be applied to dynamic fracture
and produces results that are consistent with considerable benchmark challenges. Preliminary work to
extend the variational approach to ductile materials has been stated in Ambati et al 14,15 and Miehe et al
17,18.They examined the degradation function as a function of the accumulated plastic strain including the
elastic modulus, the yield stress, and the strain hardening exponent. The coupled set of stress equilibrium
equations and the phase-field evolution are solved at the same time in the work of Miehe and Welschinger9.
A staggered scheme is being used in the work of Miehe et al 8 and Aldakheel17. Wherein a local energy
history field,H, is adopted as a state variable to guarantee irreversible crack growth.

A related approach is introduced by McAuliffe and Waisman19 where a model that couples the phase-field
with the ductile shear band is improved. On this technique, shear bands are formulated the usage of an
elastic-perfectly viscoplastic model and fracture is modeled as the degradation of the volumetric elastic stress
terms only.

Ductile fracture of elastic-plastic solids turned into an investigation underneath dynamic loading conditions.
In the works of Miehe20,21 the point of interest turns out to be placed on reproducing the experimentally
determined ductile to brittle failure mode with an increased loading pace. In these works, the whole (free)
energy functional is taken because of the accumulation of elastic, plastic and fracture contributions. Re-
cently, Duda et al 22 introduced a phase-field model for quasi-static brittle fracture in elastoplastic solids.
T. Gerasimov et al 23 proved that the irreversibility constraint of the crack phase-field is a constrained
minimization problem. Bhattacharya et al 24 presented variational gradient damage formulation of duc-
tile failure that naturally couples elasticity, perfect plasticity, and fracture in the rate-independent setting.
In this work, small plastic deformation is considered to take place in the location of the notch root or crack
tip. Also, in this case, the governing equations in terms of general energy are the sum of elastic, plastic
and fracture contributions. The elastic and fracture contributions take the classical form, while the plastic
contribution is a delegated function of the accumulated plastic strain.

The objective of this paper is to propose a phase-field formulation of ductile fracture in elastoplastic solids,
in the quasistatic boundary problems of linear elastoplasticity with a linear isotropic hardening material. A
coupling between the degradation function introduced in15 is investigated. This coupling is shown to play
a fundamental role in the correct prediction of some phenomenological aspects of ductile fracture evidenced
from available experimental results. Moreover, the model proved to be thermodynamically consistent in 15.
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One of the significant improvements of the degradation function in this work is q ∈ (0, 1] parameter which
plays a dominating role in the stability of crack propagation.

The development of computer coding via UEL and UMAT subroutines is considered. Analysis of the model
yields the definition of an effective fracture strength for one element in the two-dimensional phase-field
model. In the second step, the problem of crack initiation and propagation in the one element is extended
in the two-dimensional setting. Therefore, based on the findings from the one element case, crack paths and
force-displacement curves are derived for the proposed model.

2. Governing Equations

2.1 phase-field summary of brittle fracture of elastic solids:

The phase-field model’s description of brittle fracture drives from the variational formulation of brittle frac-
ture by Francfort and Marigo5, and the regularized formulation of Bourdinet al 7. In Bourdin’s regularized
model, the total energy, El, of a linear elastic media is:

El (u, Γ) =
∫

Ω
ψe (ε (u)) dx + Gc

∫
Γ
ds ,

Eq.(1) and Gc referes to the Griffith functional and material fracture toughness, respectively. The Ω is the
reference configuration of the body. The undetermined displacements,u, as well as the crack set, Γ, can be
achieved through a global minimization of such functional function under the condition of irreversibility, 25

2 Γt+t ⊇ Γt ,

In the Eq. (1) ψe is the elastic energy density function characterized as:

3 ψe = 1
2ε (u) : C :ε (u) ,

where C is the fourth-order elasticity tensor. The infinitesimal strain tensor ε (u) is associated with the
displacement field u by:

4 ε (u) = 1
2

(
∇u + (∇u)

T
)

,

The second term of Eq. (1) is a volumetric approximation of the energy contribution-the crack density
functional-which typically takes the form,

5 Gc
∫

Γ
ds = Gc

∫
Ω

(
(1−ϕ)2

4l +l |∇ϕ|2
)
dx ,

To facilitate the numerical solution of this problem, Bourdin et al 26 introduced a phase-field approximation
of Eq.(1) that takes the form:

6 El (u,ϕ) =
∫

Ω
{g (ϕ)ψe (ε (u))} dx + Gc

∫
Ω

(
(1−ϕ)2

4l +l |∇ϕ|2
)
dx ,

The scaler value, ϕ, which implies the crack phase-field parameter and alters slightly from 0 (completely
intact state) to 1 (fully broken). The fracture behavior of phase-field fracture models is mainly adjusted

4
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by two parameters. The cracking resistanceGc is a material parameter, which is a measure for the surface
or fracture energy, needed to create new fracture surfaces. The second parameter is a length scale, which
primarily controls the width of the transition zone between broken and undamaged material.

