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Abstract

Suitable habitat fragment size, isolation, and distance from a source are important variables influencing community composition
of plants and animals, but the role of these environmental factors in determining composition and variation of host-associated
microbial communities is poorly known. In parasite-associated microbial communities, it is hypothesized that evolution and
ecology of an arthropod parasite will influence its microbiome more than broader environmental factors, but this hypothesis
has not been extensively tested. To examine the influence of the broader environment on the parasite microbiome, we applied
high-throughput sequencing of the V4 region of 16S rRNA to characterize the microbiome of 222 obligate ectoparasitic bat flies
(Streblidae and Nycteribiidae) collected from 155 bats (representing six species) from ten habitat fragments in the Atlantic Forest
of Brazil. Parasite species identity is the strongest driver of microbiome composition. To a lesser extent, reduction in habitat
fragment area, but not isolation, is associated with an increase in connectance and betweenness centrality of bacterial association
networks driven by changes in the diversity of the parasite community. Controlling for the parasite community, bacterial
network topology covaries with habitat patch area and exhibits parasite-species specific responses to environmental change.
Taken together, habitat loss may have cascading consequences for communities of interacting macro- and microorgansims.

Introduction

Deforestation has well-documented, devastating consequences on species survival [1], global warming [2],
and zoonotic disease emergence [3, 4]. This is particularly worrying in tropical forests, which lost 6% of
in their global area between 1990 and 2015 [5]. For example, the Atlantic Forest of Brazil, one of the
world’s most biodiverse regions, occupies only 28% of its original extent [6]. The consequences of this
habitat loss have primarily been examined in macroorganisms, but we do not yet understand the extent
to which microorganisms like bacteria, viruses, fungi, and single-cell eukaryotes respond to deforestation,
especially those microorganisms that are obligately associated with a living host. These microorganisms are
integral members of wildlife communities; changes in their presence or abundance may alter the function
of communities [7], the health of individuals and species [8], and the transmission of pathogens between
members of the community [9].
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Here, we examine the bacterial microbiome within ectoparasites of bats in forest fragments of varying area and
isolation as a model for testing the hypothesis that habitat loss affects host-associated microbial communities
(Figure 1A). We use island biogeography theory as a null hypothesis for the way we expect microbiomes
to behave if the environment is driving community composition instead of the host. This theory states
that small, isolated habitats will support low-diversity communities that are a subset of the species found
in larger source communities [10]. Historically, studies of the island biogeography of parasites have treated
hosts as suitable habitat, not the broader environment where the host and parasite live [11, 12]. There are
two limitations to this thinking: only an extremely small subset of parasites spend their entire lifespan on
the body of a single host individual, and this idea ignores the impact that the environment has on parasite
microbiomes that may subsequently impact parasite survival [13]. Hosts are not islands that perfectly
constrain their parasites, and parasites are not islands that perfectly constrain their microbes. Previous
research suggests that the environment influences microbiome composition following expectations of island
biogeography [14, 15]. In other cases, the environment does not dictate microbiome composition [16, 17].
Variation in the ability of the environment to filter members of the microbiome community is a reflection of
the complexity and diversity of microorganisms themselves [16, 18]. This diversity makes it difficult to tease
apart the impacts of host and environment on microbiome community composition.

A

Vertical and horizontal 
transmission

Bat phylogeny, 
ecology, and behavior

Roosting and foraging sites

Source of bacteria and climate may alter composition 
and/or function of bacteria

Habitat Patch Host Bat Parasitic Bat Fly Bat Fly Microbiome

REGUA

B

Figure 1: Sampling Design– Illustration of how environment (“habitat patch”), host bat, and parasitic bat
fly each influence the microbiomes within bat flies (A; see in-text description of line colors). Sampling map
constructed in QGIS v3.12 of REGUA area sites with fragments outside of REGUA labelled with the prefix
“F” and ordered from smallest (F1) to largest (F10; B), the extent of the sampled area is shaded in black
in the map at the top right, and the southern sites are mapped in relation to REGUA in the map on the
bottom right. Green area of the map on the left indicates forested habitat based on imagery from SOS Mata
Atlántica, while white areas are all non-forested habitat types.

Obligate parasites represent a convenient system within which to test potential drivers of microbiome varia-
tion for several reasons. The number of factors influencing variation may be more limited in the microbiomes
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of obligate parasites than in environmental microbiomes (e.g., soil or water) or microbiomes of free-living
host species. Unlike free-living host species, obligate ectoparasites have extremely specialized diets, and
their movements in the broader environment beyond their host are constrained by their dependence on a
host to survive. Ectoparasitic arthropods also have characteristically depauperate microbiome communities
compared to arthropods with diverse diets [19]. We can leverage the hierarchical nature of the host-parasite-
microbiome system to clearly delimit the microbiome community and restrict the sources of colonizing bac-
teria that may invade the parasite microbiome, hence providing a manageable system for testing hypotheses
about community composition and factors governing assembly of the microbiome.

In this study, we used bat flies (Diptera: Streblidae and Nycteribiidae), which are obligate blood-feeding
ectoparasites of bats, to assess community composition of parasite-associated microorganisms across a frag-
mented landscape in the Atlantic Forest. The microbiome of bat flies may be influenced by the parasitic
bat fly, the host bat, and the environment in several ways (Figure 1A). First, bat fly microbiomes may be
vertically inherited or horizontally acquired, as in other insect-microbiome associations (Figure 1A, yellow
line; [20]. Second, bat flies are host-specific and depend on their host for dispersal [21, 22], meaning that
the host bat may also influence the bat fly microbiome by altering the community of bat flies from which
bacteria may be horizontally acquired (Figure 1A, dark purple line). For example, bat maternity colonies
likely support more abundant parasite communities than bachelor colonies, because bat flies preferentially
parasitize female and young bats [23]. By supporting a smaller community of bat flies, bachelor colonies
may decrease the sources from which bat flies horizontally acquire bacteria, leading to host-sex-based va-
riation in the microbiome. Other aspects of bat phylogeny, ecology, and behavior may similarly influence
bat fly microbiomes, including roost preference, feeding guild, and host bat species identity. Third, habitat
patches support a specific bat community based on the availability of roosting and foraging sites, which
subsequently alters the diversity and abundance of bat flies [24]. These changes in the local bat fly com-
munity may be reflected in associated microbiomes. Lastly, the environment may directly impact bat fly
microbiome composition (Figure 1A, dark green line). Bat flies and all other members of the Hippoboscoidea
are adenotrophically viviparous, a condition in which a single egg hatches inside the female fly and the larva
feeds from milk glands until it is ready to pupate [21]. In the case of bat flies, the female fly leaves the
host bat to deposit the larva on the roost substrate [21], providing opportunities for the environment to act
as a source of bacteria for the microbiome of bat flies (Figure 1A). Beyond acting as a source of bacteria
for the microbiome, deforestation may increase the local temperature of small habitat patches and directly
impact arthropod-associated microbiomes due to thermal constraints of some bacteria [25, 26]. Using the
mosaic landscape of the Atlantic Forest, we can examine whether bat fly-associated microbiomes respond
to environmental change following island biogeography theory or whether the host bat and parasitic bat fly
more strongly determine bat fly microbiome composition.

Methods

Sample collection and landscape metrics

Bat flies were collected from bats in 11 habitat patches of the Atlantic forest of Brazil, State of Rio de Janeiro
from 18 December 2015 to 19 January 2017 (Table 1, Figure 1B, Table S1, Figure S1; [27], including a large
protected area of pristine and secondary forest belonging to the Reserva Ecológica de Guapiaçu (REGUA).
REGUA is the third largest remaining expanse of Atlantic Forest and was sampled in three separate locations.
Samples were additionally collected from three geographically distant habitat fragments (southern sites;
Figure 1B). Each site was sampled for 6 nights, 6 hours per night or at least 2 hours if there was heavy rain,
and between 7 and 10 ground-level mist nets were used to capture bats each night (approximately 60m of
nets were set per night; [27]. Bats were removed from mist nets and placed into freshly washed cloth bags
for holding and to minimize cross-contamination of ectoparasites. Each bat was searched for approximately
45s for ectoparasites, which were captured using featherweight forceps and immediately transferred to tubes
containing 92% ethanol, stored at room temperature overnight, and subsequently transferred to -20°C. Bats
were identified in the field following [28, 29]. All capture and handling methods followed recommendations

3



P
os

te
d

on
A

ut
ho

re
a

5
Ju

l2
02

2
|T

he
co

py
ri

gh
t

ho
ld

er
is

th
e

au
th

or
/f

un
de

r.
A

ll
ri

gh
ts

re
se

rv
ed

.
N

o
re

us
e

w
it

ho
ut

pe
rm

is
si

on
.

|h
tt

ps
:/

/d
oi

.o
rg

/1
0.

