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Abstract

Drought has vastly impacted agriculture all over the globe. However it’s impact on crop production: degree and extent is

poorly characterized. As the occurrence of more extreme droughts is likely to increase under climate change, understanding

the vulnerability of crop production to droughts is a crucial to evaluate and determine the size of the losses. In this study, we

used drought events in the South Asia region during the time period 2003-2018, to compare various indices developed for the

study of drought phenomena. Three indices namely: the precipitation condition index (PCI), vegetation cover index (VCI) and

temperature condition index (TCI) depend on remote sensing data were assimilated to produce an integrated drought severity

index (IDSI) to estimate drought conditions. We also correlated the IDSI anomaly with the yield anomaly in the region. The

results showed that IDSI has a good correlation with yield anomaly. The study also investigated the influence of drought on area

harvested (ha) production (hg/ha) and yield (tons). Economic losses were assessed using the empirical relations between crop

yields, IDSI, monthly precipitation, and annual precipitation. The results showed agriculture GDP (AGDP) has a statistically

significant correlation (p-value < 0.01) with economic loss and the correlation coefficient R2 registered 0.32, 0.82, 0.84, 0.51

0.79 and 0.81 in Afghanistan, Pakistan, India, Bhutan, Nepal and Bangladesh respectively. The results of this study offer

scientific support for decision-making targeted towards disaster mitigation and adaptation under climate change by identifying

the regions in which drought risk control and management.

Abstract

Drought has vastly impacted agriculture all over the globe. However it’s impact on crop production: degree
and extent is poorly characterized. As the occurrence of more extreme droughts is likely to increase under
climate change, understanding the vulnerability of crop production to droughts is a crucial to evaluate and
determine the size of the losses. In this study, we used drought events in the South Asia region during the time
period 2003-2018, to compare various indices developed for the study of drought phenomena. Three indices
namely: the precipitation condition index (PCI), vegetation cover index (VCI) and temperature condition
index (TCI) depend on remote sensing data were assimilated to produce an integrated drought severity
index (IDSI) to estimate drought conditions. We also correlated the IDSI anomaly with the yield anomaly
in the region. The results showed that IDSI has a good correlation with yield anomaly. The study also
investigated the influence of drought on area harvested (ha) production (hg/ha) and yield (tons). Economic
losses were assessed using the empirical relations between crop yields, IDSI, monthly precipitation, and
annual precipitation. The results showed agriculture GDP (AGDP) has a statistically significant correlation
(p-value < 0.01) with economic loss and the correlation coefficient R2 registered 0.32, 0.82, 0.84, 0.51 0.79
and 0.81 in Afghanistan, Pakistan, India, Bhutan, Nepal and Bangladesh respectively. The results of this
study offer scientific support for decision-making targeted towards disaster mitigation and adaptation under
climate change by identifying the regions in which drought risk control and management.
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Introduction

Drought is a devastating natural phenomenon that has a large impact on agricultural, environmental and
socio-economic conditions of the community (Kim, Iizumi, & Nishimori, 2019; Matewos, 2019). The concept
of drought varies among regions of differing climates and resource base (Gao et al., 2018). In general, drought
presents a perception of water shortage resulting from low precipitation (Zhang, Jiao, Zhang, Huang, & Tong,
2017), high evapotranspiration, and over-exploitation of water resources or a mixing of these parameters
(Vicente-Serrano, Begueŕıa, & López-Moreno, 2009). Drought is practically defined both conceptually and
operationally (Gao et al., 2018; Rajsekhar, Singh, & Mishra, 2015). The conceptual definition of drought is
essential to create early warning drought policy depending on science-driven assessments, and the operational
definitions help to define the beginning, severity and ending of droughts, this comprehensive description
assists policy makers, resource planners and other people in realizing and make preparations for drought
consequences.