The stress degradation function,g : [0, 1] → [0, 1]performs a key role in the formulation because it regulates
how the stress reacts to alterations in the phase-field. A basic quadratic degradation function, which is
prevalent in literature is,27

7 g (ϕ) = ϕ2 + η ,

The small dimensionless parameter η models an artificial residual stiffness of a totally broken phase, ϕ = 1,
and is essentially needed to prevent numerical difficulties. For numerical reasons (stability) η may not be
chosen too small. However, too large values for η overestimate the bulk energy in fractured zones.

By applying variational principles, the minimization problem, Eq.(6) can be reformulated as the system of
the stress equilibrium equation, divσ (u, ϕ) = 0.

The second-order Cauchy stress tensor, σ,

8 σ (u,ϕ) = g (ϕ) ∂ψe(ε)∂ε = g (ϕ)C :ε ,

and the evolution equation for ϕ:

9 2lϕ+ 1−ϕ
2l =

´
g(ϕ)
Gc ,

Fundamental differences between fracture behavior in tension and compression should be taken into account.
However, Eq.(3) does not differentiate between that behavior. Already in Amor et al 28 examples of un-
realistic crack patterns under compression have been documented. To prevent such situations a derived
regularized formulation of Eq.(1) has been suggested in Miehe et al 8,9. The corresponding approximation
takes the form as follows:

10 El (u,ϕ) =
∫

Ω

{
g (ϕ)ψe

+ (ε) + ψe
− (ε)

}
dx + Gc

∫
Ω

[ (1−ϕ)2

4l +l |∇ϕ|2]dx ,

using a specific additive decompositionψe = ψe
+ + ψe

−of the elastic energy density ψe, in contrast to
Eq.(6), the degradation of only the positive energy part is allowed herein, whereas the negative part remains
undegraded. The ψe

+ represents tensile contributions and ψe
− represents compressive contributions to the

stored elastic strain energy. This modification provides a mechanism for distinguishing states of strain under
which cracks will growth. In Contrafatto29 the trace of the elastic strain tensor was used as separating
interface. This approach has also been followed by Faria30 and Ambati31. In such a way the elastic energy
takes different forms according to the sign of the elastic strain tensor.28

11 ψe
+ (ε) = 1

2kn〈tr(ε)〉
2
+ + µ (εdev : εdev) ,

12 ψe
− (ε) = 1

2kn〈tr(ε)〉
2
− ,

Where kn = λ + 2µn ,〈a〉± = 1
2 (a ± |a|)andεdev = ε − 1

3 tr(ε)Ias well as the split based on the spectral

decomposition of the strain tensorε =
∑3
I=1 〈εI〉nI

⊗
nI , where {εI}3I=1 and{nI}3I=1 are the principal

5
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strains and principal strain directions, respectively8,9. In this case, ε± =
∑3
I=1 〈εI〉± nI

⊗
nIand, eventually,

13 ψe
± = 1

2λ〈tr(ε)〉±
2

+ µtr(ε±)
2
,

with postulate the elastic stress-strain relation, the evolution equation of the crack phase-field reading as:

14 σ (u,ϕ) = g (ϕ) ∂ψe
+

∂ε + ∂ψe
−

∂ε ,

And

2lϕ+ 1−ϕ
2l =

´
g(ϕ)
Gc ψe

+ (ε) ,

respectively.

To enhance the efficiency of phase-field computations, the higher-order and hybrid formulations were recom-
mended in Miehe8and Ambati32, respectively. Extension of the quasi-static formulations Eq.(5) and Eq.(9)
to the dynamic setting has been presented in numerous contributions.12,13,33,34

2.2 Phase-field model of ductile fracture:

For the energy functional presented in Eq. (1) crack growth is driven by elastic strain energy. To extend
this theory to ductile materials and provide a mechanism for plastic yielding to contribute to crack growth
plastic energy density function will add,ψp (α), to the stored energy. The stored energy functional proposed
in Ambati35 is,

El (εe,εp,α) =
∫

Ω
[ψe (εe) + ψp (α)] dx ,

and

17 ψp (α) = σyα+ 1
2hα

2 ,

where α is internal hardening variable, σy yield stress and h > 0 hardening modulus. In Eq. (13),εe and
εp are respectively the elastic and the plastic strain tensors, which are assumed to additively contribute to
the total strain,ε = εe + εp. The plastic strain,εp, and the hardening variable, α, take the internal (state)
variables form.36

The free energy functional formulation suggested therein lean on the,22

18 El (εe,εp,α,ϕ) =
∫

Ω

{
g (ϕ)ψe

+ (εe) + ψe
− (εp) + ψp (α)

}
dx + Gc

∫
Ω

[ (1−ϕ)2

4l +l |∇ϕ|2]dx ,

As might have known, the fracture mechanism (i.e. the evolution of the phase-field) in the brittle fracture
framework is carried out mainly by the elastic strains, thus the contribution of the plastic strains will be
negligible.

From the above statement, it becomes clear that a basis of the ductile phase-field model evolution is the
right choice of the degradation function and, particularly, that this function should rely not only on the
phase-field variable ϕ but also to some extent of the plastic strain state.