22
54

1/
au

.1
59

20
05

03
.3

59
15

03
2/

v2
|T

hi
s

a
pr

ep
ri

nt
an

d
ha

s
no

t
be

en
pe

er
re

vi
ew

ed
.

D
at

a
m

ay
be

pr
el

im
in

ar
y.

in [30]. Because many bat species were only captured in a subset of sampled sites, we selected bat flies from
the six most well-represented bat species for microbiome analysis.
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Table 1: Sampling of bats and their corresponding
flies used for sequencing. Columns labelled

"Total" include female and male flies and flies for
which we could not determine a sex due to

destruction of the specimen during sampling or
transit. We also used flies that had spurious host

associations to increase sample size of these
species. These are listed under "unknown host."

Bat Family Bat
Species

Bat
Sex

Bat
Fly
Fam-
ily

Bat
Fly

Species

Bat
Fly
Sex

F M To-
tal

F M To-
tal

Phyllostomidae Art-
ibeus
litu-
ra-
tus

36 14 50 Stre-
bli-
dae

Para-
tri-

chobius
longi-
crus

16 24 40

Car-
ollia
per-
spi-
cil-
lata

45 18 65 Stre-
bli-
dae

Paraeucten-
odes
sim-
ilis

0 2 2

Speis-
eria
am-
bigua

7 6 13

Stre-
bla
gua-
jiro

10 7 18

Tri-
chobius
duge-
sioides

3 1 4

Tri-
chobius
joblingi

9 12 27

Desmodus
ro-
tun-
dus

9 21 30 Stre-
bli-
dae

Ste-
bla

wiede-
manni

6 15 21

Tri-
chobius
fur-
mani

1 3 4

Sturnira
lil-
ium

30 6 39 Stre-
bli-
dae

Aspi-
doptera
fal-
cata

14 5 21

Megistopoda
prox-
ima

10 6 17

Vespertilionidae My-
otis
ni-
gri-
cans

6 21 27 Nyc-
teribi-
idae

Basilia
an-
der-
soni

2 2 4

Basilia
juquien-
sis

6 13 21

Basilia
lin-

dolphoi

2 0 2

My-
otis
ri-
par-
ius

7 4 11 Nyc-
teribi-
idae

Basilia
fer-
rug-
inea

1 2 3

Basilia
juquien-
sis

2 6 8

Unknown host Stre-
bli-
dae

Mete-
las-
mus
pseu-
dopterus

0 0 1

Para-
tri-

chobius
longi-
crus

0 1 1

Speis-
eria
am-
bigua

1 2 3

Stre-
bla

mirabilis

0 1 1

Tri-
chobius
duge-
sioides

1 0 1

Tri-
chobius
joblingi

3 4 7

Nyc-
teribi-
idae

Basilia
juquien-
sis

1 2 3

Table 1: Sampling of bats and their corresponding flies used for sequencing. Columns labelled “Total” include
female and male flies and flies for which we could not determine a sex due to destruction of the specimen
during sampling or transit. We also used flies that had spurious host associations to increase sample size of
these species. These are listed under “unknown host.” caption
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Bat flies were identified to species morphologically following [31–33]. Access to comparative morphological
material was limited, so we barcoded all samples using cytochrome oxidase I [34, 35] (Supporting informa-
tion; NCBI GenBank accession numbers OL847352-OL847639) and confirmed that individual flies identified
morphologically as conspecifics belonged to the same genetic clade.

Environmental variables were measured using ArcGIS 10.1 and Fragstats 3.1 using forest cover maps from
the Instituto Brasileiro de Geografia and SOS Mata Atlântica (www.sosmataatlantica.com.br; Table S1;
[36, 37]. Habitat fragment area (hectares), isolation (shortest distance between a fragment and its nearest
neighbor), distance from source (shortest straight line distance from focal point of a fragment to nearest
point of REGUA), perimeter-area ratio, proximity index within a 500m and 1000m buffer [36], and forest
cover within a 500m and 1000m buffer were calculated. REGUA was treated as the source because it is the
largest, most biodiverse patch of forest in the study region. Perimeter-area ratio, proximity index, and forest
cover were correlated with habitat patch area, isolation, and distance from source, so only these latter three
landscape variables were used for downstream analyses. Area, isolation, and distance from source were log2
transformed to prevent extremely large or extremely isolated fragments from unduly impacting correlation
analyses.

DNA extraction and 16S rRNA metabarcoding

DNA was extracted from 288 bat flies following a wash step and proteinase K digestion using the ZymoBIO-
MICS DNA Miniprep Kit (Zymo Research, Irvine, CA, USA) in a Biosafety Cabinet, Class 2 (Supporting
information). One negative control was used for each extraction kit to control for laboratory and kit con-
tamination. Negative controls were pooled for amplification. Extracted DNA was aliquoted into 96-well
plates for amplification of the hypervariable region 4 (V4) of 16S rRNA following well-documented proce-
dures outlined by the Earth Microbiome Project and the Illumina 16S Metagenomic Sequencing Library
Preparation guidelines (Supporting information) [38–41]. Of 288 initial libraries, 77 libraries required an
additional concentration step to reach the minimum 2nM concentration required for sequencing (Supporting
information). Low concentration and high concentration libraries were pooled to reach a concentration of
2nM and sequenced using an Illumina MiSeq v3 Reagent Kit with 2x300bp reads and 18% PhiX spike-in on
a MiSeq NGS platform (Illumina, San Diego, CA, USA) at the Bioinformatics and Computational Genomics
Laboratory (Hunter College, City University of New York, New York, NY, USA).

De-mulitplexing, Quality Filtering, and Phylogeny Reconstruction

Samples were demultiplexed using the MiSeq Reporter Generate FASTQ workflow. Primer sequences were
trimmed from forward and reverse sequence reads using cutadapt v.1.4.2 [42]. Following de-multiplexing,
samples were processed using the QIIME2 v.2018.2 pipeline (https://docs.qiime2.org/2018.2) [43–47]. The
GreenGenes Database, v.13.5, trimmed to only the 16S rRNA V4 region, was used as a reference to train
a naive Bayes q2-feature-classifier for taxonomic identification of amplicon sequence variants (ASVs) [48].
The GreenGenes Database is not able to discern between “Candidatus Aschnera,” the primary symbiont of
some nycteribiid flies [49, 50], and Arsenophonus, possibly because the V4 fragment of 16S rRNA does not
provide enough resolution. To confirm that ASVs of “Candidatus Aschnera chinzeii” were not misidentified,
we mapped ASVs identified as Arsenophonus and “Candidatus Phlomobacter” against reference sequences
from the Silva Ribosomal Database (Supporting information; [51–53]. Even though the GreenGenes and
Silva Databases distinguish between “Candidatus Phlomobacter” and Arsenophonus, phylogenetic evidence
indicates that “Candidatus Phlomobacter” is actually a clade nested within Arsenophonus [54, 55].

