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Abstract

Research problems in the domains of physical, engineering, biological sciences, often span multiple time and length scales,
owing to the complexity of information transfer underlying mechanisms. Multiscale modeling (MSM) and high-performance
computing (HPC) have emerged as indispensable tools for tackling such complex problems. We review the foundations, historical
developments, and current paradigms in MSM. A paradigm shift in MSM implementations is being fueled by the rapid advances
and emerging paradigms in HPC at the dawn of exascale computing. Moreover, amidst the explosion of data science, engineering,
and medicine, machine learning (ML) integrated with MSM is poised to enhance the capabilities of standard MSM approaches
significantly, particularly in the face of increasing problem complexity. The potential to blend MSM, HPC, and ML presents
opportunities for unbound innovation and promises to represent the future of MSM and explainable ML that will likely define
the fields in the 21st century.

1. Introduction

Scientific research in the 21st century is characterized by research problems of increasing complexity amidst
a data revolution. An ever-growing number of scientific research problems are now focused on systems and
processes that are complex not only in terms of their underlying mechanisms and governing principles but also
by virtue of the high-dimensional and heterogeneous data worlds that they live in. Modeling, simulation,
and high-performance computing, alongside experiments, are indispensable for tackling such problems —
numerous success stories have been published across diverse fields. Nonetheless, the unabated increases in
complexity and data-intensiveness of modern research problems are now posing three evolving challenges for
training a new generation of researchers to have the right tools to navigate the emerging challenges. First,
many contemporary problems are now defined over multiple length and time scales (i.e., they are multiscale)
and also by multiple distinct, yet intricately coupled, physical, chemical and/or biological processes (they
are multiphysics). Solving multiscale-multiphysics problems through multiscale modeling (MSM) methods
requires the construction of highly sophisticated algorithms at different scales, the rigorous coupling of
the scales, and laborious algorithmic implementation using message passing on parallel high-performance
computing (HPC) platforms. Second, the associated increases in data types, data intensiveness, and the
types of questions asked, now require more sophisticated approaches for data analysis, including machine
learning (ML) techniques, which are becoming indispensable in many applications. Third, MSM and ML
approaches have evolved independently, and therefore, the art of combining them is very much an emerging
paradigm. This review article describes the convergence of several advances in the scientific literature that
has made the field of MSM what it is today and provides a perspective of its future, hoping that it would
benefit current and potential researchers navigate and advance the field of MSM.

2. Governing equations for multiphysics modeling

While the considerations above and the motivation to combine MSM and ML can benefit several disci-
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plines, it is particularly relevant for chemical, biomolecular, and biological engineers. In our disciplines, the
fundamentals (namely, thermodynamics, kinetics, transport, controls) have always emphasized molecular
to process length and timescales. These core subjects are rooted in their own foundations, each with its
premise, and a set of governing equations are discipline dependent. Statistical mechanics drives much of
molecular-scale interactions, quantum mechanics drives catalytic mechanisms, mesoscopic scale relevant to
advanced functional materials, energy, or cellular processes are constrained by the laws of transport physics,
and foundations of process control and optimizations are rooted in applied mathematics, in particular, in the
formal analysis of stability, robustness, evolvability, stochastic effects or noise propagation, and sensitivity
analysis [1-4]. In this section, we attempt to provide a unified description of the underlying governing equa-
tions in multiphysics modeling. In section 3, we summarize how the foundations and the governing equations
have translated into methods and algorithms for multiphysics modeling and simulations. In section 4, we
discuss HPC, and in sections 5 and 6 we discuss the current and future prospects of MSM. We end with
some conclusions in section 7. We begin by outlining a summary of historical developments of governing
equations and foundations for multiphysics modeling in Table 1.

1687 Classical mechanics: the three laws of motion were first compiled by Isaac Newton in his Philosophiae Naturalis Principia Mathematica

1838 Liouville theorem and equation of classical dynamics: J. Liouville, Journal de Math., 3, 342 (1838)
1838 Navier Stokes equation: C.L. Navier, Résumé des Leçons Données à l’École des Ponts et Chaussées sur l’Application de la Mécanique à l’Établissement des Constructions et des Machines (Chez Carilian-Goeury, Paris, 1838).
1865 Maxwell’s equations of electrodynamics: James Clerk Maxwell, A Dynamical Theory of the Electromagnetic Field, Philosophical Transactions of the Royal Society of London 155, 459–512 (1865).
1870 Boltzmann equation: L. Boltzmann, Weitere Studien über das Wärmegleichgewicht unter Gasmolekülen. Sitzungsberichte Akademie der Wissenschaften 66 (1872): 275-370.
1880 Navier Stokes equation: G.G. Stokes, On the Theories of the Internal Friction of Fluids in Motion, and the Equilibrium and Motion of Elastic Solids. (Cambridge University Press, Cambridge, 1880), pp. 75-129.
1908 Langevin equation: Langevin, P. (1908). Sur la théorie du mouvement brownien [On the Theory of Brownian Motion]. C. R. Acad. Sci. Paris. 146: 530–533.
1926 Schrödinger equation: Schrödinger, E. (1926). ”An Undulatory Theory of the Mechanics of Atoms and Molecules” (PDF). Physical Review. 28 (6): 1049–1070. doi:10.1103/PhysRev.28.1049.
1930 Hartree-Fock method: Slater, J. C. (1930). Note on Hartree’s Method. Phys. Rev. 35 (2): 210. doi:10.1103/PhysRev.35.210.2; Fock, V. A. (1930). ”Näherungsmethode zur Lösung des quantenmechanischen Mehrkörperproblems”. Z. Phys.
1931 Markov process: Kolmogorov, Andrei (1931). Über die analytischen Methoden in der Wahrscheinlichkeitstheorie [On Analytical Methods in the Theory of Probability]. Mathematische Annalen (in German). 104 (1): 415–458 [pp. 448–451]. doi:10.1007/BF01457949.
1931 Linear response theory and the fluctuation-dissipation theorem: Onsager’s Linear Response Theory: L. Onsager, Phys. Rev.37, 405 (1931); 38, 2265 (1931)).
1954 Green-Kubo relations: Green, Melville S. (1954). Markoff Random Processes and the Statistical Mechanics of Time-Dependent Phenomena. II. Irreversible Processes in Fluids. The Journal of Chemical Physics. 22 (3): 398-413. doi: 10.1063/1.1740082. Kubo, Ryogo (1957-06-15). Statistical-Mechanical Theory of Irreversible Processes. I. General Theory and Simple Applications to Magnetic and Conduction Problems. Journal of the Physical Society of Japan. 12 (6): 570-586. doi:10.1143/jpsj.12.570.
1964 Density functional theory: Hohenberg, Pierre; Walter, Kohn (1964). Inhomogeneous electron gas. Phys. Review. 136 (3B): B864–B871. doi: 10.1103/PhysRev.136.B864.
1881 Master Equation: van Kampen, N. G. (1981). Stochastic processes in physics and chemistry. North Holland. ISBN 978-0-444-52965-7.
1997 Fluctuation theorems: Jarzynski, C. (1997), Nonequilibrium equality for free energy differences, Phys. Rev. Lett., 78: 2690, doi:10.1103/PhysRevLett.78.2690

Table 1 : Historical milestones of governing equations for multiphysics modeling

Within the foundations of statistical mechanics, any theory based on bottom-up molecular models or top-
down phenomenological models is developed with the notion of microstates accessible by a system. The
dynamics of the system at this level can be described based on transitions between microstates. A microstate
defines the complete set of configurations accessible to the system (e.g., positions and momenta of all the
particles/molecules of the system). For molecular systems obeying laws of classical dynamics (Newton’s
laws), the microstate of the system with a given set of positions and momenta at a given time t only depends
on the microstate at the immediately preceding time step. This memory-less feature is a hallmark of a
Markov process, and all Markov processes obey the master equation [5]. Note that the Markov process is
very general, and the classical dynamics is just a particular case. The probability of access to a microstate
defined by a given value of the microstate variables y is denoted by P(y,t), which is time-dependent for
a general dynamical process at nonequilibrium. A set of probability balance equations governs Markov
processes (under certain assumptions), collectively referred to as the master equation given by:

[?]P(y,t)/[?]t = [?] dy’ [w(y | y’) P(y’,t) - w(y’|y) P(y,t)]. (Eq. 1)

Here, y and y’ denote different microstates and w(y | y’) is the transition probability (which is a rate of
transition in units of a frequency) from state y’ to state y.

The Liouville equation in classical dynamics is a particular case of the continuous version of the master equa-
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tion where the microstates are enumerated by the positions and momenta of each particle [6, 7]. Newtonian
dynamics obeys the Liouville equation and the parent master equation, which is easy to see by recognizing
that the elements of the transition probabilities under Newtonian dynamics are delta functions and there-
fore Newtonian dynamics trivially satisfies the Markov property. Similarly, the Schrödinger equation, which
governs the dynamics of quantum systems is consistent with the quantum master equation [8]. Therefore,
the laws of classical and quantum dynamics are both slaves to the master equation (Eq. 1). Neither the
Schrödinger equation nor Newton’s equations can predict the interactions between systems (such as atoms
and molecules), for which one needs to invoke Maxwell’s equations to determine the nature of the potential
energy functions [9].

Macroscopic conservation equations can be derived by taking the appropriate moment in (Eq. 1):

[?]<y>/[?]t = [?][?] dy dy’ (y’ - y) w(y’ | y) P(y,t). (Eq. 2)

Here, <y> represents the average of y over all states, weighted by the probability of accessing each state.
Indeed, a particular case of the master equation is the Boltzmann equation [10], where the microstates
defined in terms of the positions and momenta of all particles are reduced to a one-particle (particle j)
distribution by integrating over the remaining n-1 particles. Here, the operator for the total derivative d/dt
is expressed as the operator for the partial derivative [?]/[?]t plus the convection term u * [?]/[?]r, where u is
the velocity. The moments of the Boltzmann equation were derived by Enskog for a general function yi (here
i indexes the particle) [10]. Substituting y as mi, the mass of particle i yields the continuity equation, as mivi,
the momentum of particle i yields the momentum components of the Navier-Stokes equation, and as 1/2
mivi

2, the kinetic energy of the particle, yields the energy equation, which together represents conservation
equations that are the pillars of continuum hydrodynamics. Similarly, the rate equations for describing the
evolution of species concentrations of chemical reactions can be obtained by computing the moment of the
number of molecules using an analogous version of (Eq. 2) known as the chemical master equation [5].

2.1 Thermal and Brownian effects

One of the main attributes of statistical mechanics of equilibrium and nonequilibrium systems that differen-
tiate it from traditional hydrodynamics is that the kinematics and thermal effects have to be treated with
equal importance. It is worth noting that while the thermal effects and fluctuations are described within
the scope of the master equation (Eq. 1), by taking the moment (average) to derive the conservation law
(Eq. 2), often the thermal effects are averaged out to produce only a mean-field equation. Indeed, the con-
tinuity, momentum (Navier-Stokes), and energy equations cannot accommodate thermal fluctuations that
are inherent in Brownian motion even though such effects are fully accommodated at the level of the parent
master equation. Therefore, nanoscale fluid dynamics (NFD) must be approached differently than traditional
hydrodynamics.

