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Abstract

Arthropod ectoparasites generally have nutrient-poor diets and are dependent on their bacterial symbionts
for nutrient acquisition, development, and immune response initiation. As the body of research on parasite-
microbiome interactions continues to grow, it is becoming more apparent that the parasite is not an island
that physically and biologically constrains the microbiome. Suitable habitat fragment size, isolation, and di-
stance from a source are important variables influencing community composition of plants and animals, but
the role of the environment in determining composition and variation of host-associated microbial commu-
nities is poorly known. It is hypothesized that evolution and ecology of an arthropod parasite will influence
its microbiome more than broader environmental factors, but this hypothesis has not yet been tested. To
compare the relative influence of the broader environment to that of phylogenetic constraint on the micro-
biome, we applied high-throughput sequencing of the V4 region of 16S rRNA from 222 obligate ectoparasitic
bat flies (Streblidae and Nycteribiidae) collected from 155 bats (representing six species) from ten habitat
fragments in the Atlantic Forest of Brazil. We find that parasite species identity is the strongest driver of
microbiome composition. To a lesser extent, reduction in habitat fragment area is associated with a reduc-
tion in connectance of microbial interaction networks and an increase in modularity, but size-independent
measures of network topology and bacterial taxon richness do not show an impact of the environment. Ins-
tead, habitat fragments that support more diverse bat and bat fly communities also support more connected
bacterial interaction networks.

Keywords: island biogeography, Streblidae, Nycteribiidae, Chiroptera, ecological interaction network, me-
tabarcoding

Introduction

Island biogeography theory provides a null hypothesis for the way we expect communities to behave in mosaic
landscapes. This theory suggests that small, isolated habitats will support low-diversity communities that



are a subset of the species found in larger source communities (MacArthur & Wilson, 1963), and has been
applied to and supported by numerous empirical studies in landscapes beyond the classic case of islands
separated by water (Warren et al., 2015). Examples include fragmented terrestrial habitats separated by
inhospitable land (Bueno & Peres, 2019; Hanski, 2015), mountaintops separated by lowland habitat (Brown,
1971), rivers separated by dry land (Vanbergen et al., 2017), and many other island-like systems (Itescu,
2019). Deviations from the null hypothesis provide fundamental insights into the ways landscapes and biotic
interactions shape the evolution of species and assembly of communities.

As a result of the recent explosion of molecular characterizations of microbiomes — communities of microor-
ganisms associated with a site or host — there is mounting evidence that the presence and abundance of taxa
in the microbiome is influenced by both host and environment, including environments that may behave like
islands (Amato et al., 2013; Avena et al., 2016; Becker et al., 2017). In some systems, microbiomes follow
expectations of the null hypothesis of island biogeography (Bell et al., 2005; Martiny et al., 2006; Zinger et
al., 2014), but in others, there is no evidence that island area and isolation impact the microbiome (Carbo-
nero et al., 2014; Martiny et al., 2006). Variation in the ability of host, environment, and geography to filter
members of the microbiome community is a reflection of the complexity and diversity of microorganisms
themselves (Martiny et al., 2006; van der Gast, 2015). Teasing apart the impacts of host, environmental, and
geographic filtering on the microbiome community composition can be difficult due to this diversity.

Here, we examine the microbiome of host-specific ectoparasites as a model for testing the hypothesis that
habitat island area, isolation, and distance from a source community (i.e., the mainland community in
an island biogeography framework) will impact the composition of microbial communities in predictable
ways. Obligate parasites represent a convenient system with which to test potential drivers of microbiome
variation for several reasons. The number of factors influencing variation in the microbiome may be more
limited in obligate parasites than in environmental microbiomes (e.g., soil or water) or microbiomes of
free-living host species. Because obligate ectoparasites have extremely specialized diets, their movements
in the broader environment beyond their host are constrained by their dependence on a host to survive.
Ectoparasitic arthropods also have characteristically depauperate microbiome communities compared to
arthropods with diverse diets (Weiss & Aksoy, 2011). We can take advantage of the hierarchical nature of
the host-parasite-microbiome system to clearly delimit the microbiome community and restrict the sources
of colonizing bacteria that may invade the parasite microbiome, hence providing a manageable system for
testing hypotheses about community composition and factors governing assembly of the microbiome.

In this study, we used bat flies (Diptera: Streblidae and Nycteribiidae), which are obligate blood-feeding ecto-
parasites of bats, to assess community composition of insect-associated microorganisms across a fragmented
landscape in the Atlantic Forest of Brazil (Table 1; Figure 1). Bat flies tend to be host-specific, generally oc-
curring on one but up to three species of congeneric bats (Dick & Dittmar, 2014), and they are dependent on
their hosts for dispersal (Speer et al., 2019). Bat flies belong to the superfamily Hippoboscoidea, which also
contains tsetse flies (Glossinidae) and louse flies (Hippoboscidae). All Hippoboscoidea are adenotrophically
viviparous, a condition in which a single egg hatches inside the female fly and feeds from milk glands until
the larva is ready to pupate (Dick & Dittmar, 2014). In the case of bat flies, the female fly leaves the host
bat to deposit the larva on the roost substrate (Dick & Dittmar, 2014), providing opportunities for both
the host bat and environment to act as sources of bacteria for the microbiome of bat flies. The microbiome
thus may be influenced by the bat fly (e.g., parasite), the host bat, and landscape factors. For example,
habitat fragmentation impacts bat fly prevalence and abundance through changes in roost availability and
quality (Hiller et al., 2020), and these changes in the local bat fly community may be reflected in associated
microbiomes. Using patches of forest separated from a large, continuous segment of the Atlantic Forest by
agricultural land, we can examine whether bat fly-associated microbiomes respond to environmental change
following island biogeography theory.

Parasite-associated microbiomes impact aspects of parasite health, reproduction, and survival (Dheilly et al.,
2015; Weiss & Aksoy, 2011). Blood-feeding insects such as bat flies are reliant on primary bacterial symbionts
passed from mother to offspring to provision B vitamins that are missing from their diet (Feldhaar, 2011;



Weiss & Aksoy, 2011). In addition, the ability of blood-feeding parasites to vector pathogens is mediated by
the composition of their microbiome (Cirimotich et al., 2011; Sassera et al., 2013; Weiss & Aksoy, 2011).
Bat flies are vectors of bat-specific pathogens, including the haemosporidian parasite genusPolychromophilus
(vectored by Nycteribiidae; Obame-Nkoghe et al., 2016), and the bacterial genus Bartonella , several members
of which can infect humans (Morse et al., 2012; Regier et al., 2016). Changes in the microbiome in response
to environmental factors may have consequences for the vector competence of bat flies.