Contamination is ubiquitous in microbiome studies and especially problematic for low biomass samples [56–
58]. To reduce the impact of contaminants, several filtering steps were performed (Supporting information).
Briefly, we removed bacteria present in negative controls that were likely contaminants (i.e., low relative
abundance and low prevalence in samples); known laboratory contaminants [58]; bacteria classified as mito-
chondria, chloroplast, or Archaea; bacteria unclassified beyond phylum; and contaminants identified by the
R package decontam v1.14.0 [60, 61]. Finally, the data were filtered by two coverage depths: 1) all ASVs
present at <0.01% relative abundance within a sample were eliminated from that sample, and 2) all ASVs
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present at <0.1% relative abundance were eliminated from that sample. At a minimum within-sample rela-
tive abundance of 0.01%, spurious ASVs may remain in the dataset, but at a minimum relative abundance
of 0.1%, rare ASVs may be incorrectly excluded [62–64].

As low concentration libraries were used to dilute high concentration libraries prior to sequencing, sequencing
effort across samples is not even. To assess the bacterial diversity captured by low concentration libraries
compared to high concentration libraries, the ggrare function was used from the phyloseq-extended suite
of tools, which wraps the function rarefy from the package vegan v.2.5.4 (https://github.com/mahendra-
mariadassou/phyloseq-extended/blob/master/R/graphical_methods.R) [65].

Data visualization, Ordination, and PERMANOVA

We constructed bar plots of the relative abundance of bacterial genera in each bat fly species
(ggplot2, v.3.1.0) [66, 67]. All genera with a relative abundance <1% of the total reads in a bat fly species
were condensed into a “Low Abundance” group. Principal coordinates analysis (PCoA), implemented in
phyloseq v.1.38.0, was used to visualize differences in microbial communities captured by Euclidean distance
between phylogenetic isometric log-ratio-transformed relative abundances to account for the compositional
nature of metabarcoding data (philr v.1.20.0, [66–71]; Supporting information).

To test whether landscape variables, parasite variables, or host bat variables were correlated with microbial
community composition (i.e., ASV composition and relative abundance), we used PERMANOVA on indi-
vidual variables and Sequential (Type I) sum of squares on pairs of variables, each with 9,999 permutations
(adonis command in the R package vegan) [72, 73]. Homogeneity of dispersion of each group of microbiomes
was confirmed using betadisper permuted 999 times with permutest (R package vegan).

When sampling is uneven, sequential sum of squares is sensitive to the order in which variables appear in
the equation. To overcome this limitation, we examined the impact of landscape within the four most well-
sampled bat fly species, excluding the southern sites and only considering data filtered using a threshold of
0.01% relative abundance per sample. We ordinated samples within these species separately from the rest
of the data and estimated variation explained by landscape variables using PERMANOVA on individual
variables.

To examine the impact of habitat patch area and isolation on taxon richness, we constructed boxplots of
ASV richness by sampling site, mimicking standard island biogeography plots of richness by area, isolation,
and distance to the source. We used a Kruskal-Wallis test to assess whether mean richness was significantly
different among sampling sites. Spearman correlation was used to examine ASV richness across continuous
ranges of ranked area, isolation, and distance from a source.

Network Reconstruction and Analysis

Bacterial association networks are a way to visualize correlated changes in relative abundance of bacteria
across a given sample set. These networks examine microbiomes at the taxon scale, providing a valuable
additional analysis to ordination and PERMANOVA, which compare microbiomes at the community scale.
While networks provide a useful tool for further examination of microbiomes, the limitations of networks
are still being explored and interpretation of networks should be mindful of known caveats (e.g., bias caused
by differing sample sizes). Here, we used networks to explore whether the environment or parasite influence
microbiome community structure, taking care to examine the role of sample size in network inference. If the
environment drives microbiome composition, then we expect that networks will exhibit conserved changes
in structure as habitat patches decrease in area or increase in isolation. If parasite species identity impacts
microbiome composition, we expect that network structure will be specific to parasite species but will not
vary with habitat patch area or isolation.

Networks were reconstructed using SPIEC-EASI v.1.1.2 using the Meinshausen and Buhlmann method
[74]. Nodes indicate individual bacterial ASVs and edges (i.e., connections between nodes) indicate a linear
relationship in the abundances of linked nodes. SPIEC-EASI transforms the relative abundance of each
ASV using centered log-ratios and then estimates an inverse covariance matrix by solving a regularized

7
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linear regression for each node to determine its conditional independence within the graph [74]. Two nodes
are conditionally independent when their abundances are statistically independent given the abundances of
all other nodes in the network. The l tuning parameter is used to penalize linear regressions and controls
the sparsity of the final network. To select the sparsity of the final network, SPIEC-EASI builds graphs
from repeated subsamples of the data (i.e., Stability Approach to Regularization Selection, [75] and selects
the l value that yields the greatest stability of edge incidences across subsampled graphs. The SPIEC-EASI
method is distinct from network estimations based on correlation or covariance, which rely on pairwise
comparisons and may incorrectly infer an edge between indirectly linked nodes by ignoring the influence of
other nodes in the network.

Two types of networks were reconstructed: habitat patch networks estimated from all samples within a
single sampling site (1 network per site), and species-specific networks estimated from well-represented
parasite species clustered by their occurrence within or outside of REGUA (1 network of within-REGUA
samples and 1 network of outside-REGUA samples for each parasite species; Supplemental information). The
lambda.min.ratio parameter was adjusted until network stability was within 0.002 (habitat patch networks)
or 0.003 (species-specific networks) of the target 0.05 threshold, then nlambda was set to either 20, 30, or
50 [74, 75]. To examine the impact of sample size on habitat patch networks, we leveraged the subsampling
scheme within SpiecEasi to test whether the proportion of highly confident edges (i.e., edges present in at
least 80% of sampled networks) was correlated with sample size using the getOptMerge function.

Characteristics of networks provide information about the robustness of a community and the function of
members of a community [76]. Leading eigenvector modularity of each network and betweenness centrality of
each node were estimated in the R package igraph, v.1.2.11 [77–80]. Modularity is a measure of the structure
of a network, where higher modularity indicates nodes are grouped into tightly interacting neighborhoods
with few interactions occurring outside of this neighborhood [81]. Leading eigenvector modularity is an
optimization method of community detection with known limitations, despite being widely used [82]. It is
unclear how this method performs on sparse, disconnected networks, but modularity estimates may be noisy
or difficult to resolve [83]. Betweenness centrality measures the number of times the shortest path between
all pairs of nodes in the network travel through a given node, giving an estimate of the influence of a node
on the structure of the network [81]. Network connectance is the proportion of realized edges relative to
the total possible number of edges [81]. We examined the correlation of modularity, betweenness centrality,
and connectance with landscape variables and used Mann-Whitney U and Kruskal-Wallis tests to test for
significant differentiation.

Modularity and betweenness centrality are impacted by network size (i.e., number of edges) and shape (degree
distribution; [81], making comparisons of summary statistics between networks inaccurate. To account for
variation in network size and shape in habitat patch networks, we used several standardization techniques to
compare networks: 1) centered modularity compared to mean modularity of patch-specific null distribution;
2) Z-score modularity compared to a patch-specific null distribution; 3) Z-score modularity compared to the
mean modularity of measured networks (see Supporting information for detail on null distribution).

As a size-independent method of examining variation between networks, we used the graphlet correlation
distance from [84, 85] to ordinate the networks as individual points on a plot using the R packages pulsar
v.0.3.5 and orca v.1.1-1 [86, 87]. The graphlet correlation distance breaks up a network into up-to 4-node
graphlets (i.e., all the possible ways that up to 4 nodes can be wired) and counts the number of times
each node plays a specific role within a graphlet (i.e., orbit). For example, within a 3-node graphlet where
two “leaf” nodes interact with a central node but not each other (i.e., a line of 3 nodes), the “leaf” nodes
belong to one orbit and the central node belongs to the second orbit in this graphlet. Using these orbit
counts, we estimate the Spearman correlation of orbits across all nodes. Following [88, 89], the Euclidean
distance between these correlations can be used to ordinate the networks and more clearly visualize their
differentiation. We used k-means clustering to distinguish groups of networks in ordination space.

8



P
os

te
d

on
A

ut
ho

re
a

5
Ju

l2
02

2
|T

he
co

py
ri

gh
t

ho
ld

er
is

th
e

au
th

or
/f

un
de

r.
A

ll
ri

gh
ts

re
se

rv
ed

.
N

o
re

us
e

w
it

ho
ut

pe
rm

is
si

on
.

|h
tt

ps
:/

/d
oi

.o
rg

/1
0.