Extreme climatic events like drought globally pose an eminent threat to food security by causing partial or
whole damage to regional crop production (Formetta & Feyen, 2019; Lesk, Rowhani, & Ramankutty, 2016).
Agriculture is the biggest consumer of water and therefore, the most sensitive to drought. Moisture deficit
often causes decrease of crops production. As a result the incidence of drought for the duration of the core
rainy season has a more significant impact on a country’s food production. Its impacts are gradual, therefore
it becomes complicated to figure out the beginning and end of a drought occurrence and its associated
influence (Stagge, Kohn, Tallaksen, & Stahl, 2015). Drought impacts have contributed to substantial threats
to society, the environment and those sectors dependent on rainfall and water resources (Kellogg, 2019;
Mohmmed et al., 2018; Seidl et al., 2017). For instance, agricultural drought produces a huge damage that
could span many economic sectors. Among the sectors, agriculture is the main economic sector affected by
drought, and particularly, short term agricultural drought at the critical growth periods has severe effects
on agriculture (Yu et al., 2018).

Due to the extreme losses in food production and spikes in food prices, droughts have got widespread
attention (Esper et al., 2017; Kim et al., 2019). Based on historical studies, Lesk et al. (2016) and Renard
and Tilman (2019) stated that droughts decreased worldwide crop production by 10% from 1964 to 2007.
This situation will be exacerbated by climate change which is predicted to cause more persistent and more
extensive droughts in the coming years (McDowell et al., 2018)

In the US, the mean annual agricultural production loss inflicted by drought is estimated between $6–
8 billion (Ahmadi, Ahmadalipour, Tootle, & Moradkhani, 2019). Also, it has been revealed that drought
loss in Europe in the course of the previous thirty years has exceeded developed countries are significantly
impacted by the economic effects of drought, it also has a social effect on the food limited developing
countries with great dependency on agriculture (Bayissa et al., 2019). For example, it was assessed that
drought caused an estimated loss of US$12.1 billion across the whole Kenyan economy between 2008 and
2011, accounting for a reduction in GDP of 2.8% per year in that period. Countries with small economies
are extremely susceptible to catastrophic damage induced by drought and its influences may possibly have
sustained impacts on the economy of a country (Cenacchi, 2014). Hagenlocher et al. (2019) revealed that
drought risk is clearly primarily based on rural vulnerability and poverty and that “rural poverty is both a
lead to and a result of drought risk”. As indicated by FAO (2017) droughts constitute a significant stumbling
block to accomplishing the Sustainable Development Goals (SDGs) of the United Nations (UN), which
aim at among others, ending hunger and achieving food security by 2030, while also promoting sustainable
agriculture (Clark (Clark & Wu, 2016)a. Hence, more regional and sub-regional studies are necessary.

In South Asia, the severe drought that occurred between 1998 and 2001 influenced more than 6000000 people
(Agrawala, Barlow, Cullen, & Lyon, 2001; Ali, Henchiri, Yao, & Zhang, 2019). It has been noted that the
vegetation in South Asia heavily relies on the water availability in the region (Ali (Ali et al., 2019; Cenacchi,
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2014; Gouveia, Trigo, Begueŕıa, & Vicente-Serrano, 2017). Therefore, to find out the effect of drought on
vegetation is a complex issue due to different vegetation types having varying resistance to drought. Moreover,
drought impacts under various vegetation species can be significant in evaluating several drought conditions,
like drought severity and prevailing time-scales (Gao et al., 2018; Liu et al., 2019). Therefore, understanding
the degree, extent and timing of drought-induced damage is crucial.