One approach starts with the mean-field conservation equation, such as the Boltzmann equation, and adds the
thermal fluctuations as a random forcing term, which results in the Boltzmann-Langevin equation derived by
Bixon and Zwanzig [11]. This approach amounts to random fluctuating terms being added as random stress
terms to the Navier-Stokes equations. The above procedure, referred to as the fluctuating hydrodynamics
(FHD) approach, was first proposed by Landau and Lifshitz [12]. In the FHD formulation, the fluid domain
satisfies:

[?] * u = 0

ρDu/dt = ρ[[;]υ/[;]τ + υ * [;]υ] = [;] * σ, (Eq. 3)

where, u and ρ are the velocity and density of the fluid respectively, and σ is the stress tensor given by, σ =
pJ + μ [[?]u + ([?]u)T] + S. Here, p is the pressure, J is the identity tensor, and μ is the dynamic viscosity.
The random stress tensor S is assumed to be a Gaussian white noise that satisfies:

¡Sij(x,t)¿=0

¡Sij(x,t) Slm(x’,t’)¿ = 2kBTμ (δil δkm + δim δkl) δ(x-x’) δ(t-t’), (Eq. 4)
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where, ¡*¿ denotes an ensemble average, kBT is the Boltzmann constant, T is the absolute temperature, and
δij is the Kronecker delta. The Dirac delta functions δ(x-x’) and δ(t-t’) denote that the components of the
random stress tensor are spatially and temporally uncorrelated. The mean and variance of the random stress
tensor of the fluid are chosen to be consistent with the fluctuation-dissipation theorem [13]. By including
this stochastic stress tensor due to the thermal fluctuations in the governing equations, the macroscopic
hydrodynamic theory is generalized to include the relevant physics of the mesoscopic scales ranging from
tens of nanometers to a few microns.

An alternative approach to NFD (and one that is different from FHD) is to start with a form of the master
equation referred to as the Fokker-Planck equation. Formally, the Fokker-Planck equation is derived from
the master equation by expanding w(y’ | y) P(y,t) as a Taylor series in powers of r=y’-y. The infinite series
is referred to as the Kramers-Moyal expansion, while the series truncated up to the second derivative term
is known as the Fokker-Planck or the diffusion equation, which is given by [5]:

[?]P(y,t)/[?]t = - [?]/[?]y [a1(y)P] + [?]2/[?]y2 [a2(y)P]. (Eq. 5)

Here, an(y)=[?] rn w(r) dr. The solution to the Fokker-Planck equation yields the probability distributions
of particles which contain the information on Brownian effects. At equilibrium (i.e., when all the time-
dependence vanishes), the solution can be required to conform to the solutions from equilibrium statistical
mechanics. This approach leads to a class of identities for transport coefficients, including the famous
Stokes-Einstein diffusivity for particles undergoing Brownian motion to be discussed later in this article.
Furthermore, there is a one-to-one correspondence between the Fokker-Planck equation and a stochastic
differential equation (SDE) that describes the trajectory of a Brownian particle. The generalized Fokker-
Planck equation is written in terms of a generalized order parameter (or sometimes referred to as a collective
variable) S, given by:

[?]P(S,t)/[?]t = [D/kBT] [?]/[?]S [P(S,t) [?]F(S)/[?]S] + D [?]2P(S,t)/[?]S2, (Eq. 6)

where, F(S) is the free energy density (also referred to as the Landau free energy) along S [14], D is the
diffusion coefficient along S, which is also related to the an’s of the original Fokker-Planck equation, i.e.,
a2=2D. The quantity kBT, which has the units of energy, is called the Boltzmann factor and serves as a scale
factor for normalizing energy values in NFD. Corresponding to every generalized Fokker-Planck equation
(Eq. 6), there exists a SDE given by:

[?]S/[?]t = - [D/kBT] [?]F(S)/[?]S + (2D)1/2 ξ(t), (Eq. 7)

where, ξ(t) represents a unit-normalized white noise process. The SDE encodes for the Brownian dynamics
(BD) of the particle in the limit of zero inertia. When the inertia of the particle is added, the corresponding
equation is often referred to as the Langevin equation [13]. In summary, Brownian or thermal effects are
described in the hydrodynamics framework, either using the FHD or the BD/Langevin equation approach.

2.2 Linear response

Thus far, our discussion has not distinguished between a single system or an interacting system. A general
framework for describing its dynamics as well as the equilibrium properties of interacting systems approaching
equilibrium can be understood in light of the linear response theory, which is the foundation of nonequilibrium
thermodynamics. A system at equilibrium evolving under a Hamiltonian H experiences a perturbation
ΔH=fA, where f is the field variable (such as an external force), and A is the extensive variable (such as the
displacement) that is conjugate to the field. The perturbation throws the system into a nonequilibrium state,
and when the field is switched off, the system relaxes back to equilibrium in accordance with the regression
process described by Onsager [13]:

ΔA(t) = (f/kBT) ¡ΔA(0) ΔA(t)¿ (Eq. 8)

where, ΔA(t) = A(t) - ¡A¿. The above identity holds under linear response, whenΔH is small, or equivalently
when ΔA(t, λf)= λ ΔA(t, f). The most general form to relate the response A to the field f under the linear
response is given by: ΔA(t)=[?]ς(t-t’)f(t’)dt’. Here, we have further assumed that physical processes are
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stationary in the sense that they do not depend on the absolute time, but only the time elapsed, i.e., ς(t,
t’)= ς(t-t’). One can use the linear-response relationship to derive an equation for the dynamics of a system
interacting with a thermal reservoir of fluid (also called a thermal bath). For example, the dynamics of
the particle (in one-dimension along the x-coordinate for simplicity of illustration is given by md2U/dt2 =
- dV(x)/ dx + f, U is the particle velocity, where V(x) is the potential energy function, and f is an external
driving force including random Brownian forces from the solvent degrees of freedom. The thermal bath will
experience forces fr in the absence of the particle, and when the particle is introduced, the perturbation
will change the bath forces to f. This change f-fr can be described under linear response as: Δf(t)=f-fr =
[?]ςb(t-t’)x(t’)dt’. Using this relationship, and by performing integration by parts, the particle dynamics
may be written as:

md2U/dt2 = - dV(x)/ dx + fr - [?]ξb(t-t’)U(t’)dt’ (Eq. 9)

Here the subscript b stands for bath, ςb(t)=-dξb/dt, and fr is the random force from the bath that is
memoryless. This form of the equation for the dynamics of the interacting system is referred to as the
generalized Langevin equation, and it accounts for the memory/history forces. We note that while the parent
equation (i.e., the master equation) is Markovian, the memory emerges as we coarse-grain the timescales to
represent the system-bath interactions and is a consequence of the 2nd law of thermodynamics. One can
recover the Langevin equation from the GLE by assuming that the memory function in the integral of (Eq.
9) is a Dirac delta function. The strength of the random force that drives the fluctuations in the velocity
of a particle (as noted in the above example) is fundamentally related to the coefficient representing the
dissipation or friction present in the surrounding viscous fluid. This is the fluctuation-dissipation theorem
[15]. The friction coefficient, ξb, associated is time-dependent and not given by the constant value (given by
the Stokes formula or a drag coefficient). In any description of system dynamics, and therefore, the mean
and the variance of observables under the thermal fluctuations have to be chosen to be consistent with the
fluctuation-dissipation theorem. In order to achieve thermal equilibrium, the correlations between the state
variables should be such that there is an energy balance between the thermal forcing and the dissipation
of the system as required by the fluctuation-dissipation theorem [15]. Finally, we note that the fluctuation
theorems of Crooks and the Jarzynski relationships for relating equilibrium free energies to nonequilibrium
work can be derived from ratios of the probabilities of the forward and backward paths of a Markov process
[16].

2.3 Equilibrium and transport properties

According to equilibrium statistical mechanics, in a uniform temperature fluid, the molecular velocities
will be Maxwellian, and the energy components related to the various degrees of freedom will satisfy the
equipartition principle. Thus, the equilibrium probability density function (PDF) of each of the cartesian
components of the particle in the above example Ui, will follow the Maxwell-Boltzmann (MB) distribution.
Another important application of the Onsager regression relationship (Eq. 6) is the emergence of a class of
relationships that relate transport properties to correlation functions known as the Green-Kubo relationships
[13, 17]. These relationships are also a consequence of the fluctuation-dissipation theorem. Thus,

γ =(1/d) [?] dt ¡A(0) * A(t)¿. (Eq. 10)

Here, γ is the transport coefficient of interest, t is time, d is the dimensionality, A is the current that drives
it. The integrand of (Eq. 10) is the autocorrelation function (ACF) of quantity A. One can calculate the
transport coefficients such as diffusion D, shear viscosity ηs, and thermal conductivity k using the Green-
Kubo formula.

3. Algorithms for multiphysics models in scientific computing

Numerical analysis in applied mathematics and computational chemistry have laid the foundations of much
of the algorithms for numerical solving the governing equations in multiphysics modeling. A sketch of the
historical developments in the field of numerical analysis that has laid the foundations for much of scientific
computing is provided in Table 2. Summaries of algorithms (methods) for multiphysics modeling at different
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resolutions (length or timescales) are provided in this section (see also Figure 1). Note that several reviews
in the literature summarize these methods to varying degrees of detail, see, for example, [18] and references
therein.

1941 Numerical solvers for partial differential equations (PDE): Hrennikoff, Alexander (1941). Solution of problems of elasticity by the framework method. Journal of Applied Mechanics. 8 (4): 169–175. Courant, R. (1943). Variational methods for the solution of problems of equilibrium and vibrations. Bulletin of the American Mathematical Society. 49: 1–23. doi:10.1090/s0002-9904-1943-07818-4.

1947 Numerical linear algebra: John von Neumann and Herman Goldstine, Numerical Inverting of Matrices of High Order (Bulletin of the AMS, Nov. 1947).
1953 Monte Carlo method: Metropolis, N.; Rosenbluth, A.W.; Rosenbluth, M.N.; Teller, A.H.; Teller, E. (1953). Equation of State Calculations by Fast Computing Machines. J. Chem. Phys. 21 (6): 1087-1092. doi: 10.1063/1.1699114.
1960-1970 The finite element method: FEM 60s and 70s: Strang, Gilbert; Fix, George (1973). An Analysis of The Finite Element Method. Prentice Hall. ISBN 978-0-13-032946-2.
1970 Electronic structure methods in computational chemistry: Gaussian is a general-purpose computational chemistry software package initially released in 1970 by John Pople. Publisher’s note: Sir John A. Pople, 1925-2004. Journal of Computational Chemistry. 25 (9): 2004. doi: 10.1002/jcc.20049.
1974-1977 The first molecular dynamics simulation of a realistic system; the first protein simulations. Stillinger, F. H. and Rahman, A. J. Chem. Phys. 60, 1545 (1974); McCammon, J. A., Gelin, B. R., and Karplus, M. Nature 267, 585 (1977)
1970s Development of linear algebra libraries: linear algebra package (LAPACK) https://en.wikipedia.org/wiki/LAPACK and basic linear algebra subprograms (BLAS). Lawson, C. L.; Hanson, R. J.; Kincaid, D.; Krogh, F. T. (1979). Basic Linear Algebra Subprograms for FORTRAN usage. ACM Trans. Math. Softw. 5 (3): 308–323. doi: 10.1145/355841.355847.
1980-2010 Development of parallel algorithms for linear algebra, Fourier transforms, N-body problems, graph theory [https://cvw.cac.cornell.edu/APC/]
2010-2020 Parallel algorithms for machine learning [https://cvw.cac.cornell.edu/APC/]

Table 2 : Historical milestones in numerical analysis and simulations

Figure 1 : Multiphysics simulations and capabilities of current systems in high-performance computing
platforms available to US researchers such as the extreme science and engineering discovery environment
(XSEDE; xsede.org).

