Engineering entanglement, geometric phase and quantum Fisher information of a three-level system with energy dissipation

S. Abdel-Khalek¹, S.M. Abo-Dahab², M. Ragab³, Hijaz Ahmad⁴, and Muhyaddin Rawa³

¹Sohag University
²1Math. Dept., Faculty of Science, South Valley University, Qena 83523, Egypt
³King Abdulaziz University
⁴NWFP University of Engineering and Technology

June 6, 2020

Abstract

Quantum Fisher information (QFI) and geometric phase have recently been performed different tasks in quantum information technology. We investigate the QFI and entanglement of a three-level atom in \$\Lambda \$ configuration interacting with a quantized field mode by using linear entropy. We study the dynamical behavior of the geometric phase based on the engineering of a three-level atomic configuration. We analyze the effect of energy dissipation of the dynamical properties of the geometric phase and the QFI as an entanglement quantifier between the three-level atom and field. We explore the correlation between the engineering geometric phase and QFI in the absence and presence of energy dissipation effect. We have found that the \$\mathrm{QFI}\$ is very sensitive to the effect of the time dependent coupling and energy dissipation.

Hosted file

Paper to MMA Journal.pdf available at https://authorea.com/users/330604/articles/457402engineering-entanglement-geometric-phase-and-quantum-fisher-information-of-a-threelevel-system-with-energy-dissipation

Hosted file

Figures.rar available at https://authorea.com/users/330604/articles/457402-engineeringentanglement-geometric-phase-and-quantum-fisher-information-of-a-three-level-systemwith-energy-dissipation