22
54

1/
au

.1
59

20
05

03
.3

59
15

03
2/

v2
|T

hi
s

a
pr

ep
ri

nt
an

d
ha

s
no

t
be

en
pe

er
re

vi
ew

ed
.

D
at

a
m

ay
be

pr
el

im
in

ar
y.

Results

Of 228 prepared DNA libraries 222 libraries were used for downstream analysis following quality
filtering (NCBI SRX13352735-13352962; BioProject PRJNA786937). Filtered libraries ranged in sequencing
depth from 2,983 to 66,164 reads. A total of 1,155 ASVs were detected when a 0.01% filtering threshold was
applied, while 526 ASVs were found under a 0.1% filtering threshold. Rarefaction curves showed a plateaued
asymptote for each library and low concentration libraries fell within the range of ASVs detected in high
concentration libraries generated from the same parasite species (Figures S2 and S3).

Composition of sampled bat fly microbiomes

Plots of relative abundance of bacterial genera showed a stark difference between the microbiome communities
in the parasite families Nycteribiidae and Streblidae (Figure 2A; Figure S4). While nycteribiid bat flies had
high relative abundances of Wolbachia and Bartonella, streblid bat flies were dominated by Arsenophonus.
We did not detect “Candidatus Aschnera chinzeii” and Arsenophonus (including “Candidatus Phlomobacter”)
was detected in low relative abundance in nycteribiid bat flies. Almost no Wolbachia was detected in streblid
bat flies. Bartonella was present in some streblid bat flies, but at much lower relative abundance than
in nycteribiid bat flies. Mycoplasma was also detected at higher relative abundances in streblid bat flies
compared to nycteribiid flies. The flies in southern fragments were dominated by Wolbachia and Bartonella,
likely due to the abundance of nycteribiid flies in these fragments (Figure S5).

Figure 2: Bat Fly Microbiome Composition– Relative abundance of each bacterial genus summed across
repeated samples of each parasite species (A). Colors indicate different bacterial genera and bars represent
each parasite species. The black box surrounds the nycteribiid bat flies. Low abundance bacteria were those
comprising less than 1% relative abundance in each species. Unknown bacteria could not be identified to
genus using the GreenGenes database. Principal Coordinates Analysis on the Euclidean distances between
philr-transformed microbial abundances of the complete dataset (B). Colors represent parasite species.

Variation in the microbiome in response to parasite, bat host, and environment

Ordination of microbiomes and PERMANOVA indicated that the parasite (i.e., parasite family and species),
the host bat (i.e., bat family, bat sex, and bat individual), and the environment (i.e., region and sampling
site) significantly contributed to bat fly microbiome variation (Table 2; Figure 2B and Figure S6). Other vari-
ables significantly contributed to microbiome community differentiation (i.e., bat feeding guild, bat species,
protection status of sampling site, habitat patch area, and isolation), but violated PERMANOVA’s assump-
tion of homoscedasticity. Parasite species, parasite family, bat feeding guild, bat family, bat species, and
sampling site had the largest effect sizes, however many of these variables are correlated with each other.
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Table 2: Univariate PERMANOVA results indicating the
p-value (top; *=p<0.05, **=p<0.01, ***=p<0.0), R2
(middle) and p-value for homoscedasticity (bottom,
significance indicates violation of the assumptions of

PERMANOVA). Results are provided for the full dataset
(all sites at 0.01% threshold for bacterial relative

abundance per sample), the strictly filtered dataset (all
sites at 0.1% threshold for bacterial relative abundance),
the samples collected from REGUA area sites (excluding
southern sites), and the samples collected from fragments

outside of REGUA (excluding southern sites). Grey
shading indicates variables that significantly differentiated

microbiomes and did not violate the assumptions of
homoscedasticity.

All
Lo-
cal-
i-
ties

All Lo-
calities,
Strictly
Filtered

REGUA
Area

REGUA
Area
Unpro-
tected

Parasite Variables Para-
site

Family

0.0*** 0.0*** 0.0*** 0.0***

0.18 0.22 0.15 0.13
0.02* 0.06 0.04* 0.09

Para-
site

Species

0.0*** 0.0*** 0.0*** 0.0***

0.5 0.5 0.5 0.52
0.12 0.13 0.08 0.06

Para-
site
Sex

0.39 0.29 0.08 0.15

0.01 0.01 0.01 0.01
0.05* 0.01* 0.0** 0.0**

Bat Variables Bat
Feeding
Guild

0.0*** 0.0*** 0.0*** 0.0***

0.18 0.21 0.15 0.17
0.0** 0.0** 0.0** 0.01*

Bat
Family

0.0*** 0.0**** 0.0*** 0.0***

0.16 0.2 0.12 0.13
0.02* 0.09 0.04* 0.09

Bat
Species

0.0*** 0.0*** 0.0*** 0.0***

0.27 0.28 0.26 0.28
0.0** 0.0** 0.0** 0.0**

Bat
Sex

0.0*** 0.0*** 0.03* 0.22

0.02 0.02 0.01 0.01
0.62 0.14 0.87 0.39

Indi-
vidual
Bat

0.0** 0.0** 0.0*** 0.04*

0.01 0.01 0.02 0.02
0.34 0.46 0.32 0.5

Landscape Variables Region 0.0*** 0.0***
0.05 0.05
0.47 0.33

Protec-
tion

Status

0.0***

0.02
0.03*

Area 0.0*** 0.46
0.02 0.01
0.02* 0.06

Log2
Area

0.0*** 0.52

0.02 0.01
0.03* 0.05*

Isola-
tion

0.1 0.04*

0.01 0.02
0.03* 0.04*

Log2
Isola-
tion

0.01* 0.05*

0.01 0.01
0.03* 0.04*

Dis-
tance
to

Source

0.27

0.01
0.05

Log2
Dis-
tance
to

Source

0.63

0.01
0.05

Sam-
pling
Site

0.0*** 0.0*** 0.0*** 0.0**

0.14 0.15 0.11 0.11
0.07 0.01* 0.02* 0.04*

Table 2: Univariate PERMANOVA results indicating the p-value (top; *=p<0.05, **=p<0.005,
***=p<0.0005), R2 (middle) and p-value for homoscedasticity (bottom, significance indicates violation of
the assumptions of PERMANOVA). Results are provided for the full dataset (all sites at 0.01% threshold for
bacterial relative abundance per sample), the strictly filtered dataset (all sites at 0.1% threshold for bacterial
relative abundance), the samples collected from REGUA area sites (excluding southern sites), and the sam-
ples collected from fragments outside of REGUA (excluding southern sites). Grey shading indicates variables
that significantly differentiated microbiomes and did not violate the assumptions of homoscedasticity.
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Sequential sum-of-squares with free permutation indicated that parasite species significantly impacted mi-
crobiome community structure, consistent with single variable PERMANOVA (Table 3). Habitat patch
protection status and region also significantly contributed to microbiome variation. In the four most well-
sampled species, none of the test variables significantly explained microbiome variation without violating
PERMANOVA assumptions (Table S2; Figure S7).

11



P
os

te
d

on
A

ut
ho

re
a

5
Ju

l2
02

2
|T

he
co

py
ri

gh
t

ho
ld

er
is

th
e

au
th

or
/f

un
de

r.
A

ll
ri

gh
ts

re
se

rv
ed

.
N

o
re

us
e

w
it

ho
ut

pe
rm

is
si

on
.

|h
tt

ps
:/

/d
oi

.o
rg

/1
0.

22
54

1/
au

.1
59

20
05

03
.3

59
15

03
2/

v2
|T

hi
s

a
pr

ep
ri

nt
an

d
ha

s
no

t
be

en
pe

er
re

vi
ew

ed
.

D
at

a
m

ay
be

pr
el

im
in

ar
y.