3.1 Ab initio electronic structure methods

Foundations of electronic structure methods are based on the variational theorem in quantum mechanics that
states that the exact wave function of the ground state of a given Hamiltonian alone is the solution of the
variational minimization of the expectation value of the Hamiltonian: minimize ¡Ψ|H|Ψ¿ subject to ¡Ψ|Ψ¿=1
yields H|Ψ¿=E|Ψ¿. In this manner, the variational theorem solves the time-independent Schrodinger equa-
tion, which conforms to the quantum master equation, as noted above. As a practical implementation, one
can arrive at very close approximations to the exact groundstate solution by expanding the wavefunction in
terms of finite basis sets: |Ψ¿=Σi ci|Φi¿. Lynchpin methods that enable the implementation of the varia-
tional calculation for many-electron systems, which are further subject to the constraints of Pauli’s exclusion
principle, are Hartree-Fock methods and methods based on electronic density functional theory.

3.1.1 The Hartree-Fock (HF) approximation : HF corresponds to the conventional single-electron picture
of the electronic structure where the distribution of the N electrons is given simply by the product of one-
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electron distributions. Hartree-Fock theory, by assuming a determinant form for the wavefunction, imposes
the property of antisymmetry; nevertheless, the form neglects correlation between electrons. The electrons
are subject to an average non-local potential arising from the other electrons, which can lead to an inadequate
description of the electronic structure. Although qualitatively correct in many materials and compounds,
Hartree-Fock theory can be insufficient to make accurate quantitative predictions. These predictions can be
improved using higher-order perturbation theory-based methods [19].

3.1.2 Density functional theory (DFT): DFT is a formally exact theory [20]. It is distinct from quantum
chemical methods in that it is a non-interacting theory and does not yield a correlated N-body wavefunction.
DFT has come to prominence over the last decade as a method capable of very accurate results at a low
computational cost. In practice, approximations are required to implement the theory and the accuracy is
context-dependent. The Hohenberg-Kohn theorem states that if N interacting electrons move in a potential
external Vext(r), the groundstate electron density n0(r) minimizes the energy functional E[n(r)]. The practical
utility of DFT is in constructing the energy functional by augmenting a free electron gas reference energy
functional (which is precisely known) with a parameterized form of energy terms that account for exchange
and electron correlation (determined based on more accurate techniques such as quantum Monte Carlo or
QMC methods, see below). Variational techniques similar to those utilized in HF methods can then be
employed to obtain the ground state solution in DFT.

Softwares for quantum chemical calculations are available under open source or commercial licenses that
make it easy to model molecular systems using electronic structure methods:

(https://en.wikipedia.org/wiki/List of quantum chemistry and solid-state physics software). They have
been the driving force to parametrize the force fields of classical simulations such as those in (Eq. 11)
below.

3.2 Molecular dynamics

Molecular dynamics (MD) simulation techniques directly solving Newton’s equations of motion are commonly
used to model systems of biomolecules and biomaterials because they can track individual atoms and,
therefore, answer questions to specific material properties [21, 22]. In MD simulations, the starting point
is defining the initial coordinates and initial velocities of the atoms characterizing the model system, for
example, the desired biomolecule plus the biologically relevant environment, i.e., water molecules or other
solvent and/or membranes. The coordinates of the desired biomolecule can usually be found as structural
data (X-ray or NMR) deposited into the protein data bank (PDB) [23] (www.pdb.org); otherwise, it is
possible to derive initial geometry and coordinate data from model building techniques, including homology
methods. This step also typically includes the placement and positioning of the environment of the molecules
(solvation, ionic strength, etc.). The initial velocities are typically derived from the Maxwell-Boltzmann
distributions at the desired temperature of the simulation. The potential of interactions of each of the
atoms is calculated using a force field function, which parameterizes the non-bonded and bonded interaction
terms of each atom depending on its constituent atom connectivity: bond terms, angle terms, dihedral
terms, improper dihedral terms, non-bonded Lennard-Jones terms, and electrostatic terms. The potential
interactions are summed across all the atoms contained in the system, to compute an overall potential energy:

U
(
R
)

=
∑

bondsKb (b− b0)
2
+
∑

anglesKθ (θ − θ0)
2

+
∑
διηεδραλς

Kχ(1 + cos (ηχ− δ)) +
∑
ιμπροπερς

Kφ (φ− φ0)
2

+
∑
νονβονδεδ

(
ειθ

[(
Rmin

ιθ

rιθ

)12
−
(
Rmin

ιθ

rιθ

)6])
+

qiqj
ρ
ιθ

(Eq.

11)

Taking the derivative of the potential energy function yields the force, and from Newton’s second law,
this is equal to mass times acceleration. Although the process seems simple, the derivative function
results in a set of 3N-coupled 2nd order ordinary differential equations that must be solved numeri-
cally. The solution consists of a numerical recipe to advance the positions and the velocities by one
timestep. This process is repeated over and over again to generate MD trajectories of constant en-
ergy. Constant temperature dynamics are derived by coupling the system to a thermostat using well-
established formulations such as the Langevin dynamics or the Nose-Hoover methodologies [24]. Ap-
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plication of MD simulations to biomolecules is facilitated by several popular choices of force fields
such as CHARMM27 [25] (www.charmm.org), AMBER [26] (www.ambermd.org), and GROMOS [27]
(www.gromacs.org), as well as dynamic simulations packages and visualization/analysis tools such as NAMD
[28] (www.ks.uiuc.edu/Research/namd/) and VMD [29] (www.ks.uiuc.edu/Research/vmd/). MD simula-
tions for commonly modeled molecules such as proteins, nucleic acids, and carbohydrates that have well-
established force fields can be performed directly using a favorite software package such as LAMMPS, GRO-
MACS or HOOMD-blue (http://glotzerlab.engin.umich.edu/hoomd-blue).

3.3 Monte Carlo (MC), quantum Monte Carlo (QMC), and kinetic Monte Carlo (KMC) methods

In the limit of steady-state, the master equation in (Eq. 1) can be written in matrix form as WP = P
or in the familiar Einstein’s convention of wijP

e
j = Pe

i , where the summation over the repeated index is
implicitly assumed. It is important to recognize is that W is the entire matrix and wij is the ijth element of
the matrix. Note that wij is the transition probability of migrating from microstate j to I, consistent with
the definition of w in (Eq. 1). Similarly, P is the entire vector of probabilities of each microstate, and the ith

element of P is Pi, the probability to access microstate i. Note that here, Pe
i is the equilibrium distribution.

More generally, if we start with a non-equilibrium state P(1), here, (1) is the initial time and the system
transitions to later times and is tracked by (2); (3), etc., then: WP(1) = P(2);WP(2) = P(3);WP(3) = P(4);
. . . ; WP(n) = P(n+1), and as n becomes large, P(n) = P(n+1) = Pe. In a Monte Carlo simulation, we
simulate the system by sampling accessible microstates according to their equilibrium distribution Pe, e.g.,
as given by the Boltzmann distribution or the appropriate equivalent distribution in different ensembles (for
thermodynamic systems at equilibrium). To achieve this task, we need to choose a W or all wij that make
up the W, such that Pe

i= exp(-Ei/kBT)/[Σjexp(-Ej/kBT)] is satisfied. Metropolis et al. [30] recognized that
this could be achieved by choosing wij that satisfy equation wijP

e
j = Pe

i by imposing a stronger criterion,
namely, Pe

mwnm=Pe
nwmn, which leads to the Metropolis Monte Carlo method for sampling microstates of

a classical system.

Quantum Monte Carlo (QMC) techniques provide a direct and potentially efficient means for solving the
many-body Schrödinger equation of quantum mechanics [31]. The simplest quantum Monte Carlo technique,
variational Monte Carlo (VMC), is based on a direct application of Monte Carlo integration to calculate multi-
dimensional integrals of expectation values such as the total energy. Monte Carlo methods are statistical,
and a key result is that the value of integrals computed using Monte Carlo converges faster than by using
conventional methods of numerical quadrature, once the problem involves more than a few dimensions.
Therefore, statistical methods provide a practical means of solving the full many-body Schrödinger equation
by direct integration, making only limited and well-controlled approximations.

The kinetic Monte Carlo (KMC) method is a Monte Carlo method computer simulation intended to simulate
the time evolution of processes that occur with known transition rates among states (such as chemical
reactions or diffusion transport). It is essential to understand that these rates are inputs to the KMC
algorithm; the method itself cannot predict them. The KMC method is essentially the same as the dynamic
Monte Carlo method and the Gillespie algorithm [32]. From a mathematical standpoint, solving the master
equation for such systems is impossible owing to the combinatorially large number of accessible microstates,
even considering that the limited number of accessible states renders the transition probability matrix sparse.
The Gillespie algorithm provides an ingenious way out of this issue. The practical idea behind KMC is not
to attempt to deal with the entire matrix, but instead to generate stochastic trajectories that propagate
the system from state to state (i.e., a Markovian sequence of discrete hops to random states happening at
random times). From this, the correct time evolution of the probabilities Pi(t) is then obtained by ensemble
averaging over these trajectories. The KMC algorithm does so by selecting elementary processes according
to their probabilities to fire, followed by an updating of the time.

3.4 Particle-based mesoscopic models

Earlier, we outlined the connection between the Boltzmann equation (a particular case of the master equa-
tion) and the continuum transport equations. However, at the nano to mesoscopic lengthscales, neither the
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molecular description using molecular dynamics nor a continuum description based on the Navier-Stokes
equation are optimal to study nanofluid flows. The number of atoms is too large for MD to be compu-
tationally tractable. The microscopic-level details, including thermal fluctuations, play an essential role in
demonstrating the dynamic behavior, an effect which is not readily captured in continuum transport equati-
ons. Development of particle-based mesoscale simulation methods overcomes these difficulties, and the most
common coarse-grained models used to simulate the nanofluid flows are Brownian dynamics (BD) and multi-
particle collision dynamics (MPCD) methods. The general approach used in all these methods is to average
out relatively insignificant microscopic details in order to obtain reasonable computational efficiency while
preserving the essential microscopic-level details.