Using island biogeography theory, we tested the hypothesis that parasitic insect microbiomes, which encoun-
ter fewer sources of variation than microbiomes associated with free-living hosts and environmental sites,
exhibit a decrease in bacterial diversity in response to decreasing habitat fragment area and increasing isola-
tion. Alternatively, other factors of the host-parasite system may better explain variation in the microbiome.
We describe here the microbiomes of 14 bat fly species, including 4 genera whose associated microbes have
never before been examined. In addition, we establish new protocols for generating and analyzing microbiome
data from small-bodied arthropods, which can be extended to other low biomass samples.

Methods
Sample collection and preservation

Bat flies were collected from bats in 11 habitat fragments of the Atlantic forest of Brazil, State of Rio
de Janeiro from 18 December 2015 to 19 January 2017 (Figure 1A and 1B), including a large protected
area of pristine and secondary forest belonging to the Reserva Ecoldgica de Guapiagu (REGUA). Samples
were additionally collected from three geographically distant habitat fragments to reveal broad patterns in
Neotropical bat fly microbiome composition (southern sites; Figure 1C). The REGUA protected area was
sampled in three separate locations to capture more of the ecological variation from this large swath of
continuous forest. Each site was sampled for 6 nights, 6 hours per night or at least 2 hours if there was heavy
rain, and between 7 and 10 ground-level mist nets were used to capture bats each night (approximately
60m of nets were set per night; Teixeira, 2019). Bats were removed from mist nets and placed into freshly
washed cloth bags for holding to minimize cross-contamination of ectoparasites. Each bat was searched for
approximately 45s for ectoparasites, which were captured from the bats using featherweight forceps and
immediately transferred to tubes containing 92% ethanol (stored at room temperature overnight and then
transferred to -20°C). Bats were identified in the field following Emmons & Feer (1997) and Reis et al.
(2013). All capture and handling methods followed recommendations in Sikes et al. (2016) and all work was
conducted under Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renovédveis permit 19037-1.
Because many bat species were only captured in a subset of sampled sites, we selected bat flies from the six
most well-represented species for microbiome analysis.

Bat flies were identified to species morphologically following Wenzel (1976) and Graciolli & de Carvalho
(2001a, 2001b) using a Leica S9i microscope (Leica Biosystems, Wetzlar, Germany; Table 1). Access to
comparative morphological material was limited, so we barcoded all of our samples using cytochrome oxi-
dase I (COI) (see supplemental methods) and confirmed that individual flies identified morphologically as
conspecifics all belonged to the same genetic clade.

FEnvironmental variables

Summary variables describing habitat quality and fragmentation were calculated using ArcGIS 10.1 and
Fragstats 3.1 with forest cover maps from the Instituto Brasileiro de Geografia and SOS Mata Atlantica
(www.sosmataatlantica.com.br; (McGarigal et al., 2002). Variables considered included habitat fragment area
(hectares), isolation (shortest distance between a fragment and its nearest neighboring habitat fragment),
distance from source (shortest straight line distance from focal point of a fragment to the nearest point of
REGUA forest), perimeter-area ratio, proximity index within a 500m and 1000m buffer (Gustafson & Parker,
1992), and forest cover within a 500m and 1000m buffer. Perimeter-area ratio, proximity index, and forest
cover were correlated with habitat fragment area, isolation, and distance from source, so only these three
landscape variables were used for downstream analyses. Landscape metrics were logs transformed to prevent
extremely large or extremely isolated fragments from unduly impacting correlation analyses. To examine



whether sampling sites were clustered by area, isolation, and distance from a source, we used sum of squares
K-means clustering in the R package NbClust , v3.0 (Charrad et al., 2012).

DNA eztraction and 16S TRNA metabarcoding

To extract DNA, 288 bat flies were separated into individual tubes and washed twice by suspending in
500uL phosphate-buffered-saline (1x) and vortexing to dilute exoskeletal bacterial contamination. Following
washing, the abdomen of each fly was separated from the thorax using sterile forceps and proteinase K was
used to digest soft tissue from the entire fly (digestion solution: 95ul. Zymo Research Solid Tissue Buffer
Blue, 95ulL sterile water, 10ul. Zymo Research proteinase K). Samples were digested overnight at 55°C.
DNA from digested samples was then extracted using the Zymo Research ZymoBIOMICS DNA Miniprep
Kit (Zymo Research, Irvine, California) in a Biosafety Cabinet, Class 2. Extractions followed manufacturer
protocol with the following exceptions: samples were bead beat in a Disruptor Genie for 20 minutes at 3000
rpm (max speed); following bead beating, samples were stored at -80degC following manufacturer guidelines;
sterile water used for elution of DNA from the filter was heated to 55degC prior to pipetting onto filter; the
elution incubation step was increased from 1 to 5 minutes; and the elution step was repeated using the first
eluate to re-hydrate the column filter. One negative control was used for each extraction kit to control for
environmental and kit contamination and negative controls were pooled for amplification.

Extracted DNA was aliquoted into 96-well plates for amplification of the hypervariable region 4 (V4) of
16S rRNA following well-documented procedures outlined by the Earth Microbiome Project and the Illu-
mina 16S Metagenomic Sequencing Library Preparation guidelines (see supplemental methods for details;
(Apprill et al., 2015; Gilbert et al., 2010, 2014; Parada et al., 2016). Of 288 initial libraries, 77 libraries
required an additional concentration step to reach the minimum 2nM concentration required for sequenc-
ing. These libraries were concentrated using SPRIselect magnetic beads to remove 10mM Tris pH 8.5 and
vacufuged until dry. Libraries were re-hydrated with 4-6uL sterile water depending on initial concentration,
and concentration and quality were assessed. Following concentration of low-yield samples, 206 equimolar
libraries were combined into a 3.4nM “high concentration pool” and 23 libraries at a concentration of less
than 3.4nM were combined into a single InM “low concentration pool”, which was used to dilute the “high
concentration pool” from 3.4nM to 2nM. The final pool contained 229 libraries at a concentration of 2nM
and was sequenced using an Illumina MiSeq v3 Reagent Kit with 2x300bp reads and 18% PhiX spike-in on a
MiSeq NGS platform (Illumina, San Diego, CA, USA) at the Bioinformatics and Computational Genomics
Laboratory (Hunter College, City University of New York, New York, NY, USA).