Table 3: Sequential Sum-of-Squares where the impact of each
variable is considered after the impact of parasite species is
accounted. Grey shading indicates significant impact without
violating assumptions of PERMANOVA. The PERMANOVA
p-value (top; *=p<0.05, **=p<0.01, ***=p<0.0), R2 (middle)
and p-value for homoscedasticity (bottom, significance indicates
violation of the assumptions of PERMANOVA) are provided for

each dataset.
All
Lo-
cal-
ities

All Lo-
calities,
Strictly
Filtered

REGUA
Area

REGUA
Area
Unpro-
tected

Parasite Species 0.0*** 0.0*** 0.0*** 0.0***
0.5 0.5 0.48 0.53
0.11 0.14 0.08 0.06

Bat Species 0.52 0.52 0.54 0.58
0.01 0.01 0.02 0.02
0.0** 0.01** 0.0*** 0.0**

Bat Sex 0.16 0.23 0.22 0.33
0.0 0.0 0.0 0.0
0.61 0.14 0.86 0.41

Individual Bat 0.22 0.24 0.08 0.66
0.0 0.0 0.0 0.0
0.33 0.46 0.28 0.52

Region 0.01** 0.01*
0.01 0.01
0.46 0.32

Log2 Area 0.03* 0.53
0.01 0.0
0.03* 0.11

Log2 Isolation 0.23 0.29
0.0 0.01
0.04* 0.11

Log2 Distance to Source 0.4
0.0
0.12

Protection Status 0.02*
0.01
0.06

Sampling Site 0.05
0.05
0.09

Table 3: Sequential Sum-of-Squares where the impact of each variable is considered after the impact of
parasite species is accounted. Grey shading indicates significant impact without violating assumptions of
PERMANOVA. The PERMANOVA p-value (top; *=p<0.05, **=p<0.005, ***=p<0.0005), R2 (middle) and
p-value for homoscedasticity (bottom, significance indicates violation of the assumptions of PERMANOVA)
are provided for each dataset.

Bacterial taxon richness across habitat patches
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While the three sampled sites within REGUA had the highest ASV richness, there was no
pattern of decreasing ASV richness with decreasing area, increasing isolation, or increasing distance from
a source (Spearman; Area: rho=0.0613, p-value=0.4031; Isolation: rho=0.0020, p-value=0.9787; Distance
to Source: rho=-0.0564, p-value=0.4421; Figure 3). Median bacterial ASV richness fell between 6 and
11 for each sampled parasite individual, but the range of ASV richness per fragment varied dramatically.
There was no significant difference between sampling sites in mean ASV richness (Kruskal-Wallis chi-squared
statistic=17.856, p-value=0.1201).
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Figure 3: Taxon Richness by Site– Box and whisker plot of the bacterial ASV richness in each sampling site
in order of decreasing area (A), increasing distance from a source (B), and increasing isolation (C).
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Bacterial association networks

The connectance and betweenness centrality of habitat patch networks varied with habitat patch effects,
but modularity did not. Network connectance was significantly lower in REGUA patches than in networks
constructed for sites outside of REGUA (Figure 5B; Wilcoxon Rank Sum test, p-value=0.012). Betweenness
centrality was higher in networks for patch F4, F2, and F1 (i.e., smallest patches), corresponding with their
band-like network structure (Figure 4), and centrality was significantly different between networks from large
and small patches (Figure 5c; Kruskal-Wallis chi-squared statistic = 300.23, p-value < 2.2 x 10-16). Raw and
Z-score modularity of habitat patch networks did not significantly differ between REGUA and non-REGUA
sites, but tended to be lower in patches outside REGUA (Figure S8). Z-score modularity using the measured
networks for standardization did not control for network size and shape, and mimicked the pattern exhibited
by raw modularity. Modularity measures standardized by null distributions did not support patterns of
decreasing modularity with decreasing patch area (Figure S8).
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Figure 4: Bacterial Association Networks– Networks for each sampling site are ordered by decreasing habitat
patch area, with the largest sites in the top left and the smallest sites in the bottom right. The size of the
nodes in the networks corresponds to the z-score betweenness centrality of that node scaled by the range of
betweenness centralities detected within the network.

In habitat patch networks reconstructed for the three REGUA sites and large patches, low-abundance
bacteria had higher betweenness centrality than other bacteria in these networks, acting to connect graph
neighborhoods (Figure 4). As habitat patch networks became less modular with decreasing habitat patch
area, nodes with high betweenness centrality were typically low-abundance bacteria and bacteria in the
genera Arsenophonus (including Candidatus Phlomobacter), Wolbachia, and Bartonella.

While there was no impact of sample size (i.e., number of parasite individuals) on ASV richness in each
network, a greater number of samples may allow detection of more edges between nodes and change the
size of a network. Sample size was lowest in small fragments and highest in large fragments, with the
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exception of F4 which has intermediate area, isolation, and distance to source measurements, but supports
a high diversity of parasites. We did not detect a significant correlation between sample size and network
modularity (Spearman rho=0.3945, p-value=0.229). Using the subsampling scheme within SpiecEasi, we
did not detect a correlation of sample size and proportion of high-confidence network edges (Spearman
rho=0.0275, p-value=0.936).

Using ordinations of graphlet orbits as a size-independent comparison of networks [84, 88, 89], habitat patch
networks vary with habitat area (Figure 5D) and species-specific networks are distinct within and outside of
REGUA (Figure S8). Principal coordinate axis 2 corresponded well to decreasing habitat area, with large
fragments positioned higher on the access and gradually decreasing in patch area lower on the axis. Principal
coordinate axis 1 primarily illustrated variation in networks from patches F8 and F5. This variation does
not correspond with environment, parasite, or bat variables. K-means clustering with 3 groups separated
large habitat patch networks (REGUA networks, F10, F9, F7) from small patch networks (F4, F2, F1), and
F8 and F5 formed a unique cluster. Species-specific networks also indicated distinctions between within-
REGUA and outside-REGUA networks. All within-REGUA networks occupied unique ordination space
from outside-REGUA networks within species.

Figure 5: Summary Statistics of Network Plots– Z-score modularity of habitat patch networks between
REGUA and outside-REGUA sites (A), network connectance of habitat patch networks in REGUA and
outside-REGUA sites (B), vertex betweenness centrality by fragment decreasing by habitat patch area (C),
principal coordinates analysis of the distribution of network orbits for habitat patch networks (D). Dark green
corresponds to REGUA sites and lime green corresponds to sites outside of REGUA for which networks were
reconstructed.

Discussion

Our research builds upon previous evidence that the environment influences microbiome compo-
sition in addition to host factors [90–93]. However, previous studies have been primarily conducted on the
microbiomes of free-living hosts or microbiomes within a single host species, preventing the examination of
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how the environment might impact communities of interacting macro- and microorganisms. Contrary to
expectations, habitat loss did not lead to a decrease in bacterial diversity. Instead, habitat loss impacted
bacterial community structure, which includes diversity and relative abundance. The interactions of bat flies
with the broader environment are filtered through their obligate associations with host bats, yet the signal
of environmental change is also detected in the composition of bat fly microbiomes. This indicates that en-
vironmental degradation may have cascading consequences through hierarchical communities of interacting
organisms.

Parasite and environment as drivers of microbiome composition

Parasite species identity is the strongest predictor of microbiome composition (Tables 2 and 3; Figure 2B).
Specificity of arthropod microbiomes has been previously found in tsetse flies (Glossinidae; [94], which are also
members of the Hippoboscoidea. That microbiome composition shows such a strong signal of parasite species
identity indicates that either more of the microbiome is maternally inherited than previously understood,
or that even non-maternally inherited bacteria may be maintained through life history traits (e.g., host bat
associations, microclimatic preference; horizontal transmission of bacteria).

Habitat patch area and protection status, but not degree of isolation or distance to source, have a measurable
effect on the microbiome of bat flies, but less explanatory power than parasite species (Tables 2 and 3;
Figures 3, 4, 5). While bacterial ASV richness does not vary following expectations of island biogeography
theory (Figure 3), examining both relative abundance and diversity of bacteria using PERMANOVA and
bacterial association networks provided a clear statistical signal that habitat patch area (measured as area
and protection status) is correlated with microbiome composition (Table 3; Figure 5). Other measures
like isolation and distance to source had no impact on bat, parasite, or microbiome communities, likely
because bats can easily move between these patches. However, even when habitat patches are proximal,
fragmented landscapes in the Atlantic Forest have been previously shown to significantly impact bat-plant
and bat-ectoparasite interaction networks [95].