6
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2.3 The proposed model

In this contribution, the recommended free energy functional is,

El (εe,εp,α,ϕ) =
∫

Ω

{
g (ϕ,p)ψe

+ (εe) + ψe
− (εe) + ψp (α)

}
dx + Gc

∫
Ω

[ (1−ϕ)2

4l +l |∇ϕ|2]dx ,

Where the degradation function for elastic-plastic contribution can be defined as:

20 g (ϕ,p) = (1− q)np + η ,

With

p =
εpeq

εpeq,crit
, εpeq (t) =

√
2
3

∫ t
0

√
ε̇p : ε̇pδτ ,

and εpeq,crit as a threshold value. εpeq is often called von Mises equivalent plastic strain. The variable
p represents the accumulation and localization of plastic strains. By making dependency on ϕ, p and
degradation function g, the fracture process will be the natural consequence of ductile damage accumulation.

The variational derivative of El with respect toεe bring into the equilibrium equationdiv σ = 0, where the
stress takes the form

22 σ (u,ϕ,p) = g (ϕ, p) ∂ψe
+(εe)
∂εe + ∂ψe

−(εe)
∂εe ,

For the current formulation, the material complies J2-plasticity with linear isotropic hardening, thus the
Mises criterion isotropic hardening during plastic loading may be written as:

23 f (σ, α, ϕ, p) =
√

3J2σ
tr
n+1 + tα ≤ 0,

where J2(σdev) is the second principal invariant of the stress deviator tensorσdev = σ − 1
3 tr(σ)I andtα are

the hardening thermodynamically force acquired from Eq.(16) and Eq.(14)

24 tα = −∂El∂α = −(σy + ηα),

By using the associated flow rule this equivalent plastic strain can be shown to be equal to the plastic
multiplier

25 ε̇p (α,ϕ, p) = λ̇ ∂f∂σ , α̇ = λ̇ ∂f
∂tα

,

where λ̇ is the plastic consistency factor. Note that these evolution equations are the same as classical J2-
plasticity, where they automatically ensure the satisfaction of the second law of thermodynamics. Loading
and unloading conditions are governed by the Kuhn–Tucker relations.

26 λ̇ ≥ 0, f ≤ 0, λ̇f = 0 ,

7
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The evolution equation for the crack phase-field can be defined as

27 2lϕ+ 1−ϕ
2l =

g,ϕ(ϕ,p)
Gc ψe

+ (εe).

Development of the irreversibility condition, Eq.(3), to the regularized case is not instantly clear since the
intermediate states0 ≤ ϕ ≤ 1 do not have a forthright physical understanding.

The natural course from the perspective of damage mechanics is to enforce the condition:

28 ϕ(x)t+t ≥ ϕ(x)t ,

this can be ordered along with an additional penalty term in the phase-field evolution equation7, or alter-
natively via a history variable H which ensures the irreversibility condition to prevent crack healing. This
variable, H, replaces the quantityψe in Eq.(27).37

29 He(x, t) = max ψe
+ (εe(x, τ)) ,

A closer look at the phase-field localization process, however, reveals that Eq.(28) may not be the best
extension of Eq. (2). Based on the observed behavior of the 1D case in Sargado25, a strict imposition of
Eq.(27) may lead to an overestimate of the crack length. Consequently, one can use a modified version of
Eq.(29) in which irreversibility is imposed only when ϕ exceeds a certain threshold, i.e.

30 He(x, t) =

{
max ψe

+ (εe(x, τ)) if ϕ ≥ ϕc
ψe

+ (εe(x, τ)) otherwise

The parameter ϕc shows the maximum value of damage that is allowed to heal during unloading. For a
material point which goes through the damage ϕ ≥ ϕc the resulting stress-strain curves will be nonlinear,
with the amount of departure from linearity dependent on the specific form of the degradation function.

3. Numerical solution

This section is applied to the two-dimensional implementation, which is performed under plane strain condi-
tions in a finite element code within the Abaqus by means of UEL and UMAT subroutines. The purpose of
this section is to introduce a straightforward implementation procedure. The eight-node quadrilateral finite
elements are used.

Finite element approximation

In more compact form, the displacement field and phase-field are visualized inside an eight-node quadrilateral
element by the following relations:

31 u =
∑m
I=1N

u
I uI , ϕ =

∑m
I=1N

ϕ
I ϕI

In which

32 Nu
I =

[
NI amp; 0
0 amp;NI

]

8
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where the subscriptions within the arrays indicate node numbers, andNI express the element vector-field
shape function correlated with node I. uI and ϕI are the displacement and phase-field values at node I, re-
spectively. In this work the standard 8-node quadrilateral element employed. So, m = 8. The corresponding
derivative quantities are given by

ε =
∑m
I=1 BuIuI , ∇ϕ =

∑m
I=1 B

ϕ
I ϕI ,

The total strain displacement field and phase-field in an element is given by vectors

BuI =


NI,x amp; 0

0 amp;NI,y
0 amp; 0

NI,y amp;NI,x

 , BϕI =

[
NI,x
NI,y

]
,

The third row of BuI , consisting of zeros, is required by the plane strain condition. A review of the work of
Msekh40 and starting with the numerical solution obtained external force is:

35 Fu
I ext =

∫
Ω

NuT
I b +

∫
∂Ω

NuT
I h ,

And the internal forces are obtained from

36 Fu
I int =

∫
Ω
g (ϕ, p)BuT

I σdΩ ,

So that the discrete equations corresponding to stress equilibrium may be expressed as via the following
residual:

37 ruI= Fu
I int − Fu

I ext =
∫

Ω
g (ϕ, p)BuT

I σdΩ−
∫

Ω
NuT
I b +

∫
∂Ω

NuT
I h ,

On the other hand, the residual corresponding to the evolution of the phase-field is given by

38 rϕI =
∑m
I=1

∫
Ω
GclBφΤI ∇ϕ+

[
Gc
l + 2ψ (ε)

]
Nϕ
I ϕdΩ−

∫
Ω

2Nϕ
I ψ (ε) dΩ ,

We seek the solution for which theruI= 0 andrϕI = 0. Due to the nonlinear nature of the residuals with
respect to u and ϕ, we employ an incremental-iterative strategy utilizing the Newton–Raphson approach in
conjunction with a parametrization based on a fictitious time:

39

{
u
ϕ

}
t+t

=

{
u
ϕ

}
t

−
[
Kuu amp;Kuϕ
Kϕu amp;Kφφ

]−1

t

{
ru

rϕ

}
t

,

In which

9
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40

Kuu =
∂ru

∂u
=

∫
Ω

g (ϕ, p)BuTCBudΩ ,

Kuϕ =
∂ru

∂ϕ
=

∫
Ω

g,ϕ (ϕ, p)BuTσNT dΩ ,

Kϕu =
∂rϕ

∂u
=

∫
Ω

g,ϕ (ϕ, p)NσTBudΩ ,

Kφφ =
∂rϕ

∂ϕ

∫
Ω

GclBφΤBϕ +

[
Gc
l

+ 2ψe (ε)

]
NNT dΩ ,

The practical details in the Assembling algorithm
for matrices are discussed in Appendix A.

4. Algorithmic aspects

4.1 Staggered solution strategy

Based on the algorithmic paradigm by Miehe et al 8, the proposed equations solved the weak formulations
of mentioned equations in section 2 using a staggered strategy(Appendix C)The collection of equations as
a result of the finite element model is nonlinear in order that one has to utilize to incremental-iterative
schemes for calculating the solution. The proposed model has been realized into application within the
software ABAQUS in order to take advantage of its built-in nonlinear solver using the Newton–Raphson
algorithm along with automatic time-step control technique.

Respecting to the phase-field model for brittle fracture in two-dimensional and its extension to ductile one,
an 8-node quadrilateral element is defined with 3 DOF per node, which are respectively ux, uy and ϕ. These
parameters were implemented into an interface element in the UEL user subroutine in the finite element
code ABAQUS.

The subroutine is the readout for every element and gets the nodal values of the element as input. The
Abaqus user subroutine employs the displacement increments to compute incremental strain and called user
subroutine UMAT to achieve the stress increment and the material jacobian. The latter is needed to matrix
A. Implemented formulations of the stiffness matrix and force vector in section 2 of the element calculate
to matrix A and the vector F and saves them in the arrays AMATRX and RHS as subroutine’s built-in
parameters. In another word, Abaqus collects contributions from all elements, forms global matrix A and
vector F and finds a correction vector{
u
ϕ

}
t+tvia solving Eq. (39).

4.2 Time integration

To develop accurate, efficient, and stable integration rules for integrating the set of the constitutive (differ-
ential) equations of the proposed elastoplastic model in section 2, explicit numerical integration methods
were considered. To keep the presentation simple, the integration strategy has been presented briefly. The
generalization of these integration techniques for a set of PDEs is forthright and presented afterward.

εεn+1 = εεn + λ
√

3
2nn+1 , αn+1 = αn + λ ,

To solve the Eq.(41), extension of the return mapping algorithm made taking into account a special treatment
of the phase-field development.41,42

10
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Dependent on the small elastic strain tensor,εe, plastic strain tensor,εp, and the internal strain like scalar
hardening variable, α, the problem of the increment calculation of εeand εptypically solved by an operator
split into an elastic predictor and plastic corrector.43,45 The calculation of the trial elastic state ( )

tr
ac-

cording to theJ2-plasticity model with linear isotropic hardening and based on freezing the plastic flow at
the time t n+1 is given by,

σtr
n+1 = 2γμεe, tr

n+1 , f tr
n+1 (σ,α, ϕ, p) =

√
3J2σtr

n+1 − (σy + hα) ≤ 0,

The usual yield function proved in Eq. (42) does not produce precise physical response while linked with the
phase-field model for crack growth. In the process of material failure, the damaged elastic reaction pulls the
stress back within the yield surface and any further deformation up to complete failure is purely elastic.27

That is opposite to what is noticed physically for ductile materials where the deformation is controlled by
plastic strain. To compensate for this behavior, plastic degradation function should take place in the yield
surface. 46

√
3J2σtr

n+1 − (σy + hα)− hλ− gp3µλ = 0 ,

Otherwise speaking, gp is the plastic degradation function. The plastic degradation function is resembling
the elastic degradation function and provides a mechanism for driving crack growth by the development of
plastic strains. As a result, the case with gp = 1, there is no plastic softening.