Several studies have utilized image data of remote-sensing to investigate drought and its effect on vegetation
(Anderson et al., 2016; Mohmmed et al., 2018; NOURELDEEN, Kebiao, MOHMMED, Zijin, & Yanying,
2020; Parsons, Rey, Tanguy, & Holman, 2019; Sánchez, González-Zamora, Mart́ınez-Fernández, Piles, &
Pablos, 2018). The accessibility of remote-sensing data with broader spatial exposure has aided researchers
to identify the spatiotemporal dynamics of drought and its relationship to vegetation dynamics and crop
yield (Giannini, Biasutti, & Verstraete, 2008; Klönne, 2012). Regardless of these advancements, further
work is needed to develop the integration and access to accurate and appropriate monitoring and predictive
implements to support governmental and non-governmental decision makers, so as to effectively prepare
for and appropriately respond to drought and food security issues. Technological advances such as satellite
observations, computing resources and communication technologies incorporate with better use of accessible
drought monitoring tools as well as increase our capability to more efficiently manage water and other shared
natural resources during drought disasters. Therefore we need to improve combination of drought monitoring
information available to advance proactive drought and food insecurity risk management strategies within
the region. There is a need for a paradigm move from crisis to risk management, which is essential for
enhanced food security. An effective approach of risk management policy involves that the best available
information from effective and ideal drought monitoring techniques for the region be mutually considered to
provide objective information for near real-time food security assessments.

The objectives of this study are to: 1) integrate precipitation, vegetation and land surface temperature indices
to investigate drought dynamics over the South Asia region. 2) Establish the impact of drought on the yield
of Barley, Maize, Millet, Rice and Wheat. 3) Investigate economic losses in crop production as a result of
drought conditions. Also, we examined the relation between economic losses and agriculture gross domestic
product (AGDP). The results of this study can help identify which crops in South Asia are more vulnerable
to drought and have a more significant impact on economic loss. This will aid policymakers in formulating
solutions for drought resilience in the area.

2. Materials and methods

2.1. Study area

The study area includes six countries in South Asia, namely: Afghanistan, Bangladesh, Bhutan, India, Nepal
and Pakistan, which are located between 34°22’–38deg23’ N, 114deg09’–122deg43’ E (see Figure. 1). The
region encompasses a total land area of around 5.2 million km2 and is comprised of various climatic zones
such as arid areas, temperate regions, tropical and sub-tropical regions.

Over the past 3 decades, the overall GDP of the region has increased due to agricultural growth and devel-
opment spurred by the green revolution programme. However, the region has a more significant number of
hunger and poor people, around two thirds of these are living in rural areas (Asim (Asim & Nawaz, 2018;
Dizon, Josephson, & Raju, 2019; Paciorek, Stevens, Finucane, Ezzati, & Nutrition Impact Model Study,
2013). More than one-quarter of the population in the developing world lives in the South Asia region.
Almost 150 million households categorized as agriculture dependents. The mixture of large population and
inadequate land area (514 million hectare), means that the rural population density in the developing world
is highest in South Asia - at 1.89 persons/ha (Kotharkar, Ramesh, & Bagade, 2018). The agricultural sector
has generated the extras that have reinforced the growth and development of other sectors of the economy.
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2.2. Data and processing

2.2.1. Precipitation condition index (PCI)

The monthly Climate Hazards Group Infrared Precipitation with Stations (CHIRPS) precipitation dataset
was obtained from https://earlywarning.usgs.gov, with a spatial resolution of gridded 0.05deg, and was
used in this study to produce precipitation-linked drought conditions. We resampled the data to keep
the consistency of spatial resolution. The precipitation condition index( PCI) is performed to assess the
precipitation differences and drought conditions (Jiao, Wang, Novick, & Chang, 2019), which is calculated
as:

PCI = (Pi,j − Pminj)/(Pmax,j − Pmin,j)× 100 (1)

Where I = 1, 2, 3. . . , n denotes for year and j = 1, 2, 3. . . , 12 denotes for month. Pmax,j and Pmin,j are the
maximum and minimum values of the precipitation for month j, respectively. As described by the above
equation, PCI values are calculated based on the group of maximum and minimum values for each grid cell,
which are used to minimize the influences of seasonality to the results.