De-mulitplexing, Quality Filtering, and Phylogeny Reconstruction

Samples were demultiplexed using the MiSeq Reporter Generate FASTQ workflow. Primer sequences were
trimmed from forward and reverse sequence reads using cutadapt v.1.4.2 (Martin, 2011). Following de-
multiplexing, samples were processed using the QIIME2 v.2018.2 pipeline (https://docs.qiime2.org/2018.2/).
DADA2 was used to filter out PhiX reads and chimeras, truncate the length of reads (forward reads cut
at 200bp, reverse reads cut at 180bp), and cluster reads into unique amplicon sequence variants (ASVs)
corrected for Illumina sequencing errors (Callahan et al., 2016). Reads were aligned using the MAFFT
plugin in QIIME2 (FFT-NS-i; Katoh et al., 2002, 2005; Katoh & Toh, 2007). Default parameters were used
to mask highly variable regions of the alignment and reconstruct a phylogeny using the FastTree2 plugin
(Price et al., 2010), which was midpoint-rooted. The GreenGenes Database, v.13.5, trimmed to only the
16S rRNA V4 region, was used as a reference to train a naive Bayes q2-feature-classifier, which was used to
taxonomically identify ASVs in our data (DeSantis et al., 2006).

Contamination is ubiquitous in microbiome studies and especially problematic for low biomass samples
(Eisenhofer et al., 2019; Salter et al., 2014; S. Weiss et al., 2014). To reduce the impact of contaminants,
several filtering steps were performed. First, any bacterial taxon detected in the negative controls was removed
from all other samples, with the exception of Arsenophonus . This genus of bacteria contains known symbionts
of insects (Novakova et al., 2009) and is expected to be associated with bat flies (Wilkinson et al., 2016).
AsArsenophonus is highly abundant in the samples sequenced for this study, it may be that its detection in the



extraction control (0.7% of 3,524 total reads) and PCR control (55% of 63 total reads) is due to index bleed,
a known issue when multiplexing samples (Eisenhofer et al., 2019; Kircher et al., 2012; Mitra et al., 2015),
and it is not treated as a contaminant here. Next, bacterial genera were removed that are known laboratory
contaminants (Eisenhofer et al., 2019), as were reads that were classified as being derived from mitochondria,
chloroplast, or Archaea, or those that could not be classified beyond phylum. Data were exported from
QIIME2 and reformatted for import into the R packagephyloseq v.1.26.1 (McMurdie & Holmes, 2012, 2013)
for further decontamination and all downstream analyses. We used the R packagedecontam to identify ASVs
whose frequency is inversely correlated with initial library concentration (Davis et al., 2018). Nine additional
ASVs were identified as potential contaminants and eliminated from the dataset. Arsenophonus was not
identified as a contaminant bydecontam . Finally, the data were filtered by two coverage depths: 1) all ASVs
present in a sample at <0.01% relative abundance were eliminated from that sample, and 2) all ASVs present
at <0.1% relative abundance were eliminated from that sample. At a minimum relative abundance of 0.01%,
spurious ASVs may remain in the dataset, but at a minimum relative abundance of 0.1%, rare ASVs may be
incorrectly excluded (Alberdi et al., 2018; Bokulich et al., 2013). Analyses were performed on both datasets.

As low concentration libraries were used to dilute high concentration libraries prior to sequencing, sequencing
effort across samples is not even. Low concentration samples may be more prone to contamination due to their
low biomass or may not receive adequate sequencing depth to describe the diversity of the bacterial communi-
ty. To assess the bacterial diversity captured by low concentration libraries compared to high concentration li-
braries, the ggrare function was used from the phyloseq-extended suite of tools, which wraps the functionrarefy
from the package vegan v.2.5.4 while maintaining the phyloseq data structure (https://github.com/mahendra-
mariadassou/phyloseq-extended/blob/master/R /graphical_methods.R ; (Oksanen et al., 2010).

Data visualization, Ordination, and PERMANOVA

As a qualitative assessment of microbial communities, we constructed compositional bar plots of the relative
abundance of bacterial genera in each bat fly species (ggplot2 , v.3.1.0; (Wickham, 2011). Any genus with a
relative abundance <1% of the total reads in a bat fly species were condensed into a “Low Abundance” group.
To quantitatively assess variation between microbiome communities, principal coordinates analysis (PCoA),
implemented in phyloseq , was used to visualize differences in microbial communities captured by Euclidean
distance between phylogenetic isometric log-ratio -transformed relative abundances. Metabarcoding using
high-throughput sequencing is compositional in nature — meaning the total observations (reads per ASV) for
a sample contains no information about the total number of microbes and is dependent on the sequencing
capacity of the instrument (Fernandes et al., 2014; Gloor et al., 2017; Gloor & Reid, 2016; Tsilimigras &
Fodor, 2016; Xia & Sun, 2017). To correct for the compositional nature of 16S rRNA sequencing data,
isometric log-ratio transformations were implemented in the R packagephilr v.1.8.1 (Silverman et al., 2017).
This transformation utilizes a user-provided bacterial phylogeny to standardize the abundance of bacterial
taxa in a sample by the abundance of its sister taxon, creating “balances” at each node on the phylogeny
(Silverman et al., 2017). Euclidean distances between philr balances provide phylogenetic and abundance
information about the bacteria in a sample, similar to weighted UniFrac, that can be used for ordination
and down-stream statistical analysis (Gloor et al., 2017; Silverman et al., 2017).

To test whether landscape variables, parasite variables, or host bat variables were correlated with microbial
community composition, we used PERMANOVA with 9,999 permutations (adonis command in the R package
vegan , v2.5.4; Anderson, 2014). When sampling is uneven between groups, PERMANOVA is sensitive to
heteroscedasticity (Anderson & Walsh, 2013). Homogeneity of dispersion of each group of microbiomes was
confirmed using betadisper permuted 999 times withpermutest (R package vegan ). As this is a nested system
(within each fragment, we expect to see a subset of bat species, and within each bat species, only a subset of
bat flies occur, and within each bat fly only a subset of bacterial taxa occur), assessing each variable separately
ignores the interactions that could impact our conclusions. Sequential (Type I) sum of squares was used to
account for the nonindependence of variables in testing for significant differentiation between microbiome
communities. In each test, parasite species was the first variable, followed by one additional variable, and
the interaction between parasite species and the additional variable (e.g., pairwise sample distance matrix



" parasite species + log-scaled area + the interaction between parasite species and log-scaled area). The
additionally examined variables were bat species, bat sex, bat individual, region (REGUA area or southern
sites), logs-scaled area, logs-scaled isolation, distance from source, protection status (within REGUA or
outside of REGUA, excluding the southern sites), and sampling site. All PERMANOVA analyses were
performed on a dataset containing all localities with taxa filtered at 0.01% relative abundance per sample, a
dataset containing all localities with taxa filtered more strictly at 0.1% relative abundance per sample, only
the REGUA area localities (no southern sites), and only unprotected REGUA area localities (no localities
within REGUA).