5. Numerical examples

The performance of the applied model is tested with the aid of several examples of the potential to capture
representative aspects of fracture processes in ductile materials inside the proposed method, starting with
the simplest one-the homogeneous plate subjected to pure tensile loading.

Table . Material Properties

Properties Materials Material I Material II Material III Material IV Material V

Bulk modulus 71,660 MPa 1,36,500 MPa 1,36,500 MPa 71,660 MPa 2,20,000 MPa
Yield stress 345 MPa 443 MPa 443 MPa 345 MPa 864 MPa
Hardening modulus 250 MPa 300 MPa 1690 MPa 2,500 MPa 850 MPa
Critical fracture Energy 9.31 MPa mm 20.9 MPa mm 20.9 MPa mm 9.31 MPa mm 9.31 MPa mm

Initially, the I-shape specimen is examined to show the accuracy of the crack pattern, the role of a q
parameter, and the load-carrying capacity of the specimen. In the next step, the single edge tension test is
used to evaluate the effect of the loading angle and role of the n parameter in combination with the proposed
q parameter.

Finally, double notched specimens and a compact tension specimen were studied to evaluate the robustness
of the proposed model. In this process, the crack trajectory, role of length scale, and strain threshold on the
load-displacement behavior were tested. All numerical computations are performed within the finite element
framework using fully integrated 8-node quadrilateral elements and assuming plain strain conditions, with the
material properties as mentioned before. Displacement controlled conditions are always assumed. Moreover,
all of the simulations are performed on an Intel® Xeon® CPU E5-2690 v4 @ 2.60 GHz with 24 GB RAM
memory. The calibration parameters are described as follows.

Table . Calibration Parameters

11
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Specimens Simulation parameters εpeq,crit q n m l (mm)

I-shaped specimen 15% 0.1 1.5 3 1
Single-edge notched specimen (Tension) 4% 0.1 1.5 &amp; 2 3 0.01
Single-edge notched specimen (Shear) 10% 1 1.5 &amp; 2 3 0.1
Asymmetrically notched specimen 4% 0.3 2 3 0.4
Double notched specimen 5%− 16% 0.1 2 3 0.1
Compact tension (CT) specimen 5% 1 2 3 0.1 &amp; 0.2

5.1 A homogeneous plate subjected to tension

A two-dimensional homogeneous plate with dimensions of1 × 1 mm is discretized by one element. The
computation is performed by u = 1 mm for 1000 steps. The following material properties are chosen:
The Young’s modulus E = 71 GPa, Poisson’s ratio ϑ = 0.3 and critical fracture energy densityGc = 9.310
kN/mm. As the characteristic size of the element is 1 mm, the length scale parameter is set to l = 2 mm.

Setting the crack surface gradient to zero, corresponding to the homogeneous case (∇ϕ = 0). Thus, the axial

stress can be calculated asσ (u,ϕ) = g (ϕ) ∂ψe(ε)∂ε = g (ϕ)C :ε, with ψe (ε) =ψe
+ (ε) andψe

− (ε) = 0 because
of the pure tension loading. Dimension and boundary conditions for numerical examples are listed in Table
3.

Table . Dimension and boundary conditions for all of the tested specimens

I-shaped specimen. Geometry and boundary conditions.15 Dimensions in mm

Single-edge notched tension test. a) Geometry and boundary conditions. 49 Dimensions in mm. b) Finite element models and corresponding meshes
Single-edge notched shear test. a) Geometry and boundary conditions. 49 Dimensions in mm. b) Finite element models and corresponding meshes
Asymmetrically notched specimen. a) Geometry and boundary conditions.49 Dimensions in mm. b) Finite element models and corresponding meshes
Double notched specimen tension test. 54 a) Geometry and boundary conditions. Dimensions in mm. b) Finite element models and corresponding meshes
CT specimen tension test 49. Dimensions in mm. a) Geometry and boundary conditions. Dimensions in mm, b) Finite element models and corresponding meshes

5.2 I-shaped specimen

To compare the accuracy of the proposed model on the prediction of the crack path and load-displacement
behavior, a tensile test on the I-shaped specimen with the geometric properties and boundary conditions
shown in Table 3-I have been analyzed. The bottom edge is restrained vertically and displaced horizontally,
whereas the left edge is fixed. The displacement boundary condition is applied to the right edge. The
material parameters are those of Material I in Table 1. A uniform mesh with 12230 quadrilateral elements
is used.