3.4.1 Brownian dynamics (BD) simulations: The physical system of nanofluids contains relatively small
solvent molecules and relatively larger nanoparticles, which move much more slowly due to their larger
size. A broad range of time scales, from short time steps for the fast motion to very long runs for the
evolution of the slower mode, needs to be accommodated by any simulation method as applied to nanofluids,
making the process time-consuming. However, in the BD simulation technique, explicit solvent molecules are
replaced by a stochastic force, and the hydrodynamic forces mediated by them are accounted for through a
hydrodynamic interaction (HI) kernel. The BD equation thus replaces Newton’s equations of motion in the
absence of inertia:

(Eq. 12)

where, the superscript 0 denotes the value of the variable at the beginning of the time step, ri is the position
of the ith nanoparticle, Dij is the diffusion tensor, and Fj refers to the force acting on the jth particle. The
displacement Ri is the unconstrained Brownian displacement with a white noise having an average value of
zero and a covariance of 2Dij

0
δ(t). The Rotne-Prager-Yamakawa hydrodynamic mobility tensor [33, 34] is

a commonly employed diffusion tensor to approximate the hydrodynamic interactions mediated by the fluid.
The trajectories and interactions between the coarse-grained molecules are calculated using the stochastic
differential equation (Eq. 12), which is integrated forward in time, allowing for the study of the temporal
evolution and the dynamics of complex fluids. Stokesian dynamics also represent a class of methods under
this paradigm [35].

3.4.2 Multi-particle collision dynamics (MPCD): Multi-particle collision dynamics (MPCD) is an algorithm
that can model both hydrodynamic interactions and Brownian motion with relatively low computational costs
[36]. The algorithm consists of discrete streaming and collision steps at fixed discrete time intervals that have
been shown to yield the correct long-time hydrodynamics. The effects of Brownian motion and hydrodynamic
interactions are incorporated into the simulation through the collision step. The solvent is characterized
by a large number N of point-like particles with a given mass m that move in space with a continuous
distribution of velocities. The positions of the solvent particles ri(t) are updated in the streaming steps, and
their velocities Ui(t) are obtained through multi-particle collisions in the collision steps: ri(t+Δt)=ri(t)+
ΔtUi(t), and Ui(t+Δt)=U(t)+ R * Ui(t). The stochastic rotational dynamics (SRD) is one of the most
widely used MPCD algorithms in which the collision step consists of a random rotation R of the relative
velocities of the particles, i.e., ΔUi(t)=Ui-U, in a collision cell, where U is the mean velocity of all particles
in a cell. Gompper et al. provided a review of several widely used MPC algorithms and recent applications
of MPCD algorithm to study colloid and polymer dynamics as well as the behavior of vesicles and cells in
hydrodynamic flow environments [36].
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3.4.3 Dissipative particle dynamics (DPD): To reach larger time- and lengthscales, the dissipative particle
dynamics (DPD) method uses a much coarser mapping, in which one site may represent many molecules in a
small fluid volume [37-39]. There are three types of forces present in DPD models: a conserved soft repulsion
force, pairwise dissipation forces, and pairwise random forces. The balance of dissipation and random forces
provides the thermostat for the DPD model, and since this thermostat preserves the momentum of individual
particles, these models provide correct hydrodynamic behavior. In addition to using a coarser mapping, DPD
simulations use a longer timestep due to the use of soft repulsion forces. It is necessary to match the observed
compressibility in a DPD simulation to the target fluid in order to study the phase behavior and interfacial
tension of the model fluid. The DPD method has been applied to biological lipid bilayers, membrane fusion
processes, and bilayers with proteins, and its connections to the mesoscale have been reviewed extensively
[40, 41].

3.5 Continuum models based for fluid flows

We summarize direct numerical simulations (DNS) and lattice Boltzmann methods for solving transport
equations.

3.5.1 Direct numerical simulation using finite element method (FEM): A finite element based arbitrary
Lagrangian-Eulerian (ALE) technique can be used to directly solve equations such as (Eq. 3) handle the
movement of single or multiphase domains including particle motions and fluid flow. An adaptive finite
element mesh, generated by the Delaunay-Voronoi method, enables a significantly higher number of mesh
points in the regions of interest (i.e., close to the particle and wall surfaces compared to the regions farther
away). This feature also keeps the overall mesh-size computationally reasonable [42].

3.5.2 The lattice Boltzmann method (LBM): Vast number of applications of the lattice Boltzmann method
(LBM) in simulating heat and mass transfer in fluids, particularly in complex geometries and with multi-
components, have been demonstrated by previous researchers [43, 44]. This approach’s primary strategy is
to incorporate the microscopic physical interactions of the fluid particles in the numerical simulation and re-
veal the mesoscale mechanism of hydrodynamics. The LBM uses the density distribution functions f(xi,vi,t)
(similar to the Boltzmann or Liouville equations) to represent a collection of particles with the microscopic
velocities vi and positions xi at time t, and model the propagation and collision of particle distribution taking
the Boltzmann equations for flow and temperature fields into consideration. The LBM solves the discretized
Boltzmann equation in velocity space through the propagation of the particle distribution functions f(x,t)
along with the discrete lattice velocities ei and the collision operation of the local distributions to be relaxed
to the equilibrium distribution fi

0. The collision term is usually simplified to the single-relaxation-time
Bhatnagar-Gross-Krook (BGK) collision operator, while the more generalized multi-relaxation-time colli-
sion operator can also be adopted to gain numerical stability. The evolution equation for a set of particle
distribution function with a single relaxation time is defined as:

fi(x-Δx,t+Δt)=fi(x,t)- (Δt/τ) [fi(x,t) -fi
0(x,t)] + Fs, (Eq. 13)

where Δt is the time step, Δx=Δt ei is the unit lattice distance, and τ is the single relaxation time scale
associated with the rate of relaxation to the local equilibrium, and Fs is a forcing source term introduced
to account for the discrete external force effect. The macroscopic variables such as density and velocity,
are then obtained by taking moments of the distribution function, i.e., ρ=Σi fi

eq and ρv=Σi fi
eqei. As

explained earlier, through averaging the mass and momentum variables in the discrete Boltzmann equation,
the continuity, and Navier-Stokes equations may be recovered.

3.5.3 Fluctuating hydrodynamics method: As noted in (Eq. 4), thermal fluctuations are included in the
equations of hydrodynamics by adding stochastic components to the stress tensor as white noise in space
and time as prescribed by the FHD method [12, 45]. Even though the original equations of fluctuating
hydrodynamics are written in terms of stochastic partial differential equations, at a very fundamental level,
the inclusion of thermal fluctuations always requires the notion of a mesoscopic cell in order to define the
fluctuating quantities. The fluctuating hydrodynamic equations discretized in terms of finite element shape
functions based on the Delaunay triangulation satisfy the fluctuation-dissipation theorem. The numerical
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schemes for implementing the thermal fluctuations in the FHD equations are delicate to implement, and
obtaining accurate numerical results is a challenging endeavor [46].

4. Parallel and high-performance computing

As noted earlier, a summary of the current capabilities of some of the multiphysics methods on current
computing platforms is provided in Figure 1. In order to truly leverage the power of these methods in real-
world applications, one needs to utilize parallel and HPC resources, which we discuss below. In current terms,
high-performance computing (HPC) broadly involves the use of new architectures (such as GPU computing),
computing in distributed systems, cloud-based computing, and computing in parallel to massively parallel
platforms or extreme hardware architectures for running computational models (Figure 2, left). The term
applies especially to systems that function with large floating-point operations per second (teraflops 1012,
petaflops 1015, exaflops 1018) regimes or systems requiring extensive memory. HPC has remained a sustained
and powerful driving force for multiphysics modeling and scientific computing and central to applications in
science, engineering, and medicine.
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Figure 2 : HPC paradigms – current and future; Moore’s law and the slow-down due to the power wall.

A summary of historical developments in parallel and high-performance computing architectures is sketched
in Table 3. A sketch of the early instruction for computation, including the concept of parallelism in com-
puting, can be traced to Charles Babbage (see Table 3). Scientific computing has benefitted from the
advances in chip architecture that led to the linear Moore’s law behavior for four decades from the 1980s-
2010 (Figure 2, right). However, even during this golden age of increasing clock speeds and doubling of
computational speed every 18 months in single-core architectures, high-performance computing broke the
shackles of serial (and vectorized) computing to embrace parallel computing as a mainstream route to solve
computational problems. The switch to parallel microprocessors is a game-changer in the history of com-
puting [47] (see, http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.html). The advances
in parallel hardware and software have torpedoed the advances in multiphysics and multiresolution simula-
tions. This convergence of high-performance computing and multiscale modeling has transformed parallel
algorithms (see Table 2), which are the engines of multiphysics modeling.

1842 Parallelism in computing: Menabrea, L. F. (1842). Sketch of the Analytic Engine Invented by Charles Babbage. Bibliothèque Universelle de Genève. Retrieved on November 7, 2007.

1958-1970 Parallel computers: IBM Burroughs, Corp, Honeywell, Wilson, Gregory V. (1994). The History of the Development of Parallel Computing. Virginia Tech/Norfolk State University, Interactive Learning with a Digital Library in Computer Science.
1992 Message passing interface as a standard for communication across compute nodes in inherently and massively parallel architectures. Walker DW (August 1992). Standards for message-passing in a distributed memory environment. Oak Ridge National Lab. Center for Research on Parallel Computing (CRPC). p. 25. OSTI 10170156. ORNL/TM-12147.
2005 Establishment of multicore architecture by intel and others to circumvent the power wall inhibiting Moore’s law; standardization of OpenMP [10.1145/1562764.1562783]. (see OpenMP.org)
2007 Release of CUDA: parallel computing platform and application programming interface (API) for graphics processing units (GPUs)

Table 3 : Historical milestones in parallel computing architectures

The paradigm shift in bringing the Babbage vision of parallelism to the common folk occurred with the
change in emphasis from single instruction multiple data (SIMD) or embarrassingly parallel tasks where the
same code is run multiple times in multiple processors to explore different parameters, to multiple instructions
multiple data (MIMD) or inherently parallel tasks where the multiple processors work collectively to divide
a given task by communicating with each other continually. The Message Passing Interface (MPI) (see Table
3) established a portable message-passing standard designed by a group of researchers from academia and
industry to function on a wide variety of parallel computing architectures. The standard defines the syntax
and semantics of a core of library routines useful to a wide range of users writing portable message-passing
programs in C, C++, and Fortran. There are several well-tested and efficient implementations of MPI,
many of which are open-source or in the public domain. These fostered the development of parallel software
industry and encouraged the development of portable and scalable large-scale parallel applications utilizing
the MIMD paradigm. Specifically, specific examples in the molecular dynamics of large systems or quantum
chemistry codes could only be realized by shared memory and message passing architectures in the MIMD
model.

4.1 Multicore architecture and the decline of Moore’s law

The linear trends in Figure 2, right ceases to hold beyond 2007 prediction due to the power wall in chip
architecture. The industry was forced to find a new paradigm to sustain performance enhancement. The
viable option was to replace the single power-inefficient processor with many efficient processors on the same
chip, with increasing numbers of processors, or cores, each technology generation every two years. This
style of the chip was labeled a multicore microprocessor. Hence, the leap to multicore is not based on
a breakthrough in programming or architecture and is a retreat from building power-efficient, high-clock-
rate, single-core chips [47]. The emergence of the multicore architecture in 2005, prompted shared memory
architectures and the establishment of the application programming interface (API), OpenMP (Open Multi-
Processing) standard, which supports multi-platform shared memory multiprocessing programming in C,
C++, and Fortran (OpenMP.org).