When sampling is uneven, sequential sum of squares is sensitive to the order in which variables appear in
the equation. To overcome this limitation, we examined the impact of landscape within the four most well-
sampled bat fly species using only fly samples collected from the REGUA area with bacterial taxa filtered
using a threshold of 0.01% relative abundance per sample. We ordinated samples within these species separa-
tely from the rest of the data and estimated variation explained by landscape variables using PERMANOVA
on individual variables.

Bacterial Richness and Interaction Network Analyses

To examine the impact of landscape on taxon richness, we constructed boxplots of ASV richness in each
sample by sampling site, mimicking standard island biogeography plots of richness by area, isolation, and
distance to the source. We used Kruskal-Wallis to test whether mean richness was significantly different
among sampling sites. Spearman correlation was used to examine ASV richness across continuous ranges of
ranked area, isolation, and distance from a source.

Plotting ASV richness across habitat fragments does not account for changes that the landscape may induce
in the relative abundance of bacteria. To estimate the impact of habitat fragmentation of the interactions
between bacteria, networks were reconstructed using SPIEC-EASI (Kurtz et al., 2015). SPIEC-EASI uses
the centered log-ratio transform of abundance to estimate an inverse covariance matrix between bacterial
taxa, which means a connection between nodes cannot be better explained by a different network structure
(Kurtz et al., 2015). For this analysis, interactions were estimated between ASVs detected in each habitat
fragment. Southern fragments and REGUA area fragments F3 and F6 were excluded from the analysis,
because they had fewer than 10 samples. Networks were estimated using the Meinshausen and Biihlmann
method and parameters of network sparsity were adjusted until network stability was within 0.002 of the
target 0.05 threshold (Kurtz et al., 2015; Liu et al., 2010). To account for differences in parasite sample size
between sampling sites, we subsampled fragments with greater than 17 samples down to 10 samples and 15
samples, repeated 10 times, and reconstructed networks for each subsample.

Following network reconstruction, leading eigenvector modularity of each network and betweenness centrality
of each node were estimated in the R package igraph , v.1.2.4 (Brandes, 2001; Csardi et al., 2006; Freeman,
1978; Newman, 2006). Modularity is a measure of the structure of a network, where higher modularity
indicates nodes are grouped into tightly interacting neighborhoods with weak interactions occurring outside
of this neighborhood (Delmas et al., 2019). Betweenness centrality measures the number of times the shortest
path between all pairs of nodes in the network travel through a given node (bacterial ASV), giving an
estimate of the influence of a node on the structure of the network (Delmas et al., 2019). Boxplots of network
modularity with sampling sites grouped by protection status (within REGUA or not) and Mann-Whitney
U tests were used to quantify differentiation between networks. Modularity and betweenness centrality are
impacted by network size (number of edges) and shape (degree distribution; (Delmas et al., 2019), making
comparisons of summary statistics between networks inaccurate. To account for variation in network size
and shape, we created a null distribution for each network (i.e., each sampling site) of 100 randomly re-wired
graphs with degree distribution preserved, shuffling ten times the total number of nodes in the network for
each permutation. We centered the modularity of each measured network by the mean modularity of its
corresponding null distribution. We also calculated the Z-score modularity using the mean and standard
deviation of the measured networks (e.g., [modularity of F1 network-mean modularity of networks from
other REGUA area sites]/standard deviation of modularity of networks from other REGUA area sites) and



the Z-score modularity using the mean and standard deviation of each null network (e.g., [modularity of F1
network-mean modularity of F1 null distribution]/standard deviation of F1 null distribution).

As a size-independent method of examining variation between networks, we used the graphlet correlation
distance from Yaveroglu et al. (2014) to ordinate the networks as individual points on a plot implemented
in the R packages pulsar v.0.3.5 and orca v.1.1-1 (Hocevar et al., 2016; Miiller et al., 2016). The graphlet
correlation distance decomposes the network into up-to 4-node graphlets, counts the number of times each
node matches one of 11 node types (called “orbits”), and estimates the Spearman correlation of these node
types across all nodes. Following Mahana et al. (2016) and Ruiz et al. (2017), the Euclidean distance between
these correlations can be used to ordinate the networks and more clearly visualize their differentiation. We
compared ordination of the networks to a plot of the sampling sites ordinated solely by logs area, logs
isolation, and distance to source as a null hypothesis about the placement of the networks in the graph if
landscape variables are the primary determinant of network topology.

Results

Of 229 prepared DNA libraries, each representing one parasite individual, 222 libraries were used for down-
stream analysis following quality filtering (Table 1). Filtered libraries ranged in sequencing depth from 2,983
to 66,164 reads. A total of 1,155 ASVs were detected when a 0.01% filtering threshold was applied, while
526 ASVs were found under a 0.1% filtering threshold. Rarefaction curves showed a plateaued asymptote
for each library and low concentration libraries fell within the range of ASVs detected in high concentration
libraries generated from the same parasite species (Figures S1 and S2).

Composition of bat fly microbiomes

Plots of relative abundance of bacterial genera within each parasite species showed a stark difference between
the microbiome communities in the parasite families Nycteribiidae and Streblidae (Figure 2; Figure S3).
While nycteribiid bat flies had high relative abundances of Wolbachia and Bartonella , streblid bat flies were
dominated by Arsenophonus . We found that Arsenophonus is mostly absent from nycteribiid bat flies and
almost no Wolbachiawas detected in streblid bat flies. Bartonella was present in some streblid bat flies,
but at much lower relative abundance than in nycteribiid bat flies. Mycoplasma was also detected at higher
relative abundances in streblid bat flies compared to nycteribiid flies.

Plots of the average microbiome composition in each fragment indicated a sharp contrast between the
southern fragments and the REGUA area fragments (Figure S4). The flies in southern fragments were
dominated by Wolbachia and Bartonella , likely due to the abundance of nycteribiid flies in these fragments.
The REGUA area fragments were all dominated by Arsenophonus , and had varying relative abundances
of Wolbachia and Bartonella .

Variation in the microbiome in response to parasite, bat host, and environment

Ordination and PERMANOVA of microbiome communities provide evidence that aspects of the parasite (i.e.,
parasite family and species), the host bat (i.e., bat family, bat sex, and bat individual), and landscape factors
(i.e., region and sampling site) significantly contributed to bat fly microbiome variation (Table 2; Figure 3
and Figure S5). Other variables significantly contributed to microbiome community differentiation (i.e., bat
feeding guild, bat species, protection status of sampling site, habitat fragment area, and isolation), but
violated the assumption of homoscedasticity. Parasite species, parasite family, bat feeding guild, bat family,
bat species, and sampling site had the largest effect sizes, however many of these variables are correlated
with each other.