12
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Fig.1 Line plot of I-shaped specimen and demonstration of the effect of qparameter in the completeness of
failure. (blue dashes), crack propagation direction (black dashes)

From Fig.1, it can be seen that the variation of q parameter affects the stage of fracture process in terms of
the crack path. In addition, the q parameter controls the stability of the crack propagation. For I-shaped
specimens in plane-strain conditions, experimental data indicates that the crack forms in the middle of the
specimen with an inclination of about ±45 in relation to the main stress direction.47

Miehe et al 8 suggested using the viscosity parameter to overcome the instability of crack growth. In the
proposed model in this study, this is done by reducing the computational complexity by introducing the q
parameter. The results of investigations on the q parameter have shown that the use of high values for this
parameter leads to divergence of analysis. As such for q=1, the crack grows to the middle of the sample
and then diverges. While for q=0.2, the crack growth is complete and the results agree very well with other
similar works. The corresponding load-displacement curve is shown in Fig.2. The sudden drop in the curve
is due to the onset of crack phase-field localization.

13
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Fig.2 The load-displacement curve for the I-shaped specimen. Contour plots of the fracture phase field at
various stages

5.3 Single-edge notched specimen

This is the most common benchmark test used in the verification of the phase-field fracture models. The
single-edge notched test is investigated in detail, both experimentally and numerically.48-51 The same in-
vestigation performed to compare predictions of the proposed phase-field model with the aforementioned
results. Firstly, the specimen is subjected to the tensile load, where the effect of n parameter is considered.
Afterward, the specimen is subjected to the shear load, where the proposed model is tested with the two
different values of the n. Loading is applied by ∆u = 10e− 3 mm for 1000 steps.

5.3.1 Single-edge notched tension test

The boundary conditions used in this example are shown in Table 3-II. The specimen domain is discretized
by 10455 finite elements.

Fig.3 depicts the crack phase-field at several stages. In the illustrated Single-edge notched tension test the
crack propagates horizontally. A phenomenon that is observed in the simulation is that the phase-field
evolution takes place mainly in front of the crack tip which results in stable crack propagation. The crack
pattern is in agreement with both the works of Miehe et al . and Ambati et al .52,48,15 The force-displacement
curves in Fig.4 exhibiting ductile behavior.

Fig. Single-edge notched tension test. crack phase-field contour plot for n= 1.5and n= 1.8 (quite similar)
in various stages

In Fig.4, for smaller values of n , the curve becomes more unstable at the end and drops with more steeply,
and failure occurs suddenly. In this situation, the cracks may deviate from the straight path and grow in
the wrong direction. Hence, the use of larger values ofn can lead to more accurate results.

Fig. The load-displacement curve for a single-edge notched specimen for different values of n

5.3.2 Single-edge notched shear test

14
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The boundary conditions are presented in Table 3-III for load applying direction of 45. The mesh consists
of 4056 finite elements and is refined in the expected crack propagation area. Fig.5 shows the crack pattern
solution for n = 2 and n = 1.5.

Fig.6 shows the computed load-displacement curve and variation of the reaction force over the loading
history. As is shown, the normal ductile behavior proceeds until the crack initiates. However, the crack
propagation is so brutal. The n value also influence the load carrying capacity of the specimen. The crack
starts to propagate at a higher applied displacement as the value of n decreases, leading to a higher load
carrying capacity of the specimen. This numerical example shows that large n values lead to brittle fracture
while small nvalues result in ductile fracture. The proposed phase-field model is capable of simulating both
brittle fracture and ductile fracture as well as the ductile-brittle transition if n is set to be a function of field
variables such as q parameter.

Fig. Single-edge notched shear test. crack phase-field contour plot for n= 1.5and n= 2 (quite similar) in
various stages

Fig. The load-displacement curve for a single-edge notched specimen for different values of n

5.5 Asymmetrically notched specimen

The asymmetrically notched specimen illustrated in Table 3-IV. The top edge is restrained horizontally and
displaced vertically, whereas the bottom edge is fixed. The material parameters are those of Material IV in
Table 1. The spatial discretization of the model comprises 4857 quadrilateral elements, with refinement in
the central region between the notches where the crack is expected to form.

The evolution of the crack phase-fields is provided in Fig.7 for the proposed model. The developed model is
able to predict crack initiation at the notches and take the right pattern between them. The initial cracks
propagate within the plastic strain localization band and eventually merge leading to complete failure.
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Fig. Asymmetrically notched specimen crack phase-field contour plot in various stages

The effect of the q parameter on results in terms of crack path is evaluated respectively in Fig.8. The Figure
compares the crack path for the four cases. For q = 1, cracks initiate at the two notches and don’t propagate
toward the opposite side of the specimen. For q = 0.8 and q = 0.5 , cracks initiate at the two notches and
propagate until the middle of the specimen. The two cracks do not merge. For q = 0.2, cracks initiate and
merge together, Fig.7.
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Fig.8 The effect of q parameter on the stability of crack propagation a) q= 1 , b) q= 0.8 , c)q= 0.5

The global aspect of the load-displacement curve is similar to that obtained with the previous
investigations.15,53However, it should be noted that the general fracture process is quite different for the
highest values of the hardening module. From the force-displacement curve, unlike Ambati et al , the
initiation of the failure in the present material is not quite abrupt, Fig.9.
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Fig. The load-displacement curve for asymmetrically notched specimen

5.4 Double notched specimen

A benchmark simulation has been performed in order to assess the robustness of the computations for
different critical equivalent plastic strain. Motivated by the blanking process, a problem geometry with two
asymmetrically placed rounded notches is used for this purpose.54 The geometry and boundary conditions
are given in Table 3-V. Vertical displacements are imposed on the top and left boundaries, while horizontal
displacements have been prevented. The bottom and right boundaries are remained fixed. The material
parameters are those of Material III in Table 1. The adopted discretization contains 13240 quadrilateral
elements with mesh refinement in the expected crack propagation region.

