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Abstract

Aim: The purpose of this study is to develop a novel protocol to predict the concentration profiles of a target drug based on the

PBPK model of a structurally similar template drug by combining two software for PBPK modeling, the SimCYP simulator and

ADMET Predictor. Methods: The method was evaluated by utilizing 13 drug pairs which come from 18 drugs in the built-in

database of the SimCYP software. All drug pairs have their Tanimoto scores no less than 0.5. Three versions (V1, V2 and V3)

of models for the target drug were constructed by gradually replacing the corresponding parameters of the template drug with

those predicted by ADME Predictor for the target drug. Normalized RMSE and Wilcoxon rank-sum test were introduced for

the evaluation of the model performance. Results: Overall, V3 models demonstrated better performance than the V1 and V2

models did. The relationship between the model performance and structural similarity of drug pairs was also explored. Three

protocols have come out as guidance on how to build PBPK models for target drugs: (1) V1 models are recommended when the

structural similarity is very high; (2) V2 models are recommended when the similarity is below 0.65 or high than 0.85; (3) V3

models are recommended when the similarity is below 0.85. Conclusion: By leveraging the prediction accuracy and application

practicality, this novel approach has a great promise in predicting the preliminary PK profiles for novel drugs, propelling the

drug discovery process by suggesting drug candidates with promising PK profiles.

1. Introduction

Pharmacokinetics is the study of the time courses of a drug administered to the body, which includes the
processes of absorption, distribution, metabolism and elimination (ADME).1 Usually it is essential to quan-
titatively measure the concentration of the drug in plasma at different time points in pharmacokinetic (PK)
study, for the analysis of drug behavior and dose adjustment. In addition to clinical trials which always
involved in time cost and ethical considerations, the “measurement” of concentration profiles under various
administration conditions can also be achieved by the implementation of Physiologically based pharmacoki-
netic (PBPK)2-4modeling with known PK parameters related to drug properties or its ADME profiles. On
the other hand, computational tools for both PBPK modeling and PK parameter prediction have been de-
veloped, further reducing experimental cost. Therefore, by virtue of such tools, the quick and convenient in
silicoprediction of drug behavior in human body can be easily performed without investing much effort in
experiments, informing further studies in drug toxicity, dosing strategy and potential drug-drug interactions.
As such, this in silico method can be particularly useful in preclinical study and can serve as a tool to help
select drug candidates which are more likely to have desirable PK profiles.

In this study, we developed a novel method to predict the concentration profile of a target compound based
on PBPK models constructed using the model of a structurally similar drug which serves as the template.
We utilized the SimCYP simulator (V19, Release 1; Shefeld, UK)5 software to construct PBPK models for a
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target drug by only substituting the predicted ADME parameters of the target drug for those applied by the
PBPK model of the corresponding template drug. We applied ADMET Predictor (V9.5, Simulation Plus)
,6, 7 a software developed by SimulationPlus Inc. to predict the ADME properties of target drugs, which
include physiochemical parameters like fraction unbound in plasma (fu) and blood-to-plasma partition ratio
(B/P), and ADME input parameters such as volume of distribution (Vd), Michaelis-Menten constant (Km)
and maximal metabolism rate (Vmax) of common enzymes. Meanwhile, to better validate our constructed
PBPK models as well as evaluate the performance of the two software tools, we selected 18 drugs (including
substrates and inhibitors) collected by SimCYP compound library as the template drugs. In total, 13 drug
pairs were formed based on their structural similarity. For each pair of drugs, one serves as the template
and one as target drug. For the target drug in a drug pair, we pretended that no PBPK model was available
for it and new PBPK models were constructed based on the PBPK model of the template drug. We tested
three protocols by introducing ADME Predictor predicted ADME properties into the template PBPK model
and evaluated the model performance using the observed PK profile of the target drug. The corresponding
PBPK models constructed using the three protocols, in brief were called V1, V2 and V3 models, respectively.

2. Methods

2.1 Drug preparation

Drugs selected for the construction of in silico PBPK models come from the built-in drug database of
the SimCYP software. Simplified Molecular-Input Line-Entry System (SMILES)8 strings of all drugs from
SimCYP built-in library, including substrates and inhibitors, were collected from the DrugBank database
(https://www.drugbank.ca/). The SMILES strings of drugs were used not only for their structural similarity
calculation on a web platform, but also as inputs for the generation of their properties using ADMET
Predictor.