We used sequential sum of squares with free permutation to account for the hierarchical structure of the study
system, and found that parasite species significantly impacted microbiome community structure (Table 3).
Habitat fragment area, distance to source, and protection status also significantly contributed to microbiome
variation, but violated the assumption of homoscedasticity. As the order of variables in sequential sum of
squares can impact their significance when sample sizes are uneven, we also examined the impact of parasite,



host bat, and landscape variables on the four most well-sampled species (Table S1; Figure 4). None of the
test variables significantly explained microbiome variation without violating PERMANOVA assumptions.

Impact of area, isolation, and distance from source on bacterial tazon richness

Median bacterial ASV richness fell between 6 and 11 for each sampled parasite individual, but the range of
ASV richness per fragment varied dramatically (Figure 5). While the three sampled sites within REGUA
had the highest ASV richness, there was no pattern of decreasing ASV richness with decreasing area, in-
creasing isolation, and increasing distance from a source. A Kruskal-Wallis test confirmed that there was
no significant difference between the mean ASV richness among the sampling sites (Kruskal-Wallis chi-
squared statistic=17.856, p-value=0.1201). Treating area, isolation, and distance to source as continuous
variables also showed no significant interaction between these variables as ASV richness (Area: tho=0.0613,
p-value=0.4031; Isolation: rho=0.0020, p-value=0.9787; Distance to Source: rho=-0.0564, p-value=0.4421).

Impact of area, isolation, and distance from source on bacterial interaction networks

SPIEC-EASI networks of bacterial interactions changed in betweenness centrality and modularity associated
with environment (Figures 6 and 7). In REGUA sampling sites, low-abundance bacteria and bacteria in the
genera Arsenophonus , Wolbachia , and Bartonella had higher betweenness centrality than other bacteria
in these networks, acting to connect graph neighborhoods (Figure 6). As networks became more modular
(i.e. decreasing habitat fragment area), there were fewer bridge nodes with greater extremes of high and
low betweenness centrality. In smaller habitat patches, low-abundance bacteria and Mycoplasma had much
larger betweenness centrality compared to other bacteria within each network. Arsenophonus , Wolbachia ,
and Bartonella did not have high betweenness centrality in the networks of smaller habitat fragments. The
exception to this pattern is fragment F4, where betweenness centrality of bridge nodes was not extremely
large compared to the betweenness centrality of the other bacteria in the graph and Arsenophonus , Wolbachia
, and Bartonella had high betweenness centrality. While fragment F4 had small habitat area, it was the only
fragment outside of REGUA that supported all streblid bat fly species.

The raw modularity of each network was higher in fragments outsidle REGUA than in sites within the
protected area, although this pattern was not statistically significant (Figure 7A; Wilcoxon Rank Sum test,
p-value= 0.133). This is largely due to fragment F9, which showed much lower modularity than any other
network. When we remove fragment F9, the difference in modularity between REGUA sites and fragments
is significant (Wilcoxon Rank Sum test, p-value=0.033). Null distribution-centered modularity measures,
which are standardized to account for variation in network size and shape, are highest in REGUA, the
largest fragment (F10), and the fragment with the second highest bat fly diversity after the largest fragment
(F4; Figure 7B). Smaller fragments and those distant from a source had low centered modularity, and
fragment F9 was no longer an outlier. Standardizing modularity by comparison with the mean and standard
deviation of the set of measured networks did not control for network size and shape variation, and mimicked
the pattern exhibited by raw modularity. Calculation of the Z-score modularity using the null distribution
for each site indicated that all measured networks have significantly higher modularity than a randomly
connected network of the same size and shape.

Sample size (i.e., number of parasite individuals) was lowest in small fragments and highest in large fragments,
with the exception of F4 which has intermediate area, isolation, and distance to source measurements. While
there was no impact of sample size on ASV richness in each network, a greater number of samples may allow
detection of more edges between nodes (more interactions between ASVs). Efforts to reconstruct SPIEC-
EASI networks using subsampling of the sites with the largest sample sizes failed because SPIEC-EASI
networks on subsamples never reached stability. To examine the topology of the network independent of size
(number of connections), we decomposed the graph into 4-node graphlets and examined correlations between
the incidences of graphlet orbits and ordinated the networks using PCoA (Mahana et al., 2016; Ruiz et al.,
2017; Yaveroglu et al., 2014). The position of networks in the ordination differed from what we would expect
if landscape variables were the primary driver of network topology (Figure 7D). The REGUA2 sampling site
was found to be quite different from the other REGUA sampling sites which were instead closest to fragment



F9, the second largest fragment. Outside of the REGUA sites, there was no pattern of differentiation with
decreasing area, increasing isolation, and increasing distance to source.

Discussion
Parasite species drives microbiome composition

Our results suggest that the bat fly families Streblidae and Nycteribiidae may have different primary sym-
bionts in Brazil (Figure 2).Arsenophonus has been previously identified as a primary symbiont of bat flies
(Morse, Dick, et al., 2012; Morse et al., 2013; Trowbridge et al., 2006; Wilkinson et al., 2016). The high
relative abundance and prevalence of Arsenophonus in all streblid bat flies sampled in our study is consistent
with the hypothesis that Arsenophonusacts as the primary symbiont in the family Streblidae. However, it
is unlikely that Arsenophonus is acting as the primary symbiont of the nycteribiid species that we sampled,
given its absence or low relative abundance. Only one previous study which examined Arsenophonus as the
primary symbiont of bat flies included representatives of New World Nycteribiidae (Morse et al., 2013). Using
cloning and Sanger sequencing, those authors detected anArsenophonus variant in two individuals of Basilia
boardmani (Nycteribiinae), which is restricted to North America. The strain detected was distantly related
to the Arsenophonussymbionts found in all other examined members of the subfamily Nycteribiinae and
similar to those found in triatomine bugs. In combination with the evidence presented here, these findings
suggest that Brazilian Basilia spp. rely on a different endosymbiont than both the Streblidae and North
American and Old World members of Nycteribiidae.

