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Abstract

Dysregulation of proinflammatory cytokines promotes immune-mediated injuries. Epithelial-cell proliferation and an increase
in lung macrophages have both been associated with the 2003 SARS-CoV infection. Proinflammatory cytokines as well as
lipopolysaccharide and pathogen-associated molecular patterns (PAMPs) promote macrophage transition which promotes on-
going inflammation. PAMPs are primarily sensed by Toll-like receptors and/or by angiotensin-converting enzyme 2; this
interaction serves to activate NF-κB to promotes synthesis and secretion of proinflammatory cytokines. Activated immune cells

secrete large amounts of specific proinflammatory cytokines including IL-1, IL-6, IL-8, TNF-α, and TGF-β1 which can promote

severe lung injury. As such, immunomodulatory drugs alone may have an impact on the cytokine storm even without the addi-

tion of antiviral agents. The central transcription factor, NF-κB, induces angiogenesis during cancer progression; combinations

of pharmacological agents, including thalidomide and celecoxib, show promising results in cancer treatment studies. This may

be due to a low-level, chronic cytokine storm similar to that described for acute and chronic hepatitis as well as for cirrhosis

and hepatoma. As previously described, I have used thalidomide, celecoxib, and low dose cytotoxic agents since 2000 for the

successful treatment of a variety of cancers. This regimen is cited or introduced in leading medical journals. Thalidomide is an

immunomodulatory agent that modulates the activities of NF-κB in combination with the cyclooxygenase-2 inhibitor, celecoxib.

The combination of thalidomide and celecoxib might limit the inflammatory symptoms when used to treat severe COVID-19

pneumonia due to infection with SARS-CoV-2.
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PAMP: pathogen-associated molecular pattern

PRRs: pattern-recognition receptors

TLR: Toll-like receptor

SARS: severe acute respiratory syndrome

MERS: Middle East respiratory syndrome

NF-κB: nuclear factor kappa B

IL: interleukin

TNF-α: tumor necrosis factor-α

TGF-β: Transforming growth factor-β

SARS-CoV: severe acute respiratory syndrome coronavirus

MERS-CoV: Middle East respiratory syndrome coronavirus

COVID-19: 2019 novel coronavirus

ACE2: angiotensin-converting enzyme 2

MyD88: myeloid differentiation factor 88

COX-2: cyclooxygenase-2

AMPK: AMP-activated protein kinase

VEGF: VEGF

bFGF: basic fibroblast growth factor

MCP-1: monocyte chemoattractant protein-1

iNOS: inducible nitric oxide synthase

Summary

Dysregulation of proinflammatory cytokines promotes immune-mediated injuries. Epithelial-cell proliferation
and an increase in lung macrophages have both been associated with the 2003 SARS-CoV infection. Proin-
flammatory cytokines as well as lipopolysaccharide and pathogen-associated molecular patterns (PAMPs)
promote macrophage transition which promotes ongoing inflammation. PAMPs are primarily sensed by
Toll-like receptors and/or by angiotensin-converting enzyme 2; this interaction serves to activate NF-κB
to promotes synthesis and secretion of proinflammatory cytokines. Activated immune cells secrete large
amounts of specific proinflammatory cytokines including IL-1, IL-6, IL-8, TNF-α, and TGF-β1 which can
promote severe lung injury. As such, immunomodulatory drugs alone may have an impact on the cytokine
storm even without the addition of antiviral agents. The central transcription factor, NF-κB, induces an-
giogenesis during cancer progression; combinations of pharmacological agents, including thalidomide and
celecoxib, show promising results in cancer treatment studies. This may be due to a low-level, chronic cy-
tokine storm similar to that described for acute and chronic hepatitis as well as for cirrhosis and hepatoma.
As previously described, I have used thalidomide, celecoxib, and low dose cytotoxic agents since 2000 for
the successful treatment of a variety of cancers. This regimen is cited or introduced in leading medical
journals. Thalidomide is an immunomodulatory agent that modulates the activities of NF-κB in combina-
tion with the cyclooxygenase-2 inhibitor, celecoxib. The combination of thalidomide and celecoxib might
limit the inflammatory symptoms when used to treat severe COVID-19 pneumonia due to infection with
SARS-CoV-2.

Introduction
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Coronavirus infection is typically associated with mild clinical symptoms, save for those due to infection with
severe acute respiratory syndrome coronavirus (SARS-CoV)1, the Middle East respiratory syndrome coron-
avirus (MERS-CoV)2, 3, and most recently, with SARS-CoV-2. An understanding of the pathophysiology of
SARS-CoV-associated pneumonia induced will be helpful toward understanding the disease associated with
the novel SARS-CoV-2 pathogen, a severe pneumonia known as Coronavirus Disease 2019 (2019-nCoV or
COVID-19). Most of the published reports indicate that fatal COVID-19 has a clinical presentation that
resembles that due to the original 2003 SARS-CoV pathogen. Most notably, in both cases, synthesis and
release of proinflammatory cytokines has been associated with disease severity. Ongoing production can
result in a cytokine storm and acute respiratory distress syndrome which are findings that can lead to fatal
disease4. Toll-like receptors (TLRs), NF-κB, macrophages, and proinflammatory cytokines were all found to
be involved in the development of severe pneumonia5.