2.2.2. Vegetation condition index (VCI)

In order to analyze drought conditions over the South Asia region, NDVI data were downloaded from the
NASA Land Processes Distributed Active Archive Center (LP DAAC; https://lpdaac.usgs.gov). The drought
indicators were measured from the latest MOD13Q1 NDVI monthly composite products of the MODIS Terra
satellites from 2003 to 2018 (Herrmann (Herrmann, Anyamba, & Tucker, 2005). From the NDVI datasets,
temporally and spatially aggregated vegetation condition index (VCI) were calculated. The VCI improves
the annual variations of a vegetation index (e.g., NDVI) response to weather conditions variations, although
lowering the effect of ecosystem specific responses that are determined by climate, soils, topography and type
of the vegetation (Piao, Mohammat, Fang, Cai, & Feng, 2006). We used Eq. (2) to calculate the vegetation
condition index (VCI) (Garćıa-León, Contreras, & Hunink, 2019)et al., 2019).

V CI =
(NDV I NDVImin

NDVImax NDVImin
)× 100% (2)

Where NDVI is the NDVI time series on a specified time scale, and NDVImin and NDVImax are the multi-year
minimum and maximum values of the NDVI series, respectively.VCI is calculated on a grid cell-by-cell basis
and can be applied to detect the impacts of abnormal weather conditions on vegetation. VCI is valuable
for distinguishing the short-term weather signal from the long-term ecological signal and is a good index of
water stress conditions relative to NDVI. According to Kogan (1995), VCI values of [?]35% reflect drought
conditions, while VCI values between 35% and 50% are regarded as normal or near normal conditions. VCI
values of 50% or above are considered as favourable conditions.

The composite NDVI data for each month of the selected year was calculated for each grid cell. Then, the
multi-year minimum and maximum NDVI values for each month period were derived from their corresponding
records of the study period (2003–2018). Following Eq. (2), we produced the VCI series. The resulting
192 monthly images were used to create the drought maps on multiple time scales and to determine the
relationship between monthly precipitation and vegetation status.

2.2.3. Temperature condition index (TCI)

Moderate Resolution Imaging Spectroradiometer (MODIS) for Land Surface Temperature (LST) product was
used to study Temperature Condition Index (TCI). The MODIS Land Surface Temperature datasets were
downloaded from https://lpdaac.usgs.gov/products/mod11c3v006. TCI was produced by employing LST

4
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(Land Surface Temperature) from MOD11C3 monthly LST with spatial resolution of 0.05o, and calculated
using the below equation (Guo et al., 2018):

TCI = (
LST LSTmin

LSTmax LSTmin
)× 100% (3)

where LSTi, LSTmin and LSTmax are defined as LST of present month, minimum and maximum LST value
in multi-year. TCI values range 0-100, as shown by different scholars, whereby low values of TCI indicate
unfavorable conditions, while the high values of TCI indicate optimal conditions (Jiao et al., 2019; Zhang et
al., 2017).

2.2.4. Panel modelling

A number of studies have investigated the relation between drought indices, area harvested, crop yield and
production using different models, for instance (Garćıa-León et al., 2019; Tuvdendorj, Wu, Zeng, Batdelger,
& Nanzad, 2019; Zambrano, Vrieling, Nelson, Meroni, & Tadesse, 2018). Our proposed model, which is
consistent with the broader literature on the determinants of climate, that essentially states that drought
indices are a function of weather impact on area harvested, crop yield and production, can be written in the
following form:

AH, Y orP = f

[
Precipitation condition index, temperature condition index,

vegetation condition index

]
(4)

This essentially states that drought indices, which include PCI TCI and VCI, as shown in the above question
our study is a panel data study, therefore Eq. (5) can be written in, the following form:

X = β0 + β1PCIt + β2TCIt + β2VCIt + ut . (5)

And Eq. 5 can be written in panel data form as follows:

X i, t = β0 + β1PCIi, t + β2TCIi, t+ β3VCIi, t+ ει, t (6)

Where, X refers to area harvested (ha), production (hg/ha) and yield (tons)