In contrast to what we found in streblids, nycteribiid species were dominated by Wolbachia and Bartonella
(Figure 2), both of which have been previously detected in bat flies (Morse, et al., 2012; Wilkinson et al.,
2016). Wolbachia is a primary symbiont in some insects (Dedeine et al., 2005; Hosokawa et al., 2010; Nikoh
et al., 2014), but acts facultatively in others (Pontes & Dale, 2006), and also sometimes functions as a
reproductive parasite, causing mitochondrial DNA sweeps as it increases its own prevalence in a population
(Cariou et al., 2017; Jiggins, 2003; Lack et al., 2011; Speer et al., 2019). Bartonella is an intracellular pathogen
found in many mammalian groups, including humans (Breitschwerdt & Kordick, 2000). Bartonella is common
in bats and bat flies (Stuckey et al., 2017), with bat flies potentially acting as a vector to bats (Morse, et al.,
2012). It may be that Wolbachia and Bartonella both have high relative abundance in nycteribiid bat flies
because they are acting as primary or facultative symbionts, or because they are acting as a reproductive
parasite and pathogen, respectively. If the latter is true, it may be that one of the less abundant bacteria,
like Candidatus Phlomobacter11Standard nomenclature for a candidate genus., Mycoplasma , or Rickettsia ,
is the primary symbiont or another microbe not detected by 16S rRNA sequencing (e.g. fungi; (Gibson &
Hunter, 2010).

In addition to family-level differences between bat flies, microbiome composition was parasite species-specific
(Table 2; Figure 3). Host-specificity of arthropod microbiomes has been found previously in tsetse flies
(Glossinidae; Aksoy et al., 2014), which are also members of the Hippoboscoidea. That microbiome com-
position shows such a strong signal of parasite species identity indicates that even non-maternally inherited
bacteria may be maintained through life history traits (e.g., host bat associations, microclimatic preference).
The impact of bat species identity on the parasite microbiome is difficult to parse given the hierarchical
nature of the association of bat fly species with specific bats species. Where bat species and bat sex seem to
have a large impact on the bat fly microbiome when considered as individual variables (Table 2), these effects
disappear when the interaction between parasite species and each host bat variable is taken into account
(Table 3). We did not have information on bat roosts, but this has been previously shown to have a large
impact on bat fly abundance and prevalence (Hiller et al., 2020). As indicated by our network analyses of
landscape variables, it may be that PERMANOVA is good at identifying variables that have a strong impact
on variation (i.e., parasite species), but is not the right approach for teasing apart the impact of variables of
small effect in this type of complex system (i.e., host bat and landscape).

Island biogeography theory applied to the microbiomes of parasites

Habitat fragment area and protection status, but not degree of isolation or distance to source, have a
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measurable but lesser effect on the microbiome of bat flies compared to parasite species (Tables 2 and 3). As
bat flies travel with their host bat, it is not surprising that isolation and distance to source do not explain
bat fly microbiome variation in these narrowly-separated habitat patches. These stretches of inhospitable
agricultural landscape between forest patches may be more of a barrier for parasites of other vertebrates that
cannot fly. Mean and median bacterial ASV richness does not decrease with decreasing habitat fragment
area, increasing isolation, and increasing distance from a source, contradicting expectations of the island
biogeography model (Figure 5). Given the host-specificity of the bat fly microbiome, it is unrealistic to
expect ASV richness to change with environment, especially if bacterial ASVs in a bat fly are selected for
or maternally transmitted. Instead, variation of the microbiome in response to environment may be better
reflected by variation in relative abundance of ASVs. Examining both relative abundance and diversity of
bacteria using ecological interaction networks provided a clear statistical signal that habitat fragment area
impacts microbiome composition (Figures 6 and 7).

Habitat fragmentation resulting in decreasing habitat patch area was associated with the loss of nodes that
act as bridges between modules in bacterial interaction networks (Figures 6, 7A). There were fewer ASVs with
high betweenness centrality in small fragments and more ASVs with small betweenness centrality, consistent
with the loss of connectivity between disparate portions of the network (Figure 6). Large fragments had
lower raw modularity scores than small fragments, indicating more connectivity between neighborhoods than
in small fragments (Figure 7TA). ASVs that acted as bridge nodes in large sites, are present in smaller sites
(Figure 5), but these ASVs no longer perform the function of connecting modules in the network in smaller
fragments.

Site F4 is an outlier to this pattern in that it is intermediate in area, isolation, and distance to a source, but
has similar modularity and betweenness centrality to the sites within REGUA and the largest site (F10).
This is likely driven by the high sample size at F4 compared to other fragments of similar area, isolation, and
distance to a source. While we standardized the field collecting method across sampling sites, we sequenced
bat fly microbiomes only from the most prevalent bat fly species, corresponding to the most prevalent bat
species, across all of the sampling sites, which may have introduced sampling bias into measures of network
size. Generally, sites with higher parasite microbiome sample sizes are also the sites with a higher number
of captured bat fly species. Considering only the bat fly species that were selected for sequencing, fragments
F10 (the largest fragment outside of REGUA, 9 bat fly species) and F4 (8 bat fly species) have the greatest
parasite richness outside of REGUA. The three REGUA sites, F10, and F4 are the only sampling sites
where the bat species Artibeus lituratus and Desmodus rotundus and their respectively associated bat flies
Paratrichobius longicrus and Strebla wiedemanni were collected; all other sites are missing one or more of
these species. Bat species and bat fly species responses to habitat disturbance are highly species specific,
and may not always be negative (Hiller et al., 2020; Pilosof et al., 2012; Saldafia-Vézquez et al., 2013).
Anecdotally, site F4 had many large trees, suitable for roosts, compared to other patches of similar size. It is
possible that factors of the habitat at F4 which we did not evaluate, such as availability of permanent tree
roosts (Patterson et al. 2007) or access to particular foraging resources (Pilosof et al. 2012), may mediate
the effects of habitat fragment size in some cases, allowing relatively smaller fragments to support more bat
species, and hence more parasite species, which in turn may affect structure and connectivity of parasite
microbiomes.

The loss of bridge nodes as sampling sites decrease in area and parasite species richness is driven by network
size (i.e., number of interactions), which corresponds to sampling size at each site (Figures 6 and 7). When
we attempted to control for variation in sample size by using subsampling, SPTEC-EASI networks built from
subsampling sites with large sample sizes never reached stability. Stability is assessed by subsampling, so that
when we provided SPIEC-EASI with a reduced dataset, it was not able to infer the more complex networks
from the REGUA sites, F10, and F4. This may indicate that higher network size in these sites is not an artifact
of sample size. PCoA between correlations of orbit incidences were used as a size-independent examination
of the topology of each network. There is no evidence that the environment alters the underlying topology
of the network, but it may drive network size through increasing parasite richness (Figures 7). Regardless,
sample size cannot be controlled for when examining network size, so the correlation may be spurious.
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The finding that large fragments have higher null-adjusted modularity scores than small fragments may
appear contradictory to our conclusion that bridge nodes are absent from fragmented habitats (Figure 7B).
However, this pattern is consistent with our finding that habitat fragmentation causes changes in network
size and not topology. Randomizations of edges to create null distributions preserves the degree distribution
of the measured network, so measured networks with many nodes of high degree will have null networks
that have low modularity. Large fragments have many ASVs with high degree (i.e., many connections) and
these are mostly distinct from ASVs with high betweenness centrality (i.e., more shortest paths between
nodes traverse through these ASVs). The ASVs with high degree form dense subgraphs rather than nodes
connecting many modules in large, near to source fragments, leading to greater disparity in modularity
between the null and measured networks than in small, distant fragments. More samples in a site lead to
more detected connections (i.e., larger network size), but do not change the shape of the network by detecting
more connections outside of densely connected neighborhoods.