Even though changes in the bat and parasite communities explain most of the variation in microbiome
association networks, the environment may also directly impact bat fly microbiome communities. The
structure of habitat patch networks covaried with habitat area and parasite species-specific networks were
consistently different within REGUA compared to outside REGUA. In addition, parasite and bat species
diversity did not always correspond to a specific network structure. REGUA and fragments F10 (the largest
fragment outside of REGUA, 9 bat fly species) and F4 (8 bat fly species) have the greatest parasite richness,
but F4 is intermediate in area and isolation. Networks from patch F4 consistently cluster with other networks
from small patches (Figure 5C,D), despite having similar parasite species richness to large fragments. That
patch F4 has high parasite species richness but similar bacterial association networks to smaller fragments
(i.e., lower parasite species richness), suggests that bat and parasite community composition does not solely
explain microbiome variation. The environment may also directly drive composition of parasite-associated
microbiomes.

Implications of changes in bacterial network structure in response to environment

Bacteria with high betweenness centrality may act as hub species that maintain the stability of a network
[19, 92, 93]. In small fragments, Arsenophonus, Wolbachia, and Bartonella had high betweenness centrality,
but these bacterial taxa were less central to the networks from large fragments despite maintaining high
relative abundance in flies at these sites. Decreasing betweenness centrality may be indicative of changing
interactions between bacteria in response to environmental perturbations. Bacteria of blood-feeding insects
play an important role in vector competence in insects [19, 96, 97]. For example, in tsetse flies, primary bac-
terial endosymbionts in the genus Wigglesworthia impede the invasion of trypanosome parasites by assisting
host defenses and subsequently decrease the competence of tsetse flies to vector these harmful parasites to
downstream hosts including humans [98]. As bat flies are important arthropod vectors of bat pathogens
[99], changes in the structure of their microbiomes in response to habitat loss may have implications for the
disease ecology of arthropod vectored pathogens in bats.
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Modules may delimit groups of bacteria with specific functional specializations and/or groups that respond
in similar ways to environmental variables [99, 100]. Higher modularity may protect a community of free-
living organisms from invading pathogens, because a pathogen would be isolated to one module within the
community (i.e., diversity-stability debate) [100, 101]. This hypothesis may be applicable to bacterial net-
works if pathogens are limited in transmission by direct competition with endogenous bacteria. However,
high modularity in bacterial association networks may also reflect the absence of microbiome-mediated host
defenses against pathogen invasion. If we revisit the tsetse fly example, Wigglesworthia and trypanosome
parasites would share an edge in a microbe association network because Wigglesworthia abundance and
prevalence is associated with low trypanosome abundance and prevalence mediated by host defenses. The
absence of this interaction in a network might indicate that Wigglesworthia-induced host response to try-
panosome invasion is impaired by other microbes in the network (e.g., priority effects) or other aspects of host
health. Trypanosome transmission would be less regulated in this instance, but modularity would be high
as long as trypanosome abundance and prevalence did not lead to changes in the abundance or prevalence
of other microbes. In the case of bat flies, the consequences of more isolated modules for the functionality
and stability of the microbiome are unclear and merit future investigation.

The missing primary symbionts of Brazilian nycteribiid flies

Arsenophonus has been previously identified as a primary symbiont of streblid bat flies and the closely-
related “Candidatus Aschnera chinzeii” is the hypothesized primary symbiont of some nycteribiid bat flies
[49, 50, 102–104]. The high relative abundance and prevalence of Arsenophonus in all streblid bat flies
sampled in our study is consistent with the hypothesis that Arsenophonus acts as the primary symbiont
in the family Streblidae. However, it is unlikely that Arsenophonus or “Candidatus Aschnera chinzeii” are
acting as the primary symbionts of the nycteribiid species that we sampled (Figure 2A). Previous studies
that have identified “Candidatus Aschnera chinzeii” as the primary symbiont in nycteribiid flies examined
species that are geographically limited to Africa, Asia, Europe, and Oceania [102, 103]. Species within
Basilia, the only globally distributed bat fly genus [105, 106], have varying symbiont associations [49, 50,
103, 104]. Only one previous study has examined symbionts of Basilia from The Americas [107]. This
study detected an Arsenophonus variant in two individuals of Basilia boardmani (Nycteribiinae; restricted
to North America) that was distinct from “Candidatus Aschnera chinzeii” and from Arsenophonus detected
in other nyteribiid species. In the Basilia species sampled from The Atlantic Forest, of which 3 are limited
to South America (B. andersoni, B. juquiensis, B. lindolphoi) and 1 is found in North and South America
(B. ferruginea), we detect no “Candidatus Aschnera chinzeii” and low relative abundance or an absence of
Arsenophonus (including “Candidatus Phlomobacter”). These findings in combination with previous studies
suggest that neither “Candidatus Aschnera chinzeii” nor Arsenophonus act as the primary symbiont of the
sampled Basilia species. It may be that Wolbachia and Bartonella both have high relative abundance in
nycteribiid bat flies because they are acting as primary or facultative symbionts, or because they are acting
as a reproductive parasite and pathogen, respectively [107–113]. If the latter is true, the primary symbiont
may be one of the less abundant bacteria or another microbe not detected by 16S rRNA sequencing (e.g.
fungi; [114].

Summation

Understanding of community structure and function must be extended beyond an exclusively macroorganis-
mal view to include the layers of microorganisms that also participate in defining an ecological community.
By examining the hierarchical interactions between bats, bat flies, and bat fly bacterial microbiomes within a
largely deforested landscape, we attempted to more accurately characterize the consequences of environmen-
tal change for a wildlife community. Reduced fragment area led to generally less diverse and less abundant
bat fly communities, which led to less modular bacterial association networks, but without a decrease in
bacterial ASV richness. Our data highlight the importance of considering ecological responses of microor-
ganismal taxa. Future research is needed in order to capture the full impact of continuing deforestation and
habitat change on ecological communities.
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Supplementary Information for 
 

Cascading effects of habitat patch area on ectoparasite communities and their associated 
bacterial microbiomes 

 
SUPPLEMENTAL METHODS 

 
DNA extraction 

Flies were separated into individual tubes and washed twice by suspending in 500μL 
phosphate-buffered-saline (1x) and vortexing to dilute exoskeletal bacterial contamination. 
Following washing, the abdomen of each fly was separated from the thorax using sterile forceps 
and proteinase K was used to digest soft tissue from the entire fly overnight following 
manufacturer instructions (55°C). Extractions followed manufacturer protocol with the following 
exceptions: samples were bead beat in a Disruptor Genie for 20 minutes at 3000 rpm (max 
speed); following bead beating, samples were stored at -80°C following manufacturer guidelines; 
sterile water used for elution of DNA from the filter was heated to 55°C; the elution incubation 
step was increased to 5 minutes; and the elution step was repeated using the first eluate to re-
hydrate the column filter.  
 