One of the main drawbacks of MIMD platforms is the high cost of infrastructure. The alternative to MIMD
platforms is single instruction multiple data (SIMD) architectures. With the increase of the computational
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power and multicore options at the desktop level, and the low costs of the new processing architectures such
as the graphical processing units, the attention of the scientific community has moved back to SIMD plat-
forms [48]. The use of GPUs in scientific computing has exploded enabled by programing and instructional
languages like CUDA (Compute Unified Device Architecture), a parallel computing platform and applica-
tion programming interface (API) model created by Nvidia (https://en.wikipedia.org/wiki/CUDA). CUDA
allows software developers and software engineers to use a CUDA-enabled graphics processing unit (GPU)
for general-purpose processing – an approach termed GPGPU (General-Purpose computing on Graphics
Processing Units). The CUDA platform is a software layer that gives direct access to the GPU’s virtual
instruction set and parallel computational elements for compute kernels. Challenges for researchers uti-
lizing HPC platforms and infrastructure range from understanding emerging new platforms to optimizing
algorithms in massively parallel architectures to efficiently access and handle data at a large scale. The
HPC technology is rapidly evolving and is synergistic yet complementary to the development of scientific
computing: some useful links on HPC reviews, training, community, and resources are summarized in Table
4.

Parallel computing: The Landscape of Parallel Computing Research: A View from Berkeley Krste Asanović et al.: (http://www2.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.pdf)

GPU computing: GPU computing for systems biology, Lorenzo Dematté Davide Prandi, Brief Bioinform (2010) 11 (3): 323-333. DOI: http://dx.doi.org/10.1093/bib/bbq006
Cloud computing: A scoping review of cloud computing in healthcare, Lena Griebel, Hans-Ulrich Prokosch, Felix Köpcke, Dennis Toddenroth, Jan Christoph, Ines Leb, Igor Engel & Martin Sedlmayr. DOI: https://doi.org/10.1186/s12911-015-0145-7
HPC virtual workshops and virtual training: (https://cvw.cac.cornell.edu/topics)
HPC resources: Exascale computing project (https://www.exascaleproject.org/); The Extreme Science and Engineering Discovery Environment (XSEDE) (https://www.xsede.org); National Science Foundation Advanced Cyber Infrastructure (https://www.nsf.gov/div/index.jsp?div=OAC).
HPC conferences: PEARC (Practice & Experience in Adv. Res. Computing) (https://www.pearc.org/); Supercomputing (http://supercomputing.org)
HPC and industry: Intel – (https://www.intel.com/content/www/us/en/high-performance-computing/overview.html); IBM (https://www.ibm.com/cloud-computing/xx-en/solutions/high-performance-computing-cloud/); Google (https://cloud.google.com/solutions/hpc/); Amazon (https://aws.amazon.com/hpc/)
Quantum computing: Andrew Steane, Rep. Prog. Phys., 61, 2; DOI: (10.1088/0034-4885/61/2/002) Quantum Computing Emulator on Amazon: (https://aws.amazon.com/braket/)

Table 4 : Resources on HPC training, resources, community

In Table 2, we mentioned the development of parallel algorithms, which led to a transformation in
multiphysics simulations: some examples include parallel matrix operations and linear algebra (htt-
ps://cvw.cac.cornell.edu/APC/); parallel implementation of the N-body problem with short-range inter-
actions (https://cvw.cac.cornell.edu/APC/); long-range interactions and the parallel particle mesh Ewald
sum [49]; parallel Monte Carlo [50]; linear-scaling methods such as multipole expansion [49]; linear-scaling
density functional theory [51]; parallel graph algorithms (https://cvw.cac.cornell.edu/APC/). As a specific
example, we note that the N-body problem is an essential ingredient in MD. A common goal in MD of large
systems is to perform sufficient sampling of the combinatorially large number of conformations available to
even the simplest of biomolecules [52, 53]. In this respect, a potential disadvantage of molecular dynamics
calculations is that there is an inherent limitation upon the maximum time step used for the simulation ([?] 2
fs). Solvated systems of biomolecules typically consist of 105-106 atoms. For such system sizes, with current
hardware and software, simulation times extending into the tens of microseconds regime is an exceedingly
labor-intensive and challenging endeavor that requires a combination of algorithmic enhancements as well as
the utilization of high-performance computing hardware infrastructure. For example, cutoff distances reduce
the number of interactions to be computed without loss of accuracy for short-range interactions but not for
long-range (electrostatic) interactions; long-range corrections such as the particle mesh Ewald algorithm [54]
along with periodic boundary conditions are typically implemented for maintaining accuracy. Parallelization
techniques enable the execution of the simulations on supercomputing resources such as 4096 processors
of a networked Linux cluster. Although a cluster of this size is a big investment, its accessibility is feasi-
ble through the extreme science and engineering discovery environment (XSEDE) for academic researchers.
XSEDE resources (www.xsede.org) currently include petaflop of computing capability, and other US national
laboratories such as the Oakridge are moving towards exascale computing (https://www.exascaleproject.org)
[55]. Another approach, capitalizing on advances in hardware architecture, is creating custom hardware for
MD simulations, and offers one-two orders of magnitude enhancement in performance; examples include
MDGRAPE-3 [56, 57] and ANTON [58, 59]. Graphical processing unit (GPU) accelerated computation has
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recently come into the forefront to enable massive speed enhancements for easily parallelizable tasks with
early data indicating that GPU accelerated computing may allow for the power of a supercomputing cluster
in a desktop, see e.g., [60, 61].

5. Multiscale modeling 1.0

The acceptance of multiphysics simulation techniques has helped bridge the gap between theory and exper-
iment [62]. Electronic structure (quantum level or ab initio ) simulations can reveal how specific molecules
assume stable geometrical configurations and charge distributions when subject to a specific chemical environ-
ment. By examining the charge distributions and structure, it is possible to quantify and predict structural
properties as well as chemical reactivity pertaining to the molecule, which is particularly pertinent when
investigating novel materials. Although the quantum simulations provide a wealth of information regarding
structure and reactivity, it is currently not possible to model much more than a few hundred atoms at most.
Molecular dynamics simulations based on classical (empirical) force-fields can model hundreds of thousands
of atoms for tens of microseconds in time. Since MD simulations can be set up at atomic resolution, they
are uniquely suited to examine thermodynamic and statistical properties of (bio)materials: such properties
include (but not limited to) Young’s modulus, surface hydration energies, and protein adsorption to different
surfaces [63]. Coarse-grained or mesoscale simulations are used to bridge the gap between the atomistic scale
of MD simulations and continuum approaches such as elasticity theory or hydrodynamics at the macroscale
(i.e., milliseconds, millimeters and beyond) [62].

The ultimate purpose of multiscale modeling is to predict the macroscopic behavior from the first principles.
Finding appropriate protocols for multiscale simulations is also challenging as either multiphysics simulations
need to operate at multiple resolutions, or two or more multiphysics simulations need to be combined. In
general, these are achieved via adaptive resolution schemes, coarse-graining, sequential multiscale modeling,
concurrent multiscale modeling, and enhanced sampling schemes [18, 64], see Table 5.

Enhanced sampling methods [6] Umbrella sampling [30] Parallel tempering [6] Metadynamics [65] Path sampling [66] Adaptive resolution methods Multiple time step molecular dynamics [67] Multigrid PDE solvers [46, 68] Dual resolution [18] Equation free methods [69, 70]

Coarse graining methods [71, 72] Structure matching method [73] Force matching methods [74] Energy matching methods [75] Concurrent multiscale methods QM/MM methods [76] MM/CG methods [77] CG/CM methods [18]
Sequential multiscale methods Parameter passing methods [78] Particle to field passing [79] Loosely coupled process flow [80, 81] Field-based methods Classical density functional theory [82, 83] Polymer field theory [84] Memory-function approach to hydrodynamics [85]

Table 5 : recipes for multiscale modeling

The sequential approach links a series of computational schemes in which the operative methods at a larger
scale utilize the coarse-grained (CG) representations based on detailed information attained from smaller-
scale methods. Sequential approaches are also known as implicit or serial methods. The second group
of multiscale approaches, the concurrent methods, are designed to bridge multiple individual scales in a
combined model. Such a model accounts for the different scales involved in a physical problem concurrently
and incorporates some sort of a handshaking procedure to communicate between the scales. Concurrent
methods are also called parallel or explicit approaches. Another concept for multiscale simulations is adaptive
resolution simulations. Finally, a number of advanced techniques allow for extending the reach of a single-
scale technique such as MD within certain conditions. Such methods offer a route to temporal multiscale
modeling through enhanced conformational sampling strategies. While these are a lot to review in detail,
we summarize these methods into the subclasses followed by references (Table 5) and choose to highlight
just some of the more foundational methods below. There is an entire journal dedicated to MSM, Multiscale
Modeling and Simulation (https://www.siam.org/journals/mms.php).

5.1 Enhanced sampling methods

The second law of thermodynamics states that natural systems seek a state of minimum free energy at
equilibrium. Thus, the computation of a system’s free energy is essential in comparing the results of simu-
lation and experiment. Several different methods have been implemented for calculation of the free energy
of various chemical and biomolecular systems, and here we will discuss three of the more commonly em-
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ployed techniques, namely the free energy perturbation (FEP) method [86] and umbrella sampling [6], and
metadynamics.

5.1.1 Free energy perturbation (FEP): In molecular systems, the free energy problem is typically presented
in terms of computing a free energy difference, ΔF, between two defined thermodynamic states, for example,
a ligand-bound versus unbound molecule. The free energy difference between the two states is expressed as
[87]:

F = − 1
β ln 〈exp[−βv (x)]〉0;β = 1

kBT
, (Eq. 14)

where, the subscript zero indicates configurational averaging over the ensemble of configurations represen-
tative of the initial state of the system, kB is the Boltzmann constant, T is the temperature, and v (x ) is
the potential energy function that depends on the Cartesian coordinates of the system, [x ]. ΔF can also be
computed by the reverse integration:

F = − 1
β ln 〈exp[−βv (x)]〉1, (Eq. 15)

where the subscript one indicates averaging over the ensemble of configurations representative of the final
state of the system. However, for systems where the free energy difference is significantly larger, a series
of intermediate states must be defined and must differ by no more than 2kBT. The total ΔF can then be
computed by summing the ΔFs between the intermediate states:

F = − 1
β

∑M+1
i=1 ln 〈exp[−β [v (x;λi+1)− v (x;λi)]]〉λi

, (Eq. 16)

where M indicates the number of intermediate states, and λ is the coupling parameter, a continuous parameter
that marks the extent of the transition from the initial to the final state. As λ is varied from 0 (initial state)
to 1 (final state), the potential energy functionv (ξ· λ ) passes from v 0 tov 1.