Implications of changes in network size in response to environment

Bacteria with high betweenness centrality may act as hub species that maintain the stability of a network
(Rottjers & Faust, 2018). In large fragments, Arsenophonus , Wolbachia , and Bartonellahad high bet-
weenness centrality, but these bacterial taxa were less central to the networks from small fragments despite
maintaining high relative abundance in flies at these sites (Figures 2 and 6). IfArsenophonus and Wol-
bachia are acting as primary symbionts, decreasing betweenness centrality may be indicative of changing
symbiont-host interactions in response to microbiome community perturbations. The primary symbionts of
blood-feeding insects play an important role in vector competence in insects (Weiss & Aksoy, 2011). For
example, in tsetse flies, primary bacterial endosymbionts in the genus Wigglesworthia impede the invasion
of trypanosome parasites by assisting host defenses and subsequently decrease the competence of tsetse flies
to vector these harmful parasites to downstream hosts including humans (Weiss et al. 2013). As bat flies
are important arthropod vectors of bat pathogens, changes in the structure of their microbiomes in response
to habitat fragmentation may have implications for the disease ecology of arthropod vectored pathogens in
bats.

Modules may delimit groups of bacteria with specific functional specializations and/or groups that respond
in similar ways to environmental variables (Roéttjers & Faust, 2018). Higher modularity may protect a
community of free-living organisms from invading pathogens, because a pathogen would be isolated to one
module within the community (i.e., diversity-stability debate; (Krause et al., 2003; Stouffer & Bascompte,
2010)). This hypothesis may be applicable to bacterial networks if pathogens are limited in transmission
by direct competition with endogenous bacteria. However, high modularity in bacterial interaction networks
may also reflect the absence of microbiome-mediated host defenses against pathogen invasion. If we revisit
the tsetse fly example above, Wigglesworthia and trypanosome parasites would share an edge in a microbe
interaction network because Wigglesworthia abundance and prevalence is associated with low trypanosome
abundance and prevalence mediated by host defenses. The absence of this interaction in a network might
indicate that Wigglesworthia -induced host response to trypanosome invasion is impaired by other microbes
in the network (e.g., priority effects) or other aspects of host health. Trypanosome transmission would be less
regulated in this instance, but modularity would be high as long as trypanosome abundance and prevalence
did not lead to changes in the abundance or prevalence of other microbes. In the case of bat flies, the
consequences of more isolated modules for the functionality and stability of the microbiome are unclear and
merit future investigation.

Our research builds upon previous evidence that the environment influences microbiome composition in
addition to host factors (Amato et al., 2013; Avena et al., 2016; Becker et al., 2017; Ingala et al., 2019).
However, all previous studies on the impact of the environment on microbiome composition have been
conducted on free-living organisms. The interactions of bat flies with the broader environment are filtered
through their obligate associations with host bats, yet the signal of environmental change is detected in the
composition of bat fly microbiomes. This indicates that environmental degradation may have community-
wide implications for the composition of microbiomes in various organisms, possibly through microclimatic
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changes that alter the pool of bacteria available in habitat patches.
Future directions and summation

Bat flies are a largely understudied group of blood-feeding arthropods that play an important role in trans-
mission of bat pathogens. This study poses several hypotheses to be tested in future research:

1. New World nycteribiid bat flies apparently have different primary symbionts than streblids and Old
World nycteribiids. While it is unlikely that Arsemophonus acts as the primary symbiont in the nyc-
teribiid flies sequenced for the study, the inferences that we can make from relative abundances based
on metabarcoding are limited. Future studies examining signatures of gene loss using metagenomic
sequencing or testing which bacteria are present in the bacteriome of new world nycteribiid flies will
provide more information about which bacterium may be functioning as the primary symbiont.

2. The implications of decreasing microbial diversity or changes in the relative abundance of bacteria
on the emergent properties of the microbiome are unclear (Shade, 2017). Through comparison with
network analysis, we hypothesize that decreasing parasite species richness contributes to greater mi-
crobial network modularity and fewer central bacteria. However, methods used to generate interaction
networks from bacteria suffer from low precision and accuracy, and results are not robust to the para-
meters and data used to construct networks (Rottjers & Faust, 2018). Establishing null expectations
for a healthy microbiome may help improve assessment of the underlying network and estimation of
emergent properties.

3. The downstream impact of habitat fragmentation on mitigating vector competence of bat flies is not
tested here. Further research is needed to examine how these changes are reflected in the prevalence of
bat pathogens, like Bartonella . This requires more complete sampling of the bat and bat fly community.

In this study, we tested whether habitat fragment area, isolation, and distance to a source impact microbio-
me composition. We found that parasite species identity explains the majority of microbiome variation with
habitat fragment area explaining less of the variation, but nevertheless significantly impacting microbiome
community composition. Specifically, decreasing habitat patch size led to a decrease in the species richness
of parasites that caused a decrease in the size of bacterial interaction networks, leading to highly modular
microbiomes in parasites collected from small habitat patches. We did not find evidence that the microbiome
changes in accordance with island biogeography theory in response to habitat fragmentation. Instead, it
appears that environmental change impacts the microbiome of parasites though cascading community-wide
effects on relative abundance of bacteria. Taken together, there is not currently a good null hypothesis for
how microbiome communities change in response to environmental gradients. Establishing baseline expecta-
tions about variation in diversity and abundance of bacteria has inherent importance to understanding how
pathogen transmission may be impacted by environmental degradation, especially in arthropod vectors of
disease.
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Table 1: Sampling of bats and their corresponding flies used for sequencing. Columns labelled ”Total” include female and n

Bat Family

Phyllostomidae

Vespertilionidae

Unknown host

Table 2: Univariate PERMANOVA results indicating the p-value (top; *=p<0.05, **=p<0.005, ***=p<0.0005), R2 (middl

Parasite Variables

Bat Variables
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Table 2: Univariate PERMANOVA results indicating the p-value (top; *=p<0.05, **=p<0.005, ***=p<0.0005), R2 (middl

Landscape Variables

Table 3: Sequential Sum-of-Squares where the impact of each variable is considered after the impact of parasite species is a

Parasite Species

Bat Species

Bat Sex

Individual Bat
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Table 3: Sequential Sum-of-Squares where the impact of each variable is considered after the impact of parasite species is a

Region

Logs Area

Logs Isolation

Distance to Source (Logz-scaled for REGUA Area unprotected)

Protection Status

Sampling Site

Figure 1: Sampling map constructed in QGIS v3.12 of REGUA area sites with fragments outside of REGUA
labelled with the prefix “F” and ordered from smallest (1) to largest (10; A), the extent of the sampled area
(B), and the southern sites in relation to REGUA (C). Green area (A) indicates forested habitat based on
imagery from SOS Mata Atlantica, while white areas are all non-forested habitat types.