Toll-like Receptor Family

As in the case of SARS-CoV, angiotensin-converting enzyme 2 (ACE2) has been identified as main host cell
receptor of SARS-CoV-26. The ACE2 receptor was detected on cells from various human organs including
lung alveolar epithelial cells and enterocytes of the small intestine. Interestingly, virus-activation of ACE2
can promote signaling and activation of NF-κB similar to that mediated by the TLRs7,8.

TLRs also play important roles with respect to the outcome of viral infection. TLRs play a central role
in promoting innate immune responses via their interactions with PAMPs as pattern-recognition receptors
(PRRs) both at the plasma membrane and within endosomes. Downstream signaling pathways of TLRs
result in the activation of nuclear factor kappa B (NF-κB)5 mainly via signals transmitted through myeloid
differentiation factor 88 (MyD88)9, 10, 11, 12. Other factors involved in TLRs-mediated modulation of NF-
κB are endosomal acidification13; activation of this pathway results in the production of proinflammatory
cytokines and type I interferons. TLRs have been identified on B-lymphocytes, NK cells, dendritic cells, and
macrophages, as well as on non-immune cells, including fibroblasts, epithelial cells and endothelial cells14, 15.
TLR3 may play a critical role in detecting RNA viruses and altering the pathogenesis of acute virus infection.
Activation of this pathway may result in damage to alveolar and bronchial epithelial cells, as well as in various
immune cells such as macrophages16. Bronchial epithelial cells and alveolar cells of lower respiratory tract
express increasing amounts of TLR4 in response to inflammatory cell infiltration observed in response to
coronavirus and other virus infections11, 17. All TLR signaling pathways result in the activation NF-κB
which is the master regulator of inflammatory cytokine expression5.

Ρολε οφ ΝΦ-κΒ

As there are no vaccines or conventional drugs available for the treatment of SARS-CoV-2, we might consider
the possibility of using drugs that can suppress NF-κB and thereby limit the inflammatory response to the
virus pathogen18, 19. NF-κB is a ubiquitous and pleiotropic protein that regulate more than 400 genes
associated with the immune responses including inflammation, immunity, cell proliferation, differentiation,
and survival20, 21.

The canonical and non-canonical NF-қB signaling pathways differ with respect to downstream signaling
involved in stress responses and for the regulation of cell proliferation and apoptosis; this provides a means
for effective orchestration of inflammatory and immune responses22 and to modulate a number of different
disorders including the inflammatory basis of metabolic diseases, glycolysis, and oxidative metabolism23.
Therefore, NF-κB could be a major target for therapeutic intervention24.

Virus-induced NF-κB activity can promote or suppress viral activity24, 25, 26. The initial immune response
to viral infections includes the induction of numerous cytokines; TNF-α and IL-1β play key roles in the early
induction of inflammation and innate immune responses27. Viral infections are controlled directly by TNF-α.
Moreover, these cytokines induce the synthesis and release of additional cytokines, promote the expression
of cell adhesion molecules, and enhance the innate cytotoxicity of macrophages and neutrophils28. Moreover,
activated NF-қB cause cytokine storm29.
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Inflammatory Cytokines and Alveolar Epithelium

The bronchial epithelium is a primary target for respiratory viruses28. Alveolar epithelium plays an
important role in promoting cell barrier functions and strengthening cell-cell junctions against virus-
induced disruption of tight junctions. However, virus infected epithelial cells express cytokines that primarily
attract macrophages. Once recruited, the activated macrophages promote activation of adjacent endothelial
cells.　Infiltrating macrophages produce reactive oxygen species and nitric oxide30 that serve to damage the
barrier31. Macrophages also promote epithelial-cell apoptosis epithelial cells and mediate phagocytosis of
apoptotic cells31, 32, 33.

Synbiosis and Berberine

Microbes in the gut play a central role in modulating immune responses, inflammation, and angiogenesis31.
Microbial dysbiosis is an underlying factor in a variety of human disorders including metabolic dis-
eases (obesity, type 2 diabetes mellitus), respiratory tract infections, appendicitis, and cardiovascular
diseases34.The Gram-negative periodontal pathogen,Fusobacterium nucleatum plays an important role in
promoting dysbiosis35. Alkalinized stomach contents due toHelicobacter pylori facilitate passage of mi-
crobes; likewise, cigarette smoking36 promotes the proliferation of anaerobic F. nucleatum which stimulates
cells to produce proinflammatory cytokines, including IL-6, IL-8, and TNFα through TLRs37.