5.1.2 Umbrella sampling: This procedure enables the calculation of the potential of mean force (free energy
density) along an a priori chosen set of reaction coordinates or order parameters, from which free energy
changes can be calculated by numerical integration (see for example, [13]). For the free energy calculation, the
probability distribution P(S) is calculated by dividing the range of order parameter S into several windows.
The histograms for each window are collected by harvesting and binning trajectories in that window, from
which the potential of mean force Λ(S) is calculated; the potential of mean force Λ(S) is given by [88, 89],

Λ(S) = -kBT ln(P(S)) + Constant; then, exp(-βΔF)= [?]exp(-βΛi(S)) dS (Eq. 17)

The functions Λ(S) in different windows are pieced together by matching the constants such that the Λ
function is continuous at the boundaries of the windows. Thus, the arbitrary constant associated with each
window is adjusted to make the Λ function continuous. Note that Λ(S) here is the same function as F(S)
in (Eq. 6) The standard deviation in each window of the potential of mean force calculations is estimated
by dividing the set of trajectories into two blocks and collecting separate histograms. The calculation of
the multi-dimensional potential of mean force (multiple reaction coordinates) using the weighted histogram
analysis method (WHAM) reviewed by Roux [90], which enables an easy and accurate recipe for unbiasing
and combining the results of umbrella sampling calculations, which simplifies considerably, the task of
recombining the various windows of sampling in complex systems and computing ΔF.

5.1.3 Metadynamics : In metadynamics, the equations of motion are augmented by a history-dependent
potential V(S,t)=kBΔT[1+N(S,t)/τ], ωηερε Ν(Σ,τ) ρεπρεσεντς τηε ηιστογραμς οφ πρεvιουσλψ vισιτεδ ςονφιγυ-
ρατιονς υπ το τιμε τ. Ωιτη τηις ςηοιςε οφ τηε βιασινγ ποτεντιαλ, τηε εvολυτιον εχυατιον οφ ῞ ις δεριvεδ ανδ ις σολvεδ

τογετηερ ωιτη τηε εχυατιον οφ μοτιον. Ονε ςαν σηοω τηατ τηε υνβιασεδ φρεε ενεργψ ςαν βε ςονστρυςτεδ φρομ

τηε βιασεδ δψναμιςς υσινγ τηε εχυατιον Φ(Σ)=[(Τ+ΔT)/ΔT]V(S). Metadynamics accelerates rare events
along chosen collective variables (CV) S. Well-tempered metadynamics (WTMD) [65, 91] is widely used to
sample the large scale configurational space between the configurations in large biomolecular systems.

5.1.4 Methods for determining reaction paths: Path-based methodologies seek to describe transition path-
ways connecting two well defined states [92-94]; practical applications of this ideology are available through
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methods such as stochastic path approach [95], nudged elastic band [96-98], finite temperature string [99],
and transition path sampling [66, 100, 101], which each exploit the separation in timescales in activated
processes, namely, the existence of a shorter time scale of relaxation at the kinetic bottle neck or the transi-
tion state (τrelax), in comparison to a much longer timescale of activation at the transition state itself (τTS).
Below, we review the path-based method of transition path sampling.

Transition path sampling (TPS) [66, 100] aims to capture rare events (excursions or jumps between
metastable basins in the free energy landscape) in molecular processes by essentially performing Monte
Carlo sampling of dynamics trajectories; the acceptance or rejection criteria are determined by selected sta-
tistical objectives that characterize the ensemble of trajectories. In transition path sampling, time-reversible
MD trajectories in each transition state region are harvested using the shooting algorithm [101] to connect
two metastable states via a Monte Carlo protocol in trajectory space. Essentially, for a given dynamics
trajectory, the state of the system (i.e., basin A or B) is characterized by defining a set of order parameters
χ=[χ1,χ2,. . . ]. Each trajectory is expressed as a time series of length τ. To formally identify a basin, the
population operator hA=1 if and only if a particular molecular configuration associated with a time t of a
trajectory belongs to basin A; otherwise hA=0. The trajectory operator HB=1 if and only if the trajectory
visits basin B in duration τ, i.e., there is at least one time-slice for which hB=1; otherwise HB=0. The
idea in TPS is to generate many trajectories that connect A to B from one such existing pathway. This is
accomplished by a Metropolis algorithm that generates an ensemble of trajectories [χ] according to a path
action S[χ] given by: S[χ]=ρ(0)hA(χ0)HB[χ], where ρ(0) is the probability of observing the configuration
at t=0 (ρ(0)[?]exp(-E(0)/kBT), in the canonical ensemble). Trajectories are harvested using the shooting
algorithm [101]: a new trajectory χ*τ is generated from an existing one χτ by perturbing the momenta of
atoms at a randomly chosen time t in a symmetric manner [101], i.e., by conserving detailed balance. The
perturbation scheme is symmetric, i.e., the probability of generating a new set of momenta from the old
set is the same as the reverse probability. Moreover, the scheme conserves the equilibrium distribution of
momenta and the total linear momentum (and, if desired, the total angular momentum). The acceptance
probability implied by the above procedure is given by Pacc=min(1, S[χ*]/S[χ]). With sufficient sampling in
trajectory space, the protocol converges to yield physically-meaningful trajectories passing through the true
transition state (saddle) region.

5.2 Coarse graining

Coarse-grained molecular dynamics simulations employ intermediate resolution in order to balance chemical
detail with system size. They offer sufficient size to study membrane-remodeling events while retaining the
ability to self-assemble. Because they are capable of simulating mesoscopic length scales, they make contact
with a wider variety of experiments. A complete coarse-grained model must include two components: a map-
ping from atomistic structures to coarse-grained beads and a set of potentials that describe the interactions
between beads. The former defines the geometry or length scale of the resulting model, while the latter de-
fines the potential energy function or the force field. The parameterization of the force field is essential to the
performance of the model, which is only relevant insofar as it can reproduce experimental observables. Here
we will describe the characteristic methods for developing CGMD models, namely the bottom-up structure-
and force-matching and top-down free energy-based approaches. We note that excellent reviews have been
written on coarse-grained methods with applications in other fields such as polymer physics, see, e.g., [72].

5.2.1 Structure and energy matching in the CMM-CG model: Klein and co-workers developed a coarse-
grained model for phospholipid bilayers by matching the structural and thermodynamic properties of water,
hydrocarbons and lipid amphiphile to experimental measurements and all-atom simulations [102]. The
resulting force field, titled CMM-CG, has been used to investigate a range of polymer systems as well as
those containing nonionic liquids and lipids. Classic coarse-grained methods propose pair potentials between
CG beads according to the Boltzmann inversion method. In this method, a pair correlation function, or radial
distribution function (RDF) g(r) defines the probability of finding a particle at distance r from a reference
particle such that the conditional probability of finding the particle is ρ(r)=ρg(r), where ρ is the average
number density of the fluid. The potential of mean force (PMF) between CG beads is then estimated by (Eq.
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18) where gaa(r) is the RDF measured from atomistic simulation, and αn is a scaling factor (corresponding
to the nth iteration of the estimate) designed to include the effect of interactions with the (necessarily)
heterogeneous environment.

(Eq. 18)

The Boltzmann inversion method is iteratively corrected according to (Eq. 19) to correct the tabulated
potentials until the pair-correlation functions for the atomistic and coarse-grained systems agree.

(Eq. 19)

5.2.2 Force matching with the MS-CG model : The method of force-matching provides a rigorous route to
developing a coarse-grained force field directly from forces measured in all-atom simulations. In so far as
the multi-body coarse-grained PMF is derived from structure factors that depend on temperature, pressure,
and composition, they cannot be transferred to new systems. To avoid this problem, the force-matching
approach proposes a variational method in which a coarse-grained force field is systematically developed
from all-atom simulations under the correct thermodynamic ensemble [103]. In the statistical framework
developed by Izvekov and Voth [103-105], it is possible to develop the exact many-body coarse-grained PMF
from a trajectory of atomistic forces with a sufficiently detailed set of basis functions.

The method starts with a collection of sampled configurations from an atomistic simulation of the target
system and calculate the reference forces between atoms of a particular type. After decomposing their target
force into a short-ranged part approximated by a cubic spline and a long-ranged Coulomb part one solves
the overdetermined set of linear equations given by (Eq. 20):

(Eq. 20)

In equation (Eq. 20), the rαβ,κ correspond to the spline mesh at points κ for pairs of atoms of type α and β,
while f and f” are spline parameters that ensure continuous derivatives f’(r) at the mesh points and define
the short-ranged part of the force. The subscript αil labels the ith atom of type α in the lth sampled atomic
configuration. Solving these equations minimizes the Euclidean norm of vectors of residuals, and can be
solved on a minimal set of atomistic snapshots using a singular value decomposition (SVD) algorithm. By
adding the Coulomb term to the short-ranged potential above, this technique allows for the inclusion of
explicit electrostatics. The MS-CG model reproduces site-to-site RDFs from atomistic MD simulations in
the as well as the density profile perpendicular to the bilayer normal in DMPC bilayers.

5.2.3 The energy-based approach of the Martini force field: The Martini force field developed by Marrink and
co-workers eschews systematic structure-matching in pursuit of a maximally transferable force field which is
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parameterized in a “top-down” manner, designed to encode information about the free energy of the chemical
components, thereby increasing the range of thermodynamic ensembles over which the model is valid [75].

The Martini model employs a four-to-one mapping of water and non-hydrogen atoms onto a single a bead,
except in ring-like structures, which preserve geometry with a finer-scale mapping. Molecules are built from
relatively few bead types, which are categorized by polarity (polar, nonpolar, apolar, and charged). Each
type is further distinguished by hydrogen bonding capabilities (donor, acceptor, both, or none) as well as
a score describing the level of polarity. Like the CMM-CG and MS-CG models, Lennard-Jones parameters
for nonbonded interactions are tuned for each pair of particles. These potentials are shifted to mimic a
distance-dependent screening effect and increase computational efficiency. Charged groups interact via a
Coulomb potential with a low relative dielectric for explicit screening. This choice allows the use of full
charges while reproducing salt structure factors seen in previous atomistic as well as the hydration shell
identified by neutron diffraction studies. Nonbonded interactions for all bead types are tuned to semi-
quantitatively match measurements of density and compressibility. Bonded interactions are specified by
potential energy functions that model bonds, angles, dihedrals, and impropers with harmonic functions, with
relatively weak force constants to match the flexibility of target molecules at the fine-grained resolutions. The
Martini force field’s defining feature is the selection of nonbonded parameters that are optimized to reproduce
thermodynamic measurements in the condensed phase. Specifically, the Martini model semi-quantitatively
reproduces the free energy of hydration, the free energy of vaporization, and the partitioning free energies
between water and a collection of organic phases, obtained from the equilibrium densities in both phases
[75].