2.2 Structure similarity calculation

Tanimoto scoring is a commonly used method to compute the fingerprint-based similarity between two
compounds.9In this study, we applied the maximum common substructure based (MCS) Tanimoto algorithm
for the similarity calculation. The Tanimoto score (TS) is defined by the function below:10

TS (X,Y ) =
NZ

NX + NY −NZ

Where NX and NY are the numbers of bits in fragment bit-strings of the two compounds, and NZ is
the intersection set, i.e., the number of common substructures shared by these two compounds. TS
(X, Y) ranges from 0 to 1, measuring the structural similarity between two compounds from the low-
est to the highest (when the two molecules are identical). TS scores were calculated using Chem-
Mine (https://chemminetools.ucr.edu/similarity) for all combinations of drugs in the SimCYP compound
database.

2.3 Validation of PBPK models for drug templates

We first validated the PBPK models of all selected 18 drugs by utilizing their observed data from literature.
In detail, we utilized the original built-in models of those drugs in SimCYP to run the simulation. In terms
of the trial design, the input dose, simulation time and population were the same as those reported in the
clinical study of PK measurement. Meanwhile, the parameters of the built-in PBPK model, like the drug’s
ADME properties, remained the same for all the drugs except for Fluoxetine. As a racemate, we adjusted
some of its ADME and PK parameters according to the literature to make the predicted curve much better
fitting the experimental data.11-13 The key ADME parameters predicted by ADME Predictor for the 18
drugs were all listed in the Table S1 , including the detail for the adjusted parameters of Fluoxetine.
The observed drug concentration data of each template drug was extracted from published concentration-
time (C-T) curves using WebPlotDigitizer (https://automeris.io/WebPlotDigitizer/). The C-T curves from
simulations were then overlaid to the observed drug concentrations. The predicted PK profiles of each

2



P
os

te
d

on
A

u
th

or
ea

2
J
u
n

20
20

—
T

h
e

co
p
y
ri

gh
t

h
ol

d
er

is
th

e
au

th
or

/f
u
n
d
er

.
A

ll
ri

gh
ts

re
se

rv
ed

.
N

o
re

u
se

w
it

h
ou

t
p

er
m

is
si

on
.

—
h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
59

11
03

73
.3

89
17

55
1

—
T

h
is

a
p
re

p
ri

n
t

an
d

h
a
s

n
o
t

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

a
ta

m
ay

b
e

p
re

li
m

in
a
ry

.

template drug, including the maximal concentration (CMax), the time at which CMax is observed (TMax),
and area under the curve (AUC), were compared to the observed ones.

2.4 Model construction for target drugs

In total, three versions of PBPK models for a target drug were built by modifying the models of the template
drug: (1) in Version 1 (V1), only the molecular weight (MW) of template drug was changed to that of the
target one; (2) in Version 2 (V2), in addition to the MW, the physiochemical properties, including B/P,
fu, octanol-buffer partition coefficient (log Po:w) value and acid dissociation constant (pKa) of the template
drug were replaced by the ones predicted of the target drug; (3) in Version 3 (V3), in addition to MW
and physiochemical properties, the input parameters for ADME process, including human jejunum effective
permeability (Peff) in absorption, Vd in distribution, Cytochrome P450 (CYP) metabolism parameters (Km,
Vmax or CLint) of templates were all replaced with the calculated ones for the target drug. All the ADME
properties of the target drugs are predicted by ADMET Predictor, a software tool that can predict over 140
properties based on its built-in Quantitative structure-activity relationship (QSPR) models.14

2.5 Evaluation of models for target drugs

To evaluate performance of modified PBPK models for target drugs, the experimental data of target drugs
were overlaid by the simulated C-T curves. To quantitively evaluate how well the experimental and simulated
curves overlaid with each other, we calculated the root mean square error (RMSE)15 of the observed and
predicted concentrations at different time points. The formula for the RMSE calculation is as follow:

RMSE=[
∑N

i=1 (Cpi − Coi)
2
/N ]

Where Coi and Cpi represent the observed and predicted drug concentration at the time point i. N is the
number of time points (N > 1) from the extracted observed data. Specifically, in this study, to facilitate the
comparison between models for different drugs with various concentration scales, we introduced normalized
RMSE (NRMSE) to evaluate the performance of PBPK models, which is calculated using the following
formula:

NRMSE= RMSE
Cmax−Cmin

Where Cmax and Cmin are the maximum and minimum values among the observed and predicted concen-
trations using all three versions of models.

We also conducted Wilcoxon rank-sum test16 to calculate the significance of difference between three versions
of models based on the NRMSE results by using the SPSS software (Released 2019. IBM SPSS Statistics
for Windows, Version 26.0. Armonk, NY: IBM Corp).