2.2.5. Integrated Drought Severity Index (IDSI)

Recently, scholars have used techniques such as Principal Component Analysis (PCA) to join VCI and TCI
to obtain integrated drought characteristics for vegetation health status indication. However PCA has its
constraint as it relies on size of data distribution and PCA is a result of two MODIS tiles and thus will
not have access to continuity. In order to overcome these shortcomings, a new Integrated Drought Severity
Index (IDSI) was developed depend upon the data combination technique which effectively determined the
multi-resolution effect of VCI, TCI and PCI products. We calculated IDSI using the following formula:

IDSIijk =
[
L ∗VCIijk ∗

〈
1 + 1

(L(VCIijk+TCIijk+PCIijk+C) ∗ (TCIijk + PCIijk)
〉]

(7)

5
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2.2.6. Economic losses

Equation 8 reveals the correlation between yield anomaly and drought condition in all crops, the drought
condition at year t, which is the integrated drought severity index (IDSI). A linear regression analysis between
the annual time series to determine the Pearson correlation coefficient r and the regression coefficients—
intercept a and slope β. We used the data in IDSI to categorize drought influences on yield.

Yt = a+ βZt (8)

The drought-induced yield losses and economic losses for barley, maize, millet, rice and wheat from 2003 to
2017 were calculated as shown in the equation below:

E = P
∑(

A

n∑
t=1

x
Y

100

)
(9)

Where

E= Economic loss $

P= average producer price by crop [U.S. $/ton, If P is unavailable for a target country, the average P value
of the other neighboring country is substituted.

A= Harvested area (ha)

Y= Percentage drought-induced yield loss

x= 5-yr centered moving average of crop yield tons/ha, which is expressed as the following:

x =
1

5

2∑
i−2

t+ i (10)

The national-level drought-induced economic loss for the four target crops from 2003 to 2017 is computed
applying the equation below:

AGDP =

[
Value2Added agricultural percentage of GDP

100

]
∗ 100 (12)

Where the value-added agricultural percentage of GDP is the GDP share of the agricultural sector (%).
GDP ($) is gross domestic production.

3. Results and discussion

3.1. Spatiotemporal characteristics of droughts in South Asia

Drought indices such as PCI, TCI and VCI play a key role in the evaluation the influence of drought on
agriculture and have been largely accepted in regional assessments (Garćıa-León (Garćıa-León et al., 2019;
Zhao, Cong, He, Yang, & Qin, 2017). The monthly values of PCI, TCI and VCI indicated that South Asia
experiences drought conditions from January to June each year, while the months from July to December
showed high values of PCI, TCI and VCI (Figure. 2). The VCI values significantly dropped from January to
May, while for June to September, they gradually increased. Beyond September, there was a decrease in the
indices’ values up to December. The PCI trend revealed drought conditions which started in 2003 and lasted

6
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up to 2010. The lowest value of PCI was detected in 2006 at 28 %, the highest water stress in the South
Asian region (Figure. 2). This had an impact on vegetation development, therefore the VCI correspondingly
showed lower values at about 33%, which was classified as severe drought conditions. The VCI is categorized
as the most suitable index among the other examined indices to evaluate vegetation analysis and drought
over south Asia. In fact, several investigations have applied VCI to examine vegetation characteristics and
drought (Baniya, Tang, Xu, Haile, & Chhipi-Shrestha, 2019; Qian et al., 2016) proved that the tendency
of drought was increasing over the period 2003–2010 in South Asia. For example, Bhutan was experiencing
extreme dry conditions in 2005 and 2006 (Tshewang, Morrison, & Tobias, 2018). Also, Nepal underwent
droughts according to Ali et al. (2019), who reported that the 2008–2009 drought in Nepal was the most
extreme on record. The Nepalese Government’s Department of Hydrology and Meteorology stated that the
received lower than 50% of average rainfall in 2008 and 2009 (Dahal et al., 2016).

