$0.5~\rm wt\%~Ru/\gamma$ - Al_2O_3 is a highly active and stable catalyst for direct conversion of biogas into renewable natural gas

Yichen $Zhuang^1$ and $David Simakov^1$

¹University of Waterloo

June 4, 2020

Abstract

Landfill gas is a source of $\mathrm{CH_4}$ emission, also rich in $\mathrm{CO_2}$ (up to 50 vol%). It can be upgraded to renewable natural gas (RNG) by separating $\mathrm{CO_2}$ and impurities. Alternatively, the $\mathrm{CO_2}$ contained in biogas can be converted into $\mathrm{CH_4}$ via the Sabatier reaction, using $\mathrm{H_2}$ generated by water electrolysis. For industrial applications, it is beneficial to eliminate the energy intensive $\mathrm{CO_2}$ separation step, converting biogas to RNG directly. In this work, a series of 0.02-1 wt% $\mathrm{Ru/\gamma\text{-}Al_2O_3}$ catalysts were prepared by wet impregnation and evaluated for a single-pass conversion of $\mathrm{CO_2\text{-}CH_4}$ mixtures. Through the catalytic performance evaluation and characterization studies, the optimal Ru loading was identified as 0.1-0.5 wt%. For these catalysts, $\mathrm{CO_2}$ conversion of 80-87% was achieved at 450 °C and 90,000 mL/(g h), maintaining 95-99% selectivity to $\mathrm{CH_4}$ production. These catalysts also showed excellent stability over 100 h on stream, while maintaining 99-100% $\mathrm{CH_4}$ selectivity.

Hosted file

LFGU paper_sv_fnl.pdf available at https://authorea.com/users/329982/articles/456862-0-5-wt-ru-%CE%B3-al2o3-is-a-highly-active-and-stable-catalyst-for-direct-conversion-of-biogas-into-renewable-natural-gas