The actions of proinflammatory cytokines promote hypoxia, which results in the release HIF-1 that induces
angiogenesis. Hypoxia itself leads to the production of proinflammatory cytokines via the NF-κB /COX-2
pathway and thereby exacerbates local inflammatory conditions38.

Patients with underlying disorders that are caused by or related to dysbiosis are more susceptible to COVID-
19, as they are primed to exacerbate the cytokine storm produced by both dysbiosis and virus infection7.
Therefore, I suggest that synbiotics might be combined with thalidomide and celecoxib to generate an
effective therapeutic regimen.

The combination of thalidomide and celecoxib is important as it will serve to suppresses the production of
vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF) and COX-2, the three
key mediators of angiogenesis39.

Synbiosis promoted by berberine will serve to limit the production of proinflammatory cytokines and pro-
mote the secretion of short chain fatty acids that are beneficial toward positive systemic immunomodulation.
Berberine is an isoquinoline alkaloid purified from Japanese herb,Phellodendron amurense (known as KI-
HADA in Japanese) that is used for the treatment of microbe-associated diarrhea40. The anti-inflammatory
activity of berberine involves activation of AMP-activated protein kinase (AMPK)41 and inhibition of NF-κB
and AP-1 signaling pathways42. Berberine-mediated inhibition of these pathways limits both inflammation
and carcinogenesis due to down-regulation of cytokines and proinflammatory enzymes, including TNF-α,
IL-1β, IL-6, monocyte chemoattractant protein-1 (MCP-1), inducible nitric oxide synthase (iNOS), and
COX-243, 44. Patients with obesity, type 2 diabetes mellitus, hypertension, and/or a past history of acute
appendicitis or H. pylori infection must be carefully observed while under this regimen.

Treatment

At present, there is no evidence from randomized controlled trials that supports the use of any specific drug
regimen in patients with COVID-19. However, as I indicate here, there exist important common modalities
that link the virus-induced cytokine storm to malignancies, notably, both conditions result in overexpression
of proinflammatory cytokines and angiogenesis factors via the activation of NF-κB24.

Synbiotics

Notably among mild COVID-19 patients, it will be important to maintain a healthy immune response with
a favorable balance of intestinal microbes by introducing synbiotics which will address any issues associated
with dysbiosis in the gastrointestinal tract of the host. The mechanism of action of synbiotics suggests that

4
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supplementation acts to promote probiotic-mediated reductions in NF-κB activation and TNF-α production;
in these cases, synbiotics function as immunomodulatory agents 45, 46.

Berberine

Berberine can contribute to the maintenance of healthy gut homeostasis together with probiotics and
prebiotics47. Berberine is poorly water soluble and has low bioavailability; as such, it promotes few ad-
verse events when introduced to the gut48, 49 50.

Thalidomide

Thalidomide suppresses activated NF-κB that drives malignant cell proliferation, inflammation, angiogenesis,
and poorly-regulated immune responses.51,52,53,54. Thalidomide also has an immunomodulatory effect when
introduced together with the COX-2 inhibitor, celecoxib; together, these agents suppress the production of
proinflammatory cytokines such as TNF-α and interleukin-855 through inhibition of NF-κB by inhibiting the
activity of the IκB kinase56. Thalidomide may be a powerful drug for the treatment of severe COVID-19
pneumonia. Patients undergoing treatment with thalidomide must be under the careful supervision of the
System for Thalidomide Education and Prescribing Safety (S.T.E.P.S.) program57.

Celecoxib

COX-2 is constitutively overexpressed in association with acute and chronic inflammation and also in malig-
nant tumors58. Inflammation induced by pathogens and in response to disordered metabolic states such as
obesity is associated with expression of COX-259. Prostaglandin and proinflammatory cytokine production
is limited by COX-2 which results in a down-regulation of the cytokine storm60 and angiogenesis61 ,62 ,63. It
is reported that celecoxib modulates IκBα degradation and phosphorylation and suppresses IKK activity in
a dose-dependent manner64.

Conclusion

In conclusion, the combination of thalidomide and celecoxib together with an effort to maintain synbiosis
with berberine are all important factors that may help mitigate the SARS-CoV-2-induced cytokine storm.
In mild cases, one can focus on maintaining a healthy immune response via the administration of synbiotics.
In moderate-to-severe cases, immunomodulatory agents and synbiotics, including berberine, may help to
prevent the lethal cytokine storm60.

1. Thalidomide and Celecoxib

Low molecular weight immunomodulatory agents (<350 Da) can cross the cell membrane and limit activation
of NF-kB.

Thalidomide (200 mg/day), Celecoxib (400 mg/day)

2. Symbiotics and Berberine

Function by down-regulating proinflammatory cytokines
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