It is obviously visible in the PCI, TCI and VCI maps that most of the precipitation is concentrated in the
eastern regions of South Asia as presented in Figure. 2, and the northwest areas are relatively arid. The
southern regions of South Asia indicated high temperatures, while the northeastern area had low tempera-
tures. VCI maps generally indicated that the extent of the farming and pastoral land uses is located in the
eastern region of south Asia, signified by the high VCI values recorded in the area. It is understandable that
South Asia has a very little vegetation cover given it’s extremely dry weather (Baniya et al., 2019). The
results of the annual time scale presented that there was a 20 percent chance of severe drought occurring
(VCI [?] 35%).

3.2. The integrated drought severity index (IDSI) and its relation with yield
anomaly

Generally, Bhutan had the lowest level of drought conditions during this period among the six countries,
characterized by moderate to no drought conditions (Figure. 3). In contrast, Afghanistan, Pakistan and
part of India had the driest conditions according to the IDSI. Nepal and the eastern part of India showed
pre-drought IDSI values on the Spatiotemporal map (Figure. 3).

According to the characteristic drought values of IDSI and yield anomaly in Figure. 4, 2003 to 2011 were
the driest years across all countries, with annual values ranging between -1 and -3. These results indicate
that South Asia region experienced repeated and extended droughts between 2003 and 2011. The rest of the
years were characterized by normal drought conditions. The results of the IDSI and YAI concurred on the
drought occurrence (Figure. 4), with a correlation coefficient larger than 0.85 in all of the countries (P <
0.001). These significant relationship prove that drought conditions managing crop production in this region.
Also, the result shows that drought impact on crop production could be decreased by changing to water-
demanding crops. In most of South Asia, 2003 was the driest year, during which these areas experienced
severe to extreme droughts, resulting in the lowest crop yield (Figure. 4).

Validation was carried out using IDSI anomaly and yield anomaly drought index. The results indicated
that IDSI and yield anomaly are highly correlated (Figure. 4), and all of them passed the significant
test (p-value < 0.01). This proves the potential of the new drought index (IDSI), to monitor regional
drought conditions using remote sensing data. This evaluation proved that IDSI not only reflects the water
deficit in meteorological drought but also reflects the drought influence on agriculture and it can be used to
comprehensively monitor and evaluate drought.

The results of the panel model in Table 1 showed that drought indices PCI, and TCI have positive and
statistically significant effects (P < 0.01) on area harvested, production and yield of barley, millet, Maize
and wheat (Table. 1 and 2). As reported by Borgomeo et al. (2018), higher minimum temperatures during
the growing season results in high yields while high rainfall excess in the latter stages of the crop (maturity
and harvest) can adversely affect the yield. Also, the Table 1 shows that the VCI has a significant effect
on barley and rice (P < 0.01). However, VCI does not have significant impact on harvested area 0.50, 0.21,
0.34, 0.23 and 0.21 of Barley, Millet, Maize, Rice and wheat respectively (Table. 1 and 2).
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The panel model showed that drought indices have a positive effect on the yield of the crops considered in
this study. Kuwayama, Thompson, Bernknopf, Zaitchik, and Vail (2018) et al. (2018) found statistically
significant effects of drought on crop yields in the US.

3.3. Drought induced economic loss

The results showed that between 2003 and 2017, South Asia incurred massive economic losses for the five
crops considered in this study to a tune of about $10316 billion for wheat, $ 1116 billion for rice, $ 493 billion
for millet, $910 billion for maize and $93 billion for barley (Figure 5). The huge losses attributed to wheat
during the study were distributed as follows: Afghanistan $162 billion, Pakistan $578 billion, India $312
billion, Bhutan $116 billion, Nepal $645 billion and Bangladesh $241 billion (Figure 5). These losses could
have resulted from increasing temperatures in the region. C. Zhao et al. (2017) proved that temperature
increase resulted in reduced global yields of wheat. Also the insufficient rainfall recorded during 2008 - 2010
especially in the northern regions of Afghanistan induced substantial disaster on the rain fed crops in six
regions. Droughts lead to substantial economic loss along with social and environmental influences, which
might be significantly affecting the human systems in the country. Many activities of agricultural economics
in Afghanistan depend basically on rainfall. When drought occurs, the agricultural sector is generally
the most impacted as a consequence of its dependence on rainfall and soil moisture (Savage, Dougherty,
Hamza, Butterfield, & Bharwani, 2009). For example, it was observed that a 20% drop in rice production
was experienced during the exceptionally dry seasons in the several years spanning 2003 to 2017, of which
droughts are forecasted to increase in the future.