In this illustrative example, the damage fields aren’t quite smooth. The tensile loading causes the develop-
ment of a plastic shear band between the two notches and gives rise to damage initiation at the notches. In
the context of ductile fracture, the same problem has been addressed using a non-local damage model for
the initial continuum damage phase, followed by a discontinuous crack propagation phase predicted through
a remeshing strategy.54 Results showed the development of a plastic shear band diagonally across the speci-
men, which in turn results in a curved crack trajectory which initiates at both the notches and propagates
towards the center of the specimen where the two crack branches merge, Fig.10. It is worth noting that,
with the increasing critical plastic strain, secondary cracks initiate at the surface of the top and bottom
boundaries and start to propagate to the other side.

Fig. Crack trajectory for double notched specimen, a)εpeq,crit= 5%, b)εpeq,crit= 6%, c)εpeq,crit= 8%,

d)εpeq,crit= 9%, e)εpeq,crit= 10%, f)εpeq,crit= 12%, g)εpeq,crit= 14%, h)εpeq,crit= 16%

Fig.11 shows the effect of critical plastic strain changes on the sample failure behavior. As can be seen in
this figure, as the critical strain increases, the fracture initiation in the specimens is delayed and more force
is required for the fracture. This result is consistent with the findings of the related literature.15
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Fig. The influence of critical plastic strain on the load-displacement curve for double notched specimen

5.7 Compact tension (CT) specimen

Finally, the crack initiation and propagation for a CT specimen have been investigated. The geometry and
boundary conditions are shown in Table 3-VI. The specimen contains a horizontal notch at its mid-height,
and load is applied by a top pin which is displaced vertically, whereas the lower pin is fixed.

The material parameters are those of Material II in Table 1. The mesh comprises 14722 quadrilateral
elements with refinement in the areas where the crack is expected to form. In this test, the q parameter does
not significantly influence the crack path, the experimentally observed crack pattern being well captured for
both q = 1 andq = 0.5.

The crack pattern results are shown in Fig.13. It can be observed a horizontal crack propagates inward from
the notch tip. The phase-field failure simulation based on the proposed model indicates that a length scale
of the specimen shows slight differences in the load-displacement curve. As is well known from the curve,
the small length scale leads to more fracture-resistant than the large ones.

Fig.12 shows the measured load vs. crack extension behavior for CT specimens evaluated in this study. The
general shape of these curves consists of a stable crack growth region characterized by increasing load during
crack extension followed by an unstable crack growth region characterized by decreasing load during crack
extension. The maximum fracture load for each test defines the transition from stable to unstable crack
extension. Finally, the rather smooth drops in loading at the initiation of fracture for the cases that ignore
the material weakening.
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Fig. The load-displacement curve for CT specimen

The qualitative agreement between the computational and experimental crack pattern is excellent. Ad-
ditionally, the shape of the curves from models considering the material weakening agrees well with the
experimental curves. 15, 47,55

Fig. CT specimen tension test. The crack phase-field contour plot is shown in various stages

6. Conclusion

In this study, the phase-field model for ductile fracture proposed in Ambati15 has been investigated in more
detail, and its predictions have been compared with literature. The results obtained from the simulations
are in good agreement with the previous investigations results. In particular, this study showed that the
proposed model can capture the experimentally observed sequence of elastoplastic deformation and fracture
phenomena in purposed specimens. Moreover, simulation precisely determined the impact of the critical
plastic strain, length scale, and proposed parameters on the force-displacement response in the presence of
the ductile behavior. The results also showed that not only crack patterns but also load-displacement curves
aspects of the behavior could be accurately captured.

Appendix

Appendix A: Assembly algorithm for matrices

An algorithm of the assembly of the global stiffness matrixK from contributions of element stiffness matrices
k can be expressed by the following pseudo-code:

n = number of degrees of freedom per elementN = total number of degrees of freedom in the domainE =
number of elementsC[E, n] = connectivity arrayk[n, n] = element stiffness matrixK[N, N ] = global stiffness
matrix

do i = 1, N

do j = 1, N

K [i, j] = 0

end do

end do

do e = 1, E

generate k

do i = 1, n

do j = 1, n
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K [C[e, i], C[e, j]] = K [C[e, i]; C[e, j]] + k[i, j]

end do

end do

end do

Here for simplicity, element matrices are assembled fully in the full square global matrix. Since the global
stiffness matrix is symmetric and sparse, these facts are used to economize space and time in actual finite
element codes.56

Appendix B: Detailed explanation of single element (*inp file)

This part demonstrates a practical single element example, which can be used to generate any model in
ABAQUS/Standard with the implemented fracture model. The problem is a simple element subjected to
uniaxial tension. The present *inp file demonstrates an element with eight nodes, in 2D, with material
properties and twenty status variables. From this point, the displacement, boundaries and the analysis
are defined usually as it is done in a normal input file. Moreover, putting a visualization command in the
ASSEMBLY section pointing to the UMAT elements for post-processing purposes. 57,40