Figure 2: Relative abundance of each bacterial genus summed across repeated samples of each parasite species.
Colors indicate different bacterial genera and bars represent each parasite species. The black box surrounds
the nycteribiid bat flies. Low abundance bacteria were those comprising less than 1% relative abundance in
each species. Unknown bacteria could not be identified to genus using the Greengenes database.

Figure 3: Principal Coordinates Analysis on the Euclidean distances between philr-transformed microbial
abundances of the complete dataset. Colors represent parasite species.

Figure 4: Principal Coordinates Analysis on the Euclidean distances between philr-transformed microbial
abundances of each of the four most well-sampled bat fly species (A-D). Each species is plotted with distance
to source colored from white (near) to red (far) and separately with habitat fragment area colored white
(large) to red (small).

Figure 5: Box and whisker plot of the bacterial ASV richness in each sampling site in order of decreasing
area (A), increasing distance from a source (B), and increasing isolation (C).

Figure 6: Interaction networks constructed for bacterial ASV in each habitat fragment. Sampling sites are
ordered by decreasing habitat fragment area, with the largest sites in the top left and the smallest sites in
the bottom right. The size of the nodes in the networks corresponds to the z-score betweenness centrality
of that node scaled by the range of betweenness centralities detected within the network. A bold black box
is placed around figure F4, which has similar network structure to REGUA sites, despite an intermediate
habitat patch area.

Figure 7: Plots of summary statistics from SPIEC-EASI networks showing raw modularity between protected
(REGUA) and unprotected fragments (A), null-centered modularity for each fragment decreasing by area
(B), vertex degree and betweenness centrality by fragment decreasing by sample size (C), and Principal
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Coordinate Analysis of graphlet correlation distances (D). Dark green corresponds to REGUA sites and lime
green corresponds to sites outside of REGUA for which networks were reconstructed.

REGUA
GU.

0255075100kmA
N e

1.00-

Bacteria Genus
0754 Arsenophonus
Wolbachia
Bartonella

0.50- Candidatus Phlomobacter

Unknown
Mycoplasma
Rickettsia

Relative Abundance

0.25-
Low Relative Abundance

II (<1%)
-.l- I I_.I

0.00-
(\O‘b%o\\'bb& &\)’0\0\\ (\\e%(\g
8 2 N D L @
60‘9 § & éO\Q ‘0+ $5. a_,é“ PO AR < &9 & \ov\

x\é& %Qé “foro . S
o8 \)\\Q\raoe; ° o @ o

@ RS \oo\
e\\\\\\\\,b%\\\&ﬁ O QG

@ & o & 5 O
F o o 9 99(}00 gt o
SRR ¥ v%%eg @&\)\"’\)'Z\&‘\ %Q N\ ,060
50 ot Q&

Parasite Species

23



Parasite Species
Basilia andersoni

Basilia ferruginea

Basilia juquiensis
Basilia lindolphoi
Aspidoptera falcata
— 0 Megistopoda proxima
X
N Metelasmus pseudopterus
-
hat
Paraeuctenodes similis
o~
g Paratrichobius longicrus
< Speiseria ambigua
-1 Strebla guajiro
Strebla mirabilis
Strebla wiedemanni
Trichobius dugesioides
Trichobius furmani
=2 Trichobius joblingi
-2 -1 0 1
Axis 1 [19.2%]
5
&
S A B
g) :g 4
= ©
Q 3
IS S
@ 8
3 Log,(Area) e Log,(Area)
S 50 £ g,
5 = I 75 L2 l”
IE S o 100 o 100
B 125 E 128
15.0 15.0
-
-3
" i
-20 -10 =20 -10
Axis 1 [87.9%] Axis 1 [82.3%]
C D .,
[2) @
3
S
s &
g . Log,(Area) .g _ B Log,(Area)
3 & I 50 g g I
o 2 T2 s
< = 75 [
2 9 Lo Y .
w® X 125 2 B
T 150 o
a

20

-20 0
Axis 1 [98.7%)]

The cof

h 24



40 -

° 30- S
[0 .
Q .
<
) .
m -
5 20 . B
< C ¢
. ° o
10- .
é !
' ]
L]
o L] L]
0_ L]
o W2 Fl0 F9 F8 F7 F6 F5 F4 F3
o o
« « . . .
Sampling sites ordered by decreasing area
L]
40-
- ]
L]
© L]
30-
8 i .
()
C
e
é 20~ .

;gﬁ,d;

O_
O ¥ W R Flo Fe RS R F2 F4 F7
&
Sampling sites ordered by increasing distance to source
L]
40-

w
o
1

(]

ASV Richness
N
o

TELEM

o W F3 F8 F2D Fo Fs F2  F7
?\?’O\) ?g/@\)P::g/G\)P\

Sampling sites ordered by increasing isolation

F4

F2

F10

F1

F1



eprin

)02
020

1orea 12 Jun

Posted on Au

&

REGUA2 n=16 m=5

10 n=16 m=7 F9 n=14 m=5

F8 n=14 m=7

F7 n=13 m=7

F4 n=20 m=8

F2n=t1m=6 F1n=11 m=5

26

Arsenophonus
Wolbachia
Bartonella
Candidatus Phlomobacter
Mycoplasma
Rickettsia
Low Abundance ASVs
= Decreasing area of
sampling sites
n = sample size
m = number of parasite species
node size scaled betweenness centrality




with outlier, p=0.133
without outlier, p=0.033

Leading eigenvector modularity

Protectéd Sites

Vertex Degree

Vertex Betweenness

° Fo

Fragmen.ted Sites

B 0.45-

=
5 040-
S
3
g
1
o
1
2
g
§ o3s-
S
z
030~

) ! o
&&G\w @@O“Pl ?S"C’OP

27

DWﬁ-

Axis 2 [14%)]

~05-

Flo  Fo F8 F7 F5
Sampling site by decreasing area

F8

F5
F F10

F2
®REGUA2

0
Axis 1 [71%)]

oREGUA

F9

[y
REGUA3