In China (S. Zhao et al., 2017) demonstrated that wheat production rates would be reduced by 3 to 10% due
to a 1 degC increase in temperature during the growing period. The study also reported that the increase
in temperature over the last two decades would have resulted in crop yields dropping by 4.5%, if not for
the increased use of resources like irrigation and application of fertilizer. Variations in temperature and
precipitation improved wheat yield in northern China by 0.9–12.9%. Eruygur and Ozokcu (2016) confirmed
that if temperature increased within the earth’s surface the soil would turn out to be drier ultimately causing
decrease yields.

The agriculture losses in South Asia have habitually grown as a result of increasingly severe droughts. The
results of the national-level drought-induced economic loss for the four target crops from 2003 to 2017
showed that AGDP has a statistically significant correlation (p-value < 0.01) with economic loss and the
correlation coefficient R2registered 0.32, 0.82, 0.84, 0.51 0.79 and 0.81 in Afghanistan, Pakistan, India,
Bhutan, Nepal and Bangladesh respectively (Figure 6). This implies that the prevalence of innovative
agricultural technologies, for instance irrigation systems, breeding, and crop control, in developed countries
tends to decrease drought-induced yield losses. Regarding the predicted boosts in per capita GDP in the
foreseeable future, this process will likely be followed by investments in agricultural research and apply
the new technical packages in developing countries. In particular, the increase in areas using irrigation for
cultivation of crops will be initialized and then increased drought resilience might be anticipated to all crops.
Enhanced drought management will lead to growth in farm incomes of small household farmers and also
improve food security in drought effected areas globally.

4. Conclusion

In this study, we provide a detailed analysis of drought occurrence in South Asia using different drought
indices for the period 2003 to 2018. The remote sensing and crop yield based indices reveal that South
Asia has experienced region-wide droughts from 2003 to 2011, which has massively affected area harvested,
production and yield in this region. The damage that resulted from drought occurrence was calculated as
a percentage of agricultural gross domestic production (AGDP) and this can be used by both international
and national-level policy makers to allocate resources towards building resilience and the protection against
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severe drought events. The study showed drought condition caused economic losses and revealed country-
level economic losses in production of crop. The exhibited relation between AGDP and economic crop loss
in south Asia provides scientific support for decision making, targeted disaster mitigation and adaptation.

This study will assist to better understand the spatial and temporal distribution of crop-specific drought-
related damage. Therefore, this study will help and provide policymakers in national governments and
international organizations who desire to identify regions in which drought risk management and control
should be pondered.
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Table 1. The result of the panel model of area harvested, production yield (Barley, millet, maize and rice)
and drought indices.

Barley Millet

Estimate Std. Error t-value Pr(>|t|) Estimate Std. Error t-value Pr(>|t|)
(Intercept) 75059.6 427681.6 0.1755 0.86 (Intercept) -18394093 7097017 -2.5918 0.01*
PCI -23484.6 5990.9 -3. 9200 0.00 *** PCI -343285 99414 -3.4531 0.00***

Area harvested (ha) TCI 21686.1 4001.4 5.4196 0.00 *** Area harvested (ha) TCI 469172 66400 7.0659 0.00 ***
VCI -5195.3 8109.4 -0. 6407 0.50 VCI 170423 134569 1.2664 0.21

