Hot deformation characteristics and kinetics analysis for Nickel-based corrosion resistant alloy

Lei Wang¹, Feng Liu², Hongyuan Chen¹, and Qiang Chi¹

¹CNPC Tubular Goods Research Institute

²Northwestern Polytechnical University

June 3, 2020

Abstract

The hot deformation characteristics of Nickel-based corrosion resistant alloy was studied in the temperature range of $1050^{-1}2000$ C and the strain rate range of $0.001^{-0}.1s-1$ by employing hot compression tests. The results show that the peak stress increases with decreasing temperature and increasing strain rate, and the activation energy is about 409kJ/mol. Basing on the Avrami equation through using the critical strain (εc) and the strain for 50% DRX ($\varepsilon 0.5$), a kinetic model for dynamic recrystallization (DRX) was established, where the model parameters could be obtained using the modified Zener-Hollomon parameter (Z*). Applying the model, the predicted value of the steady state strain (εs) and the strain for maximum softening rate (εm) agree well with the experimental results. Accordingly, the relationship between εm and $\varepsilon 0.5$ is established, which is mainly dependent on the Avrami exponent (n). When n <3.25, εm becomes less than $\varepsilon 0.5$ and the difference in between decreases with increasing the strain rate or decreasing the deformation temperature. Finally, through observing DRX microstructure under different deformation conditions, a power law relation between DRX grain size (Ddrx) and Z*, with an exponent of -0.36, was found.

Hosted file

manuscript-Engineering Reports.docx available at https://authorea.com/users/329586/articles/456551-hot-deformation-characteristics-and-kinetics-analysis-for-nickel-based-corrosion-resistant-alloy