5.2.4 Structure-based coarse-grained protein modeling : While coarse-grained simulations have difficulty
reproducing secondary structural transformations, it is possible to recover accurate conformational sampling
by a reverse-transformation from the CGMD level to the atomistic one. atomistic simulations of back-
mapped CGMD structures can recover the conformational properties of the original atomistic system. In
this procedure, back-mapped atoms are randomly placed near their corresponding coarse-grained bead. The
center of mass of these atoms is then restrained to the position of the coarse-grained bead. The system
may be relaxed by a simulated annealing procedure to minimize large or unphysical forces, stochastically
sample the conformation space, and gradually introduce inter- and intra-molecular potentials consistent
with the all-atom model. This method has been used to generate atomistic structures of simple peptides and
transmembrane proteins from coarse-grained trajectories. The back-mapping procedure also quantifies the
information loss from coarse-graining, providing a useful way to validate a CG model against a more robust
atomistic force field or extend a CG trajectory to include greater detail. Elastic network models have found
numerous applications in flexible fitting methods, which add detail to low-resolution cryo-EM measurements
[106].

5.3 Minimal coupling methods

Minimal coupling methods minimize explicit and concurrent communication across scales via a variety of
clever algorithmic or software architecture tricks and represent a power repertoire of multiscale methods.
There are numerous techniques in this popular category, and we chose not to delve into any of them in detail.
A few of the methods in these categories are listed along with their references in Table 5 under Sequential
multiscale methods and Adaptive resolution methods. Sequential methods involve computing a property or
a constitutive relationship at one (typically the molecular) scale and employing (either pre- or on-the-fly-)
computed values in the other (typically the continuum scale) [65,70,71].

5.4 Concurrent multiscale methods

The concurrent approaches couple two or more methods and execute them simultaneously with continuous
information transfer across scales in contrast to the minimal coupling methods which attempt to do the
opposite. In this class of methods, the behavior at each scale depends strongly on the phenomena at other
scales. A successful algorithm in the concurrent method implements a smooth coupling between the scales.
In concurrent simulations, often, two distinct domains with different scales are linked together through a
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buffer or overlap region called the handshake region [18].

5.4.1 Quantum mechanics molecular mechanics (QM/MM) Simulations: An example of concurrent include
mixed quantum mechanics/ molecular mechanics (QM/MM) methods combining MD using the empirical
force-field approach with electronic structure methods [19, 20, 107] to produce a concurrent multiscale method
[76, 108-119]. In the QM/MM simulations, the system is sub-divided into two sub-regions, the quantum
mechanical sub-region (QM region) where the reactive events take place, and the molecular mechanical sub-
region (which provides the complete environment around the reactive chemistry) [109, 111]. Since electronic
structure methods are limited by the number of atoms they can handle (typically 50-500), the QM sub-
region is restricted to a small number of atoms of the total system. For example, in an enzymatic system,
the quantum region can consist of Mg2+ ions, water molecules within 3 Å of the Mg2+ ions, parts of the
substrate molecules, and the catalytic amino acid residues (such as aspartic acids). The remaining protein
and solvent molecules are treated classically using the regular classical force-field.

In QM/MM simulations, wave function optimizations are typically performed in the quantum (or QM) sub-
region of the system using an electronic structure method such as density functional theory (DFT) [20].
In this step, the electrostatic coupling between the QM and the MM sub-regions is accounted for: i.e., the
charges in the MM sub-region are allowed to polarize the electronic wave functions in the QM sub-region.
The forces in the quantum sub-region are calculated using DFT on-the-fly, assuming that the system moves
on the Born-Oppenheimer surface [111, 120]. That is, we assume a clear timescale of separation between the
electronic and nuclear degrees of freedom and the electronic degrees of freedom are in their ground state
around the instantaneous configurations of the nuclei. The forces on the classical region are calculated using
a classical force-field. Besides, a mixed Hamiltonian (energy function) accounts for the interaction of the
classical and the quantum sub-regions. For example, since the QM/MM boundary often cuts across covalent
bonds, one can use a link atom procedure [114] to satisfy the valences of broken bonds in the QM sub-region.
Also, bonded terms and electrostatic terms between the atoms of the QM region and those of the classical
region are typically included [112].

From a practitioner’s stand-point, QM/MM methods are implemented based on existing interfaces between
the electronic structure and the molecular dynamics programs; one example implementation is between
GAMESS-UK [121] (an ab-initio electronic structure prediction package) and CHARMM [25]. The model
system can then be subjected to the usual energy minimization and constant temperature equilibration runs
at the desired temperature using the regular integration procedures in operation for pure MM systems; it
is customary to carry out QM/MM dynamics runs (typically limited to 10-100 ps because of the computa-
tionally intensive electronic structure calculations) using a standard 1 fs time step of integration. The main
advantage of the QM/MM simulations is that one can follow reactive events and dissect reaction mecha-
nisms in the active site while considering the explicit coupling to the extended region. In practice, sufficient
experience and care is needed in the choices of the QM sub-region, and the many alternative choices of
system sizes, as well as the link-atom schemes, need to be compared to ensure convergence and accuracy of
results [112]. The shorter length of the dynamics runs in the QM/MM simulations (ps) relative to the MM
MD simulations (ns) implies that sufficiently high-resolution structures are usually necessary for setting up
such runs as the simulations only explore a limited conformational space available to the system. Another
challenge is an accurate and reliable representation of the mixed QM/MM interaction terms [115]. These
challenges are currently being overcome by the suitable design of next-generation methods for electronic
structure and molecular mechanics simulations [51, 122]. Other examples of concurrent methods linking elec-
tronic structure and or molecular mechanics scales include Car Parrinello molecular dynamics (CPMD) [123,
124] and mixed molecular mechanics/ coarse-grained (MM/CG) [77, 125].

5.4.2 Linking atomistic and continuum models : In several applications involving solving continuum equations
in fluid and solid mechanics, there is a need to treat a small domain at finer (often molecular or particle-
based resolution) to avoid sharp fronts or even singularities. In such cases linking atomistic and continuum
domains using bridging algorithms are necessary. A class of algorithms that realize this challenging integra-
tion have been reviewed in [18]: examples include the quasicontinuum approach, finite-element/ atomistic

19



P
os

te
d

on
A

u
th

or
ea

9
J
u
n

20
20

—
T

h
e

co
p
y
ri

gh
t

h
ol

d
er

is
th

e
au

th
or

/f
u
n
d
er

.
A

ll
ri

gh
ts

re
se

rv
ed

.
N

o
re

u
se

w
it

h
ou

t
p

er
m

is
si

on
.

—
h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
59

17
11

71
.1

80
48

85
5

—
T

h
is

a
p
re

p
ri

n
t

an
d

h
a
s

n
o
t

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

a
ta

m
ay

b
e

p
re

li
m

in
a
ry

.

method, bridging scale method, and the Schwartz inequality method [126, 127], which all employ domain
decomposition bridging by performing molecular scale modeling in one (typically a small domain) and inte-
grating it with continuum modeling in an adjoining (larger) domain, such that certain constraints (boundary
conditions) are satisfied self-consistently at the boundary separating the two domains. Such approaches are
useful for treating various problems involving contact lines.

5.5 Field-based coarse-graining

For specific systems such as nanoparticle and nanofluid transport, both molecular interactions (due to biomo-
lecular recognition) and hydrodynamic interactions (due to fluid flow and boundary effects) are significant.
The integration of disparate length and time scales does not fit traditional multiscale methods. The com-
plexity lies in integrating fluid-flow and memory for multiphase flow in complex and arbitrary geometries,
while simultaneously including thermal and stochastic effects to simulate quasi-equilibrium distributions
correctly to enable receptor-ligand binding at the physiological temperature. This issue is ubiquitous in mul-
tivalent binding or adhesive interactions between nanoparticles and cells or between two cells. Bridging the
multiple length scales (from meso to molecular) and the associated time scales relevant to the problem is
essential to success herein. Multiple macroscopic and mesoscopic time scales governing the problem include
(i) hydrodynamic time scale, (ii) viscous/Brownian relaxation time scale, and (iii) Brownian diffusion time
scale.

5.5.1 Memory function approach to coarse-graining with hydrodynamic interactions: In the description of
the dynamics of nanosized Brownian particles in an bounded and unbounded fluid domains the memory
functions decay with algebraic correlations as enumerated by theoretical and computational studies [46, 85,
128]. The equation of stochastic motion for each component of the velocity of a nanoparticle immersed in a
fluid in bounded and unbounded domains takes the form of a generalized Langevin equation (GLE) of the
form of (Eq. 9); to account for hydrodynamic interaction, a composite GLE was introduced [129, 130].

(Eq. 21)

Here M is the added mass, and β is the geometric factor with wall effect corrections, the integrands include
the memory functions associated with the velocity autocorrelation functions in different domains (lubrication,
bulk, and near-wall regimes in order of the first three terms on the right-hand side). The fourth term on
the right-hand side is the force from other thermodynamic potentials, same as F(S) in (Eq. 7), and the fifth
term is the random force term with colored noise to be consistent with the fluctuation-dissipation theorem
for composite GLE [129, 130].

Effect of molecular forces is introduced as forcing functions in the GLE [129] and the effect of multiple
particles including multiparticle HI can be introduced via density functional theory-based treatments [82,
83] to define F(S) from hydrodynamic and colloidal effects in addition to the specific contributions from
molecular forces. If the memory functions are unknown, they can be obtained via deterministic approaches
by solving the continuum hydrodynamic equations numerically [46, 128]. These disparate hydrodynamic
fields and molecular forces can be integrated into a single GLE to realize a unified description of particle
dynamics under the influence of molecular and hydrodynamic forces [85]. Another approach to integrating
these forces is via the Fokker Planck approach using the sequential multiscale method paradigm [131].

6. Multiscale modeling 2.0
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6.1 Integrating MSM and ML to elucidate the emergence of function in complex systems

We are riding the wave of a paradigm shift in the development of MSM methods due to rapid development
and changes in HPC infrastructure (see Figure 2) and advances in ML methods. Thus, MSM and HPC
have emerged as essential tools for modeling complex problems at the microscopic scales with a focus on
leveraging the structured and embedded physical laws to gain a mechanism-based understanding. This
success notwithstanding, the design of new MSM algorithms in coupling different scales, data utilization,
and their implementation on HPC is becoming increasingly cumbersome in the face of heterogeneous data
availability and rapidly evolving HPC architectures and platforms. On the other hand, while purely data-
driven models of molecular and cellular systems spawned by the techniques of data science [132-134], and
in particular, ML methods including deep learning methods [135-137], are easy to train and implement,
the underlying model manifests as a black-box. This general approach taken by the ML community is well
suited for classification, learning, and regression problems, but suffers from limitations in interpretability
and explainability, especially when mechanism-based understanding is a primary goal. There lies a vast
potential in combining MSM, HPC, and ML methods with their complementary strengths [4]. MSM models
are routinely coupled together by appropriately propagating information across scales (see section 5), while
the ever-increasing advances in hardware capabilities and high-performance software implementations allows
us to study increasingly more complex phenomena at a higher fidelity and higher resolution. While much of
the discussion thus far has been focused on MSM and HPC methods, the progress and potential in integrating
MSM and ML are discussed below and represent the forefront of emerging MSM research, in which we discuss
a few emerging integrative approaches to combine ML and MSM.