Estimate Std. Error t-value Pr(>|t|) Estimate Std. Error t-value Pr(>|t|)
(Intercept) -1003452 985141 -1.0186 0.31 (Intercept) -20690895 7489259 -2.7627 0.01 **
PCI -51099 13800 -3.7029 0.00 *** PCI -359003 104909 -3.4221 0.00 ***

Production (hg/ha) TCI 56149 9217 6.0919 0.00 *** Production (hg/ha) TCI 505967 70070 7.2209 0.00 ***
VCI 3438 18680 0.1841 0.89 VCI 193273 142007 1.361 0.18

Estimate Std. Error t-value Pr(>|t|) Estimate Std. Error t-value Pr(>|t|)
(Intercept) 8388.49 10253.25 -0.8181 0.42 (Intercept) -43266.788 32164.766 -1.3452 0.18
PCI -628.81 143.63 -4.3781 0.00 *** PCI 1878.204 450.56 4.1686 0.00 ***

Yield (tonnes) TCI 356.36 95.93 3.7148 0.00*** Yield (tonnes) TCI 44.097 300.934 0.1465 0.88
VCI 496.67 194.42 2.5547 0 .012 * VCI 372.302 609.888 0.6104 0.54

Maize Rice
Estimate Std. Error t-value Pr(>|t|) Estimate Std. Error t-value Pr(>|t|)

(Intercept) -12255106 5062320 -2.4208 0.02 * (Intercept) -91060635 28141488 -3.2358 0.00 **
PCI -274481 70912 -3.8707 0.00 *** PCI -747212 394203 -1.8955 0.06

Area harvested (ha) TCI 372982 47363 7.8749 0.00 *** Area harvested (ha) TCI 1935959 263292 7.3529 0.00 ***
VCI 92265 95989 0.9612 0.34 VCI 645272 533602 1.2093 0.23

Estimate Std. Error t-value Pr(>|t|) Estimate Std. Error t-value Pr(>|t|)
(Intercept) -27677089 12491611 -2.2157 0.03 * (Intercept) -337462576 97822776 -3.4497 0.00 ***
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Barley Millet

PCI -646207 174981 -3.693 0.00 *** PCI -2136627 1370289 -1.5593 0.12
Production (hg/ha) TCI 899386 116872 7.6955 0.00 *** Production (hg/ha) TCI 6736394 915232 7.3603 0.00***

VCI 179960 236858 0.7598 0.45 VCI 2406972 1854855 1.2977 0.20
Estimate Std. Error t-value Pr(>|t|) Estimate Std. Error t-value Pr(>|t|)

(Intercept) -43266.788 32164.766 -1.3452 0.18 (Intercept) -2276.57 12507.7 -0.182 0.86
PCI 1878.204 450.56 4.1686 0.00 *** PCI 194.52 175.21 1.1102 0.27

Yield (tonnes) TCI 44.097 300.934 8 0.1465 0.88 Yield (tonnes) TCI 106.9 117.02 0.9135 0.36
VCI 372.302 609.888 0.6104 0.54 VCI 531.38 237.16 2.2406 0.03 *

Table 2. The result of the panel model of area harvested, production yield (Wheat) and drought indices.

Wheat

Estimate Std. Error t-value Pr(>|t|)
(Intercept) -18394093 7097017 -2.5918 0.01*
PCI -343285 99414 -3.4531 0.00***

Area harvested (ha) TCI 469172 66400 7.0659 0.00 ***
VCI 170423 134569 1.2664 0.21

Estimate Std. Error t-value Pr(>|t|)
(Intercept) -20690895 7489259 -2.7627 0.00 **
PCI -359003 104909 -3.4221 0.00 ***

Production (hg/ha) TCI 505967 70070 7.2209 0.00***
VCI 193273 142007 1.361 0.18

Estimate Std. Error t-value Pr(>|t|)
(Intercept) -43266.788 32164.766 -1.3452 0.18
PCI 1878.204 450.56 4.1686 0.00 ***

Yield (Tonnes) TCI 44.097 300.934 0.1465 0.88
VCI 372.302 609.888 0.6104 0.54
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