3. Results

3.1 Drug pairs selection and validation of PBPK models for drug templates

13 pairs out of 18 drugs, which have the calculated TS equal to or better than 0.5, were selected for the in
silico PBPK modeling. Drug pairs with TS below 0.5 were not considered to be structurally similar and
were excluded in this study. The calculated TS for selected 13 pairs (Groups A-M) were listed in Table 1
. Since both drugs in a pair will in turn serve as the template and target drug for cross validation, we used
X-1 and X-2 to label two drugs in the pair, respectively, where X can be A to M.

The predicted mean plasma concentration-time profiles overlaid with observed data of all 18 template drugs
are shown in Figure 1 . Accordingly, Table 2 exhibits the predicted PK parameters (CMax, TMax, AUC)
versus observed values. From Table 2 , excluding the drugs with observed PK parameters all unavailable
(Mephenytoin and Fluoxetine), the predicted PK parameters of most drugs are within the standard deviation
ranges of their observed values. The predicted values of CMax, TMax and AUC for Theophyline are all slightly
beyond the margin of error but still within the range of two-fold standard deviation. Overall, as shown in
Figure 1 , the observed C-T profiles are within the 95% Confidence Interval (CI) ranges (the upper and

3
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lower grey dashed curves) of the simulated C-T curves. Therefore, the PBPK models for the template drugs
have been well validated.

3.2 Predicted concentration profiles for the in silicoPBPK models

The C-T profiles predicted by all three versions (Versions 1, 2, and 3) of PBPK models are shown in Figure 2
. To quantitatively measure the deviation of predicted concentration profiles from the experimental data, the
difference between observed and predicted values of three versions were respectively evaluated by NRMSE
(Table 3 ). The lower the NRMSE value is, the smaller the difference between the predicted and experimental
concentration profile is, i.e., the better performance the created model for target drug is. Overall, among
the 26 PBPK models constructed using the V3 computational protocol, more than a half of them showed
satisfactory performance. Specifically, in Groups C and G-J, the predicted performance of V3 models for
all drug pairs outperformed the corresponding V1 and V2 models. For Groups B, D-F and K-L, although
the performance of V3 models is not the best, the predicted NRMSE values are close to those of V1 or V2
models. For D-2 drug pair, though the NRMSE of the V2 model is the lowest, the predicted C-T curve by
the V3 model has a better shape fitting the observed data as shown in Figure 2 . However, for some drug
pairs, like Groups A and M, the performance of the V3 models is inferior to that of the V1 and V2 models.
Interestingly, Group A has the smallest and Group M has the largest structural similarity among all the 13
pairs. The predicted PK parameters, CMax, TMax and AUC, are listed in Table S2 .

Based on NRMSE, a pure in silico PBPK model in this study can be classified into different categories:
excellent (NRMSE [?] 0.1), good (0.1 < NRMSE [?] 0.2), average (0.2 < NRMSE [?] 0.6) and poor
(NRMSE > 0.6). As indicated in Figures 3-4 andTable 3 , one V1, three V2 and five V3 out of 26 models
belong to the “excellent” category. Nearly half of V2 and V3 models belong to the first two categories, while
only 5 V1 models belong to the first two category. For the last category, there are 7, 3 and 1 models for V1,
V2 and V3, respectively. In summary, the performance of V3 models is slightly better than that of V2, but
much better than that of V1.

3.3 Statistical significance of the performance difference between three versions of models

The Wilcoxon rank-sum test was conducted to further demonstrate the NRMSE variations between predicted
performance of modified models in three versions. The significance of difference between different model
versions was evaluated by p-values. According to the significance test, there is a significant improvement on
performance of V3 models (p-value = 0.043) compared to V1 models, as there are 17 out of 26 pure in silico
PBPK models show the lower NRMSE in V3, whereas, only 9 V1 models have the lower NRMSE values.
There is no significant difference between the NRMSE of V2 and V1 models (p-value = 0.069), as well as
V3 and V2 models (p-value = 0.328). Although in comparison with V1, there are 16 V2 models with lower
NRMSE, while only 10 V1 models have lower NRMSE values. Similarly, 16 V3 models have lower NRMSE
than V2 models, whereas 10 V2 models display lower NRMSE values.

4. Discussion

In this study, we developed a novel approach to construct in silico PBPK models for target drugs lack of
experimental ADME and other PK parameters using an established PBPK model of a structurally similar
drug as the model template. We used 18 drugs which formed 13 drug pairs (Groups A-M) for which the
structural similarity is equal to or larger than 0.5 to evaluate three ADME parameter substitution protocols,
which are corresponding to three versions of PBPK models. The performance of the in silico PBPK models
were critically evaluated using experimental PK profiles and parameters.