6.2 Integrators and autotuning

Over the past two decades, MSM has emerged into a promising tool to build in-silico predictive models
by systematically integrating knowledge from the tissue, cellular, and molecular level. Depending on the
scale of interest, governing equations in each scale of the MSM approaches may fall into two categories,
ordinary differential equation-based, and partial differential equation-based approaches. Examples include
molecular dynamics [21], coarse-grained mesoscale models [71], lattice Boltzmann methods [43], immersed
boundary methods [138], as well as classical finite element approaches [139]. ML-based methods can speed
up, optimize, and autotune several of the existing solvers for multiphysics simulations [140, 141].

6.3 ML-enabled MSM

As noted earlier, one of the main objectives of MSM is to couple the physics at different scales using
bridging algorithms that pass information between two scales, such as in QM/MM, MM/CG, CG/CM, and
field-based methods discussed in section 5. However, the implementation of this methodology on parallel
supercomputing HPC architectures is complicated and cumbersome. To address this significant limitation
in implementation, we advocate for an ML-enabled integration or bridging of scales as a viable approach
to develop the next generation of MSM methods to achieve maximal efficiency and flexibility in integrating
scales.
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Figure 3 . The proposed synergy of multiscale and machine learning aspires to (i) accelerate the prediction
of large-scale computational models, (ii) discover interpretable models from irregular and heterogeneous
data of variable fidelity, and (iii) guide the judicious acquisition of new information towards elucidating the
emergence of function in biological systems.

Here one can leverage ongoing developments in ML to accelerate the prediction of large-scale computational
models. As a viable path forward, ML workflow can be implemented in three steps (see Figure 3) [4]: (1)
Train deep neural network (NN) encoders that connect properties of the MSM model at scale 1 (e.g., MD or
MC) to those at scale 2 (e.g., continuum model), using explicit MSM computations overextended parameter
sets to cover all possible conditions; (2) implement the encoders in place of the coupling algorithms to
bridge scales 1 & 2; (3) ensure that the properties profiles obtained from the two scales match by defining a
cost-function that constrains the training of NNs in (1). The NN-based coupling of scales is expected to be
robust, computationally efficient for MSM algorithms.

One challenge is to discover interpretable models from heterogeneous data of variable fidelity, and guide the
judicious acquisition of new information towards elucidating the emergence of function in biological systems.
This challenge can be addressed by subjecting the entire MSM model to contemporary data science and
statistical methodologies, i.e., [142] sensitivity [1], evolvability [2], and robustness [143] analyses, uncertainty
quantification [144], multi-fidelity modeling [145], and pattern discovery and model reduction [146].

6.4. Physics-informed neural networks

Can we use prior physics-based knowledge to avoid overfitting or non-physical predictions? From a conceptual
point of view, can we supplement ML with a set of known physics-based equations, an approach that drives
MSM models in engineering disciplines? While data-driven methods can provide solutions that are not
constrained by preconceived notions or models, their predictions should not violate the fundamental laws of
physics. There are well-known examples of deep learning neural networks that appear to be highly accurate
but make highly inaccurate predictions when faced with data outside their training regime, and others that
make highly inaccurate predictions based on seemingly minor changes to the target data [147]. To address
this ubiquitous issue of purely ML-based approaches, numerous opportunities to combine machine learning
and multiscale modeling towards a priori satisfying the fundamental laws of physics, and, at the same time,
preventing overfitting of the data.
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A potential solution is to combine deterministic and stochastic models. Coupling the deterministic governing
equations MSM models — the balance of mass, momentum, and energy — with the stochastic equations of
systems biology and biophysical systems — cell-signaling networks or reaction-diffusion equations — could
help guide the design of computational models for otherwise ill-posed problems. Physics-informed neural
networks (PINN) [148] is a promising approach that employs deep neural networks and leverages their well-
known capability as universal function approximators [149]. In this setting, we can directly tackle nonlinear
problems without the need for committing to any prior assumptions, linearization, or local time-stepping.
PINNs exploit recent developments in automatic differentiation [150] to differentiate neural networks con-
cerning their input coordinates and model parameters to obtain physics informed neural networks. Such
neural networks are constrained to respect any symmetry, invariance, or conservation principles originating
from the physical laws that govern the observed data, as modeled by general time-dependent and nonlinear
partial differential equations. This construction allows us to tackle a wide range of problems in computational
science and introduces a potentially disruptive technology leading to the development of new data-efficient
and physics-informed learning machines, new classes of numerical solvers for partial differential equations,
as well as new data-driven approaches for model inversion and systems identification.

6.5. Deep neural network algorithms inspired by statistical physics and information theory

Large amounts of data, cheap computation, and efficient algorithms are driving the impressive performance
and adoption of robust deep learning architectures. However, building, maintaining, and expanding these
systems is still decidedly an art and requires a lot of trial and error. Learning and inference methods have
a history of being inspired by and derived from the principles of statistical physics and information theory
[151, 152]. We summarize examples to advance this theme to derive NN algorithms based on a confluence
of ideas in statistical physics and information theory [153] and to feed them back into core MSM methods
by prescribing new computational techniques for deep neural networks. (A) Generalization in deep NN:
the approach utilizes algebraic topology [154, 155] to characterize the space of reachable functions using
stochastic dynamics on data in order to build computationally efficient architectures and algorithms to
train them [156-158]. (B) Characterizing the quality of representations and the performance of encoders,
decoders: Recent works have proposed to exploit principles of representation learning to formulate variational
approaches for the assessment of performance in deep learning algorithms [16] that provide guarantees on
the performance of the final model.

6.6 ML-enhanced conformational sampling

Advances in ML-derived force fields are promising to revolutionize classical simulations by directly defining
energy landscapes from more accurate quantum mechanical simulations [159, 160]. Besides, in particle-
based simulations of MSM, the efficient sampling of high-dimensional conformational spaces constitutes a
significant challenge in the computational molecular sciences limiting the longtime molecular dynamics (MD)
simulations of molecular systems in biophysical chemistry and materials science. Combining MD simulations
with ML can provide a powerful approach to address the challenges mentioned above [161]. The last decade
has seen significant advances in the use of electronic structure calculations to train ML potentials for atomistic
simulations capable of reaching large systems sizes and longtime scales with accurate and reliable energies and
forces. More recently, ML approaches have proved useful in learning high-dimensional free energy surfaces
[162, 163], and in providing a low dimensional set of collective variables or CVs [164]. Some examples are
discussed below.

6.6.1 Boltzmann generators: The primary difficulty in sampling physical realizations or microstates of the
system from the Boltzmann distribution lies in the nature of the potential energy. In large, complex systems,
the conformational space holds the positions of hundreds of thousands to millions of atoms. The potential
energy should be viewed as a vast, rugged landscape in this high-dimensional space characterized by an
exponentially large number of low-energy regions or minima, all separated by ridges. It is now possible to
train a deep neural network to learn a transformation from the conformational space to another variable-
space such that in this new space, the variables are distributed according to simple distributions such as
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the Gaussian distribution. One can back-map to the original space through inverse transformation onto a
high-probability region of the original conformational space [161].

6.6.2 ML-enabled conformational enhanced sampling : The choice of appropriate collective variables (CVs,
aka order parameters in the earlier section) for enhanced sampling methods such as metadynamics is still
a challenge. Recent advances have enabled ML tools of supervised learning to define appropriate CVs.
The pipeline flow for such supervised machine learning methods utilizes ML-identified features from (A)
as CVs for enhanced sampling simulations [165]. Another choice for ML-identified CV is through the use
of variational autoencoders [166], which are deep NNs that perform dimensionality reduction similar to
principal component analysis. The neural encoder takes a high dimensional input vector and outputs a
lower-dimensional output vector. The neural decoder then takes the latent variable as input and attempts
to reconstruct the original high dimensional input using standard optimization techniques of a loss function
[167].

6.6.3 ML-enhanced adaptive path sampling: While enhanced sampling methods are efficient in exploring the
landscape based on pre-defined CVs, one often discovers new variables during sampling. In such scenarios,
new variables that become relevant are often orthogonal to the original CVs, and it is impossible to incorpo-
rate such variables adaptively into the free energy landscape. One approach is to combine enhanced sampling
such as metadynamics with path sampling and utilize the newly identified CVs in the path sampling through
a path action [168]. In this approach, path sampling is pursued by adaptively modifying the path action,
and the free energy landscape based on the original CVs can be refined iteratively. The path action approach
is also easily customized to include other ML strategies such as reinforcement learning to guide the system
through non-Boltzmann paths.

6.7. Ab-initio methods using quantum computing

Quantum computers hold promise to enable efficient simulations of the properties of molecules and materials;
however, at present, their abilities are limited due to a limited number of qubits that can be realized. In
the near-term, the throughput of quantum computers is limited by the small number of qubits available,
which prohibits large systems. It is more practical to develop hybrid quantum-classical methods where the
quantum computation is restricted to a small portion of the system; for example, molecules where an active
region requires a higher level of theoretical accuracy than its environment. Galli et al. outline a quantum
embedding theory for the calculation of strongly-correlated electronic states of active regions, with the rest
of the system described within density functional theory [169]. The authors demonstrate the efficacy of
the method by investigating defect quantum bits in semiconductors that are of great interest for quantum
information technologies. The calculations are performed on quantum computers and show that they yield
results in agreement with those obtained with exact diagonalization on classical architectures, paving the
way to simulations of realistic materials on near-term quantum computers.

7. Conclusion

Amidst the explosion of data in all walks of science, engineering, biology and biomedical science, it is useful
to seek an interpretable basis for the emergence of function. How can geometry, physics, and engineering
best inform biology or lead to the discoveries of new functional advanced materials? The complex multiscale
interactions that characterize the dynamic behavior of biological systems [170] and advanced materials have
limited our ability to understand the fundamental mechanisms behind the emergence of function to relatively
idealized systems [171].

ML integrated with MSM is poised to enhance the capabilities of standard MSM approaches profoundly,
particularly in the face of increasing problem complexity and data intensiveness. The contemporary research
problems warrant an interdisciplinary environment to tackle emerging scientific and technological grand-
challenge problems that carry substantial societal impact. Research projects, while posed across varied
application domains in the broad STEM field, often have common features: (1) the problem/solution spans
diverse length and timescales and benefits from MSM, (2) ML methods integrate into the MSM methods
to define the new approaches at the frontiers of MSM development, (3) tools of data science are effectively
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leveraged to integrate experimental data with the proposed model, and (4) the implementation of the model
will utilize HPC methods and/ or platforms. Foundational training for future scholars should ideally provide:
(1) working knowledge in fundamental science and modeling methodologies at multiple lengths and timescales
spanning the molecular to process scales; (2) the requisite skills to integrate, and couple multiple scales
into a multiscale paradigm; (3) learnings to exploit elements of data science, including machine learning
methods and tools of data integration from cloud-based, data-rich repositories in order to validate and test
computational models and software; (4) learnings to combine the rich tools of ML with MSM methods
to define the next-generation of MSM methods; (5) experience to adopt, and implement best practices
in software architecture to leverage modern computational infrastructure and develop efficient sustainable
codes. With these foundations and skill-sets in the arsenal of the emerging researcher, the potential to blend
MSM, HPC, and ML presents opportunities for unbound innovation and represents the future of MSM and
explainable ML that will likely define the fields in the 21st century.
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