16S rRNA Library Preparation: Amplification and Indexing Reactions 

Earth Microbiome Project primers were employed with Illumina overhangs for barcoding 
Primers 515f 
(TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGGTGYCAGCMGCCGCGGTAA) and 
806r 
(GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGGACTACNVGGGTWTCTAAT) 
with Illumina overhang were used for amplification of the V4 region of 16S rRNA (Gilbert et al. 
2010; Gilbert, Jansson, and Knight 2014; Apprill et al. 2015; Parada, Needham, and Fuhrman 
2016). Amplicon PCRs were performed in triplicate 25μL final reaction volumes containing 
10μL 5PRIME HotMasterMix (final concentrations of 1U Taq DNA Polymerase, 45mM Cl, 
2.5mM Mg2+, 200μM of each dNTP; Quantabio, Beverly, MA,USA), 5μL of each primer at 
1μM concentration (final concentration of 0.2μM each), and 5μL of template DNA. 
Thermocycler conditions used an initial denaturation of 94°C for 2 minutes, followed by 30 
cycles of 94°C for 20 seconds, 55°C for 30 seconds, and 65°C for 30 seconds, with a final 
elongation step at 65°C for 5 minutes and a storage temp of 4°C. Extraction negative controls 
were pooled into a single aliquot and an additional negative control was introduced during PCR 
amplification. Triplicate PCRs were combined and then cleaned using SPRIselect magnetic 
beads following manufacturer’s instructions (Beckman Coulter, Sykesville, MD, USA). 
Concentration of cleaned PCR products was estimated using the Qubit 2.0 fluorometer dsDNA 
HS Assay Kit (Invitrogen, Carlsbad, CA, USA), and 10% of samples were run on a Bioanalyzer 
2100 DNA High Sensitivity chip (Agilent, Santa Clara, CA, USA) to assess representative 
quality of preparations and verify consistency in amplicon sizes. Indexing PCRs were conducted 
in 50μL final reaction volumes containing 25μL KAPA HiFi HotStart Ready Mix (final 
concentrations of 0.5U Taq DNA polymerase, 2.5mM MgCl2, and 0.3mM of each dNTP; KAPA 
Biosystems, Wilmington, MA, USA), 5μL of each the forward and reverse indexing primers 
(Illumina Nextera XT Index Kit v2, set A, set B, and set C), and 5μL clean amplicon PCR 
product, following recommendations in the Illumina 16S Metagenomic Sequencing Library 



Preparation guidelines. Thermocycler conditions used an initial denaturation at 95C for 3 
minutes, followed by 8 cycles of 95C for 30 seconds, 55C for 30 seconds, and 72C for 30 
seconds, finishing with a final elongation at 72C for 5 minutes and a 4C holding temperature. 
Indexed libraries were cleaned using SPRIselect magnetic beads and concentration and quality of 
libraries was estimated as described above. 
 
16S rRNA Library Concentration and Pooling 

Libraries that were lower than 2nM were concentrated using SPRIselect magnetic beads 
to remove 10mM Tris pH 8.5 and vacufuged until dry. Libraries were re-hydrated with 4-6μL 
sterile water depending on initial concentration, and concentration and quality were re-assessed 
using Qubit and Bioanalyzer. Following concentration of low-yield samples, 206 equimolar 
libraries were combined into a 3.4nM “high concentration pool” and 23 libraries at a 
concentration of less than 3.4nM were combined into a single 1nM “low concentration pool”, 
which was used to dilute the “high concentration pool” from 3.4nM to 2nM for sequencing.  
 
Barcoding of bat flies 

To barcode the bat flies for which microbiomes were sequenced, a 710bp fragment of 
COI was amplified from extracted DNA using universal primers developed by (Folmer et al. 
1994); LCO1490: 5’-GGTCAACAAATCATAAAGATATTGG-3’, HCO2198: 5’- 
TAAACTTCAGGGTGACCAAAAAATCA-3’). PCRs were conducted in 15µL reactions using 
7.5µL 2x TopTaq Master Mix (Qiagen, Hilden, Germany); 0.1µM final concentration of each the 
forward and reverse primer, 1.5µL of 10x Coral Load (Qiagen, Hilden, Germany), and 1µL of 
template DNA, with the remaining volume filled by sdH2O. Thermocycler conditions followed 
(Hebert et al. 2003). The success of PCRs was confirmed using gel electrophoresis (1.5% 
agarose gel). PCRs were cleaned using AMPure XP beads (Beckman Coulter, Indianapolis, IN) 
following manufacturer instructions. Cycle sequencing reactions were conducted in 10µL 
reactions containing 1µL Big Dye Terminator v3.1 (Life Technologies Corporation, Carlsbad, 
CA, USA), 1µL extension buffer, 0.1µM final concentration of primer, 2µL of cleaned PCR 
product, and sdH20 to the final volume. Thermocycler conditions were as follows: initial 
denaturation at 94C for 5min, 25 cycles of denaturation at 94C for 40s, annealing at 50C for 30s, 
and elongation at 60C for 4min, and holding at 10C. Cycle sequencing reactions were cleaned 
using ethanol precipitation and rehydrated with DNA Injection Solution (Montage, Temecula, 
CA, USA) for sequencing on the ABI 3730xl DNA Analyzer at the Sackler Institute of 
Comparative Genomics at the American Museum of Natural History. Sequence chromatographs 
were trimmed to a 645bp segment, checked for quality, and aligned using ClustalW in Geneious 
v.10.2.4 (Thompson, Higgins, and Gibson 1994; Larkin et al. 2007; Kearse et al. 2012). A 
phylogeny was reconstructed using RAxML v.8 assuming a model of evolution of GTR+G, 
based on AIC scores from jModelTest 2.1, with 1000 bootstrap replicates on the CIPRES 
Science Gateway (Miller, Pfeiffer, and Schwartz 2010; Darriba et al. 2012; Stamatakis 2014). 
The phylogeny was examined in FigTree v.1.4.2 to confirm clades established from 
morphological identifications of bat flies (Rambaut and Drummond 2012; Rambaut 2014). 
 
QIIME2 processing 
  Following de-multiplexing, samples were processed using the QIIME2 v.2018.2 pipeline 
(https://docs.qiime2.org/2018.2/). DADA2 was used to filter out PhiX reads and chimeras, 
truncate the length of reads (forward = 200bp, reverse = 180bp), and cluster reads into unique 



amplicon sequence variants (ASVs) corrected for Illumina sequencing errors (Callahan et al. 
2016). Reads were aligned using the MAFFT plugin in QIIME2 (FFT-NS-i;(Katoh et al. 2002, 
2005; Katoh and Toh 2007). Default parameters were used to mask highly variable regions of the 
alignment and reconstruct a phylogeny using the FastTree2 plugin (Price, Dehal, and Arkin 
2010), which was midpoint-rooted. The GreenGenes Database, v.13.5, trimmed to only the 16S 
rRNA V4 region, was used as a reference to train a naïve Bayes q2-feature-classifier for 
taxonomic identification of ASVs (DeSantis et al. 2006). 
 
Filtering 16S rRNA data for contamination 

 First, any bacterial taxon detected in the negative controls was removed from all other 
samples, with the exception of Arsenophonus. This genus of bacteria contains known symbionts 
of insects and is expected to be associated with bat flies (Trowbridge, Dittmar, and Whiting 
2006; Nováková, Hypsa, and Moran 2009). As Arsenophonus is highly abundant in the samples 
sequenced for this study, it may be that its detection in the extraction control (0.7% of 3,524 total 
reads) and PCR control (55% of 63 total reads) is due to index bleed, a known issue when 
multiplexing samples (Eisenhofer et al. 2019), and it is not treated as a contaminant here. Next, 
bacterial genera were removed that are known laboratory contaminants (Eisenhofer et al. 2019), 
as were reads that were classified as being derived from mitochondria, chloroplast, or Archaea, 
or those that could not be classified beyond phylum. Data were exported from QIIME2 and 
reformatted for import into the R package phyloseq v.1.26.1 (McMurdie and Holmes 2012, 
2014) for further decontamination and all downstream analyses. We used the R package 
decontam to identify ASVs whose frequency is inversely correlated with initial library 
concentration (Davis et al. 2018). Nine additional ASVs were identified as potential 
contaminants and eliminated from the dataset. Arsenophonus was not identified as a contaminant 
by decontam.  
 
Reference Database for “Candidatus Aschnera chinzeii”  

The GreenGenes Database does not include “Candidatus Aschnera chinzeii”, a close 
relative of Arsenophonus that has previously been identified as the primary symbiont of some 
nycteribiid flies (Hosokawa et al. 2012; Duron et al. 2014). To identify reads belonging to 
“Candidatus Aschnera chinzeii,” we built a custom BLAST database containing reference 
sequences for “Candidatus Aschnera chinzeii” (N=4), Arsenophonus (N=37), and “Candidatus 
Phlomobacter” (N=3; Silva Ribosomal RNA Database; (Quast et al. 2013; Yilmaz et al. 2014; 
Glöckner et al. 2017) against which we compared all 16SrRNA ASVs that were classified as 
Arsenophonus by the naïve Bayes classifier. 
 