4.1 The relationship between similarity and model performance

We attempted to obtain guidance on selecting suitable template drug for a given target drug. We focused
on using structural similarity to select the template drugs. For this purpose, we divided the 18 pairs of
drugs into three categories based on their structural similarity. Groups A-E belong to the first category
and their TS are not higher than 0.65; Groups F-J belong to the second category and their TS range from
0.65 to 0.85; and Groups K, L and M belong to the third category with TS larger than 0.85. For the
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first category, the mean calculated NRMSEs are 0.42, 0.35 and 0.34 for V1, V2 and V3, respectively. This
result suggests that the performance of V3 and V2 are comparable and marginally better than that of V1
for low structural similarity drug pairs. For the second category, the V3 models, who’s mean NRMSE is
0.18, apparently outperformed the other two versions of models (NRMSE are 0.54 and 0.41 for V1 and V2
models, respectively). As to the high structural similarity pairs in the last category, the overall performance
of all the three models are comparable and NRMSE are 0.28, 0.22 and 0.30 for the three versions of models
correspondingly. This observation can be explained as follows: when drug pairs have very high structural
similarity (> 0.85), the ADME properties are very similar between the target and template drugs, the V3
protocol actually introduces more errors by substitution of the predicted ADME properties with ADME
Predictor for the corresponding parameters in the template model.

Based on the above analysis, the first modeling protocol for constructing V1 models is recommended when
the structural similarity is very high (Group M); the second modeling protocol for constructing V2 models
is recommended when the structural similarity is below 0.65 or high than 0.85; while the third protocol for
constructing V3 models are recommended when structural similarity is below 0.85. It is of note that this
is just a general guidance and there are many special cases not obeying those rules. In real practice, it is
recommended to construct the V3 model when the structural similarity is smaller than 0.85, and V2 model
otherwise.

4.2 Perspective of applying in silico PBPK modeling for compounds lack of experimental
ADME and PK properties

In this study, we put forward a novel approach to build PBPK models for a target drug which is lack
of measured ADME and PK parameters using the PBPK model of a template drug which is structurally
similar to the target drug. Also, we proposed an overall guidance on selecting suitable template drug and
using its PBPK model as the model template. The success of this computational approach depends on two
important factors, the availability of high quality PBPK model for the template compound and the accuracy
and consistency of the ADME and PK parameters predicted by ADME Predictor software for the target
drug. Additionally, not all the ADME/PK properties can be calculated with the current version of ADME
Predictor. For example, the prediction of metabolism in ADMET Predictor is only limited to 5 commonly
used enzymes (CYP1A2, CYP2D6, CYP2C9, CYP2C19 and CYP3A4). Nevertheless, we have proposed a
practical approach to generate PBPK models for a compound lack of experimental ADME/PK properties.
This model can serve as the initial version of the PBPK models for the target compound, and its performance
can be improved using the measured PK profiles and properties in the future. The computational protocol
introduced in this work may have great applications in selecting drug leads to enter the drug optimization
phase or drug candidates to enter preclinical studies.

4.3 Significance and future work

In this work, we have introduced and tested a novel computational protocol to develop in silico PBPK model
for a compound lack of measured ADME/PK properties and PK profiles. The general idea is to choose a
proper PBPK model as the template, when the corresponding compound, the template drug, is structurally
similar to the target drug. For the target drug, we calculated the ADME properties using ADME Predictor
of SimulationPlus Inc. We have evaluated three versions of substitution to introduce calculated ADME
properties for the target molecule to the template PBPK model using 13 drug pairs, and for the involved
drugs, the measured PK properties and the C-T profiles are available. We have come out an overall guidance
on how to build PBPK models for target drugs based on structural similarity, i.e. if the Tanimoto score is
smaller than 0.85, the V3 version is recommended while V2 protocol is recommend for structurally highly
similar compounds (TS>0.85). Following this guidance, the mean NRMSE of 26 PBPK models is 0.25, better
than any versions of the models, which are 0.43, 0.34 and 0.27 for V1, V2 and V3, respectively. While future
experimental work is definitely needed to further improve the model performance, our novel approach can
help identify drug candidates with favorable PK profiles, reducing experimental cost and providing insight
in drug discovery and development.
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Supporting Information

The input parameters of 18 drugs and predicted PK profiles of models in V1-V3 are listed in Tables S1-S2
.
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