Thermal properties and Fisher information for diatomic molecular Hellman-modified-Kratzer potential model

Akpan Ikot¹, Uduakobong Okorie², Gaotsiwe Joel Rampho¹, Collins Edet³, Precious Amadi ⁴, Ita Akpan⁵, Ridha Horchani⁶, and Hewa Abdullah⁷

¹University of South Africa - Florida Campus
²Akwa Ibom State University
³Federal University of Technology Minna
⁴University of Port Harcourt
⁵University of Calabar
⁶Sultan Qaboos University
⁷Salahaddin University- Hawler

June 15, 2020

Abstract

In this paper, we solved the Schrodinger equation with Hellmann-modified Kratzer potential using Nikiforov-Uvarov-Functional Analysis (NUFA) method. The obtained energy is used to study the numerical results of the ro-vibrational energy spectra for some selected diatomic molecules and their thermodynamic properties. In addition, we also investigated the Fisher information for three diatomic molecules and they all satisfied the Stam-Cramer-Rao inequalities uncertainty relations. Special cases of the potential are discussed and we compute the numerical eigenvalue of the modified Kratzer, Kratzer-Feus and Hellmann potentials for comparison with other analytical methods. The results of the present study agree with the results obtained with other known methods.

Hosted file

Updated NUFA method for Hellman potential @ Ikot.docx available at https://authorea.com/ users/291200/articles/459606-thermal-properties-and-fisher-information-for-diatomicmolecular-hellman-modified-kratzer-potential-model