Transformation, ordination, PERMANOVA of compositional data 

Metabarcoding using high-throughput sequencing is compositional in nature – meaning 
the total observations (reads per ASV) for a sample contain no information about the total 
number of microbes and is dependent on the sequencing capacity of the instrument (Fernandes et 
al. 2014; Gloor and Reid 2016; Gloor et al. 2017; Tsilimigras and Fodor 2016; Xia and Sun 
2017). To correct for the compositional nature of 16S rRNA sequencing data, isometric log-ratio 
transformations were implemented in the R package philr v.1.8.1 (Silverman et al. 2017). This 
transformation utilizes a user-provided bacterial phylogeny to standardize the abundance of 
bacterial taxa in a sample by the abundance of its sister taxon, creating “balances” at each node 
on the phylogeny (Silverman et al. 2017). Euclidean distances between philr balances provide 



phylogenetic and abundance information about the bacteria in a sample, similar to weighted 
UniFrac, that can be used for ordination and down-stream statistical analysis (Gloor et al. 2017; 
Silverman et al. 2017).  

As this is a nested system (within each fragment, we expect to see a subset of bat species, 
and within each bat species, only a subset of bat flies occur, and within each bat fly only a subset 
of bacterial taxa occur), assessing each variable separately ignores the interactions that could 
impact our conclusions. Sequential (Type I) sum of squares was used to account for the 
nonindependence of variables in testing for significant differentiation between microbiome 
communities. In each test, parasite species was the first variable, followed by one additional 
variable, and the interaction between parasite species and the additional variable (e.g., pairwise 
sample distance matrix ~ parasite species + log-scaled area + the interaction between parasite 
species and log-scaled area). The additionally examined variables were bat species, bat sex, bat 
individual, region (REGUA area or southern sites), log2-scaled area, log2-scaled isolation, 
distance from source, protection status (within REGUA or outside of REGUA, excluding the 
southern sites), and sampling site. PERMANOVA analyses were performed on a dataset 
containing all localities with taxa filtered at 0.01% relative abundance per sample, a dataset 
containing all localities with taxa filtered more strictly at 0.1% relative abundance per sample, 
only the REGUA area localities (no southern sites), and only unprotected REGUA area localities 
(no localities within REGUA). 

 
Bacterial interaction network reconstruction and analysis 

Southern fragments were excluded from all network analyses and REGUA area 
fragments F3 and F6 were excluded from the habitat fragment networks, because they had fewer 
than 10 samples. Species-specific networks were reconstructed for well-sampled parasite species. 
A within-REGUA and an outside-of-REGUA network was reconstructed for each Aspidoptera 
falcata, Basilia juquiensis, Paratrichobius longicrus, and Strebla wiedemanni. Only an outside-
of-REGUA network was constructed for each Strebla guajiro and Trichobius joblingi because 
sample sizes were too low to estimate networks for these species within REGUA. The within-
REGUA samples of Strebla wiedemanni were filtered so that only taxa that occurred at least 10 
times (summed across all samples used in the network) were maintained, so that the network 
would reach stability.  

To control for network size and shape, we created a null distribution for each habitat 
fragment network of 100 randomly re-wired graphs with degree distribution preserved. For each 
random network, the number of rewiring trials performed was equal to ten times the total number 
of nodes in the network. We centered the modularity of each measured network by the mean 
modularity of its corresponding null distribution. We also calculated the Z-score modularity 
using the mean and standard deviation of the measured networks (e.g., [modularity of F1 
network − mean modularity of all networks]/standard deviation of modularity of all networks) 
and the Z-score modularity using the mean and standard deviation of each null network (e.g., 
[modularity of F1 network − mean modularity of F1-specific null distribution]/standard deviation 
of F1-specific null distribution). 
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Table S1: Patch area, isolation, and distance from source (REGUA).  
Fragment ID Area Isolation Distance From Source 

F1 21.15 600 3748.024 
F2 34.11 234.31 5453.124 
F3 41.04 84.85 3142.76 
F4 52.11 362.49 6557.559 
F5 84.33 150 8520.907 
F6 92.34 210 2569.115 
F7 99.99 349.86 6753.698 
F8 117.27 134.16 357.26 
F9 184.77 174.93 7525.56 

F10 228.78 480 405.114 
REGUA 62378.64 60 NA 

REGUA2 62378.64 60 NA 
REGUA3 62378.64 60 NA 

 
  



 
Table S2: PERMANOVA on well-sampled species showing the p-value (top; 
*=p<0.05, **=p<0.005, ***=p<0.0005), R2 (middle) and p-value for 
homoscedasticity (bottom, significance indicates violation of the assumptions 
of PERMANOVA). 

  
  Paratrichobius 

longicrus 
Speiseria 
ambigua 

Strebla 
guajiro 

Trichobius 
joblingi 

  Parasite Sex 
0.8050 0.0820 0.8723 0.0091** 
0.0164 0.2128 0.0254 0.2513 
0.5820 0.0070** 0.9680 0.0110* 

  Bat Sex 
0.7014 0.8746 0.0573 0.5582 
0.0249 0.0128 0.3233 0.0206 
0.9070 0.0790 0.0001*** 0.5070 

  

Protection 
Status 

0.6494   0.5742 0.6700 
0.0133   0.0314 0.0073 
0.8320   0.5490 0.8750 

Log2 Area 
0.6373 0.4681 0.6516 0.5989 
0.0139 0.0391 0.0248 0.0145 
0.5110 0.0630 0.4260 0.6850 

Log2 Isolation 
0.7385 0.7440 0.1665 0.6143 
0.0106 0.0124 0.1042 0.0120 
0.4870 0.0580 0.4180 0.7210 

Sampling Site 
0.2919 0.9885 0.8427 0.1096 
0.2836 0.2705 0.2924 0.5395 
0.4750 0.0710 0.4930 0.6240 

 
 
  



 
Figure S1: Heatmap shows distribution of parasite species across the sampled sites, where white 
means no samples were collected, red means ~1 parasite individual was collected, and pale 
yellow means ~5 parasite individuals were collected.  



 

 
Figure S2: Rarefaction curves of bacterial ASVs detected at various sequencing depths in each 
parasite species. Each line represents a sample. Red lines are high concentration samples and 
blue lines are low concentration samples. Reads were removed from a sample if they were 
present at less than 0.01% relative abundance. 
  



 
Figure S3: Rarefaction curves of bacterial ASVs detected at various sequencing depths in each 
parasite species. Each line represents a sample. Red lines are high concentration samples and 
blue lines are low concentration samples. Reads were removed from a sample if they were 
present at less than 0.1% relative abundance. 
  



 
Figure S4: Relative abundance of bacterial genera in each parasite species, when reads were 
removed from a sample if they were present at less than 0.1% relative abundance. Nycteribiidae 
are within the black box and Streblidae are outside of the black box.  
  



 
Figures S5: Relative abundance of bacterial genera at each sampling site.  
  



 
Figures S6: Principal coordinates analysis of samples when were removed from a sample if they 
were present at less than 0.1% relative abundance. Colors indicate parasite species.  
  



 
 
Figure S7: Principal Coordinates Analysis on the Euclidean distances between philr-transformed 
microbial abundances of each of the four most well-sampled bat fly species (A-D). Each species 
is plotted with distance to source colored from white (near) to red (far) and separately with 
habitat fragment area colored white (large) to red (small). 
  



 
 
Figure S8: (A) Raw modularity between networks from within and outside of REGUA. (B) 
PCoA of orbit distributions of within-species networks. Lime green dots indicate networks 
outside of REGUA and dark green indicated within-REGUA networks. Parasite species names 
are provided next to each point. (C) Raw modularity of habitat patch networks decreasing by 
area. (D) Z-score modularity of habitat patch networks decreasing by area. (E) Null-centered 
modularity of habitat patch networks decreasing by area. (F) Modularity of habitat patch 
networks centered and scaled by the their null distributions.  