*Heading

*Preprint, echo=NO, model=NO, history=NO, contact=NO

*********************************

*NODE

1, 0.0,0.0

2, 1.0,0.0

3, 1.0,1.0

4, 0.0,1.0

5, 0.5,0.0

6, 1.0,0.5

7, 0.5,1.0

8, 0.0,0.5

*NSET, NSET=BOTTOM

1,2,5

*NSET, NSET=TOP

3,4,7

*NSET, NSET=MIDDLE

6,8

*NSET, NSET=EDGES

3,4,6,8

*NSET, NSET=ALLNODES

BOTTOM, TOP, MIDDLE
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*AMPLITUDE, NAME=DIS

0.000,0.000,1.0,1.0

*********************************

*USER ELEMENT, NODES=8, TYPE=U1, PROPERTIES=6, COORDINATES=2, VARIABLES=200

1,2

1,12

*ELEMENT, TYPE=U1, ELSET=TODOS

1,1,2,3,4,5,6,7,8

*********************************

*UEL PROPERTY, ELSET=TODOS

71660,0.3,345.0,0.0,407.5,0.25

*********************************

*ELEMENT, TYPE=CPE8, ELSET=dummy

2 ,1,2,3,4,5,6,7,8

*********************************

*Solid Section, elset =dummy, material=dummy

1.0

*Material, name=dummy

*Depvar

20,

*User Material, constants=2

1.0e-11,0.3

*********************************

*STEP, INC=10000000, EXTRAPOLATION=NO, nlgeom=NO

*STATIC, DIRECT=NO STOP

1.0E-3,1.0,1.0E-7,1.0E-3

*********************************

*BOUNDARY

BOTTOM, ENCASTRE

*BOUNDARY, TYPE=DISPLACEMENT

TOP,2,2,0.1

*********************************

*Restart, write, frequency=0

*Output, field
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*element output, elset=dummy

Sdv21

*Node Output

RF, U

*Output, history, variable=PRESELECT

*Node Output, nset =top

RF2

*End Step

Appendix C: Umat &UEL Algorithmic Paradigm
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Data Availability’ statement

The data required to reproduce these findings are available from the corresponding authors upon reasonable
request.
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11. LARSEN CJ, ORTNER C, SÜLI E. Existence of Solutions To a Regularized Model of Dynamic Fracture.
Mathematical Models and Methods in Applied Sciences . 2010;20(07):1021–48.

12. Bourdin B, Larsen CJ, Richardson CL. A time-discrete model for dynamic fracture based on crack
regularization. International Journal of Fracture . 2011;168(2):133–43.

13. Borden MJ, Verhoosel C V., Scott MA, Hughes TJR, Landis CM. A phase-field description of dynamic
brittle fracture. Computer Methods in Applied Mechanics and Engineering . 2012;217–220:77–95.

14. Hofacker M, Miehe C. A phase field model of dynamic fracture: Robust field updates for the analysis of
complex crack patterns.International Journal for Numerical Methods in Engineering . 2013;93(3):276–301.

15. Ambati M, Gerasimov T, De Lorenzis L. Phase-field modeling of ductile fracture. Computational Mecha-
nics . 2015;55(5):1017–40.

16. Ambati M, Kruse R, De Lorenzis L. A phase-field model for ductile fracture at finite strains and its
experimental verification.Computational Mechanics . 2016;57(1):149–67.

17. Miehe C, Hofacker M, Schänzel L-M, Aldakheel F. ScienceDirect Phase field modeling of fracture in
multi-physics problems. Part II. Coupled brittle-to-ductile failure criteria and crack propagation in thermo-
elastic–plastic solids. Comput Methods Appl Mech Engrg . 2014;

18. Miehe C, Aldakheel F, Raina A. Phase field modeling of ductile fracture at finite strains: A variational
gradient-extended plasticity-damage theory. International Journal of Plasticity . 2016;84:1–32.

19. Broka SM, Dubois PE, Joucken KL. A structural deficiency of TCI syringes [6]. Anesthesia and Analgesia
. 2000;90(4):1002–3.

20. Hofacker M, Miehe C. A Phase Field Model for Ductile to Brittle Failure Mode Transition. Pamm .
2012;12(1):173–4.

21. Miehe C, Teichtmeister S, Aldakheel F. Phase-field modelling of ductile fracture: A variational gradient-
extended plasticity-damage theory and its micromorphic regularization. Philosophical Transactions of the
Royal Society A: Mathematical, Physical and Engineering Sciences . 2016;374(2066).

22. Duda FP, Ciarbonetti A, Sánchez PJ, Huespe AE. A phase-field/gradient damage model for brittle
fracture in elastic-plastic solids. International Journal of Plasticity . 2014;65:269–96.

23. Gerasimov T, De Lorenzis L. On penalization in variational phase-field models of brittle fracture. Com-
puter Methods in Applied Mechanics and Engineering . 2019;354:990–1026.
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