A new regularization method for a parameter identification problem in a non-linear partial differential equation

M Thamban Nair^1 and Samprita Roy^1

¹Indian Institute of Technology Madras

June 5, 2020

Abstract

We consider a parameter identification problem associated with a quasi-linear elliptic Neumann boundary value problem involving a parameter function $a(\cdot)$ and the solution $u(\cdot)$, where the problem is to identify $a(\cdot)$ on an interval $I := g(\Gamma)$ from the knowledge of the solution $u(\cdot)$ as g on Γ , where Γ is a given curve on the boundary of the domain $\Omega \subseteq \mathbb{R}^3$ of the problem and g is a continuous function. The inverse problem is formulated as a problem of solving an operator equation involving a compact operator depending on the data, and for obtaining stable approximate solutions under noisy data, a new regularization method is considered. The derived error estimates are similar to, and in certain cases better than, the classical Tikhonov regularization considered in the literature in the recent past.

Hosted file

newPIP.pdf available at https://authorea.com/users/330493/articles/457232-a-newregularization-method-for-a-parameter-identification-problem-in-a-non-linearpartial-differential-equation