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Abstract

The hydrological processes in Upper Choctawhatchee River Watershed were modeled using the Soil and Water Assessment Tool

(SWAT) to investigate the impacts of climate and land use change. We integrated land use projection based in the Shared

Socioeconomic Pathways with future climate data to study the combined effects on Hydrological response of the watershed.

Future rainfall and temperature, for two time periods, were obtained using General Climate Models to provide SWAT with the

climatic forcing in order to project water balance variables. The simulation was carried out under two radiative forcing pathways

of RCP4.5 and RCP6.0. Model calibration metrics of NSE, R2, and p-factor were 0.88, 0.89, and 0.68, respectively. Results

revealed increases as high as 2.55 and 2.4 for average annual minimum and maximum temperature, respectively, especially during

Summer and Winter. Average annual precipitation was estimated to increase up to 11% under both emission scenarios; however,

under severe emissions of RCP6.0, it was projected for two decades earlier. Land use change focused on urbanization dominated

the climate changes. Impacts on water balance variables differed seasonally. Results showed surface runoff experienced major

changes under both emission scenarios in some months up to 5 times increase. Among the water balance variables, ET as

the least dominant pathways for water loss, showed the modest changes with the largest decrease during Fall and Summer.

Projection indicated more frequent extreme behavior regarding water balance during midcentury. Discharge was estimated to

increase through the year and the highest changes were projected during Summer and Fall with 186.3% increase in November

under RCP6.0. Relying on rainfall for farming along with reduced agricultural landuse (11.8%) and increased urban area (47%)

and population growth, would likely make the water use efficiency critical. The model demonstrated satisfactory performance,

capturing the hydrologic parameters. It thus can be used for further modelling of water quality to determine the sustainable

conservation practices, extreme weather events such as hurricane and tropical storms.
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Abstract

The hydrological processes in Upper Choctawhatchee River Watershed were modeled using the Soil and Water
Assessment Tool (SWAT) to investigate the impacts of climate and land use change. We integrated land
use projection based in the Shared Socioeconomic Pathways with future climate data to study the combined
effects on Hydrological response of the watershed. Future rainfall and temperature, for two time periods,
were obtained using General Climate Models to provide SWAT with the climatic forcing in order to project
water balance variables. The simulation was carried out under two radiative forcing pathways of RCP4.5
and RCP6.0. Model calibration metrics of NSE, R2, and p-factor were 0.88, 0.89, and 0.68, respectively.
Results revealed increases as high as 2.55 and 2.4 for average annual minimum and maximum temperature,
respectively, especially during Summer and Winter. Average annual precipitation was estimated to increase
up to 11% under both emission scenarios; however, under severe emissions of RCP6.0, it was projected for
two decades earlier. Land use change focused on urbanization dominated the climate changes. Impacts on
water balance variables differed seasonally. Results showed surface runoff experienced major changes under
both emission scenarios in some months up to 5 times increase. Among the water balance variables, ET
as the least dominant pathways for water loss, showed the modest changes with the largest decrease during
Fall and Summer. Projection indicated more frequent extreme behavior regarding water balance during
midcentury. Discharge was estimated to increase through the year and the highest changes were projected
during Summer and Fall with 186.3% increase in November under RCP6.0. Relying on rainfall for farming
along with reduced agricultural landuse (11.8%) and increased urban area (47%) and population growth,
would likely make the water use efficiency critical. The model demonstrated satisfactory performance,
capturing the hydrologic parameters. It thus can be used for further modelling of water quality to determine
the sustainable conservation practices, extreme weather events such as hurricane and tropical storms.

Key words: Hydrological Modeling, land use change, Climate Change, , Forested Watershed, , LOCA,
Evapotranspiration.

Introduction:

From different studies and witnessed abnormalities around the globe, it is now clear that climate change has
brought and will bring vulnerabilities. CO2 in the atmosphere has set the record in 2018 since preindustrial
era (1850-1900) (Poloczanska, Mintenbeck et al. 2018). Some individual sites indicate that the level has
been increasing for the year of 2019. Consequently, global mean temperature has been rising 1.5 above
preindustrial (1850-1900) era (Poloczanska, Mintenbeck et al. 2018). Other key indicators of the critical
situation are Sea Level Rise (SLR) and Sea Ice Extent (SIC); both are the direct consequence of greenhouse
gas (GHG) increase in the atmosphere. SLR has hit the record in 2019 of 3.2 mm/year during the 1993-2019
period and also Arctic extent has been decreasing (Poloczanska, Mintenbeck et al. 2018). On the local
scale, the warming has consistent with the weather and climate variabilities related to climate change; North
America has been unusually cold due to the crisis (Poloczanska, Mintenbeck et al. 2018). These changes
have changed and will continue to change the climate, making the weather harsh. Extreme precipitations,
more frequent hurricanes, intense tropical cyclones, unexpected thunderstorms and tornados, sever cold
breaks, prolonged droughts, and seasonal timing shifts are expected to be common (Groisman, Knight et al.
2005; Diffenbaugh, Scherer et al. 2013; Emanuel 2013; Diffenbaugh, Swain et al. 2015; Gao, Leung et al.
2015; Sobel, Camargo et al. 2016). These threats not only target human communities but also do threaten
ecosystems functionality.

Climate models have proven to be reliable enough to take actions against climate change reverse impacts. A
projected hydrological model has the ability to plan for management practices in a given watershed. Hydro-
logical projections have been studied by researchers around the globe at local and global scales. Significant
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changes in hydrological regimes in most part of the land surface of the planet will be likely to occur by mid-
century (2050) or they are sensitive to global mean temperature below 2 (Arnell and Gosling 2013). AR4
(Field, Barros et al. 2012) of IPCC reported low confidence on the anthropogenic climate change footprints
in flood records, which was due to limited instrumental records in terms of space and time. However, regard-
ing impact on hydrological cycle like precipitation and snowmelt, and earlier spring peak flows, the report
showed medium to high confidence which the latter was very likely (Field, Barros et al. 2012; Georgakakos,
Fleming et al. 2014). Hydrological projections indicate sensitivity of flood frequency and climate change
will be the partial reason for increasing flood likelihood on the global scale (Cisneros, BE et al. 2014). Cli-
mate change will adversely change streamflow and water quality and consequently will jeopardize freshwater
ecosystems (Cisneros, BE et al. 2014). The projections also reveal medium to high level of confidence in
posing risk to potable water (Cisneros, BE et al. 2014).

In Southeast of the US, seasonal drying has been observed for spring, fall , and winter and in summer
the soil moisture has increase during 1988-2010 (Georgakakos, Fleming et al. 2014). Although potential
evapotranspiration (PET) has projected to increase, evapotranspiration (ET) as the 2nd largest component
of the hydrological cycle requires further studies to see possible implication of the causes like soil moisture in
future ET trends (Georgakakos, Fleming et al. 2014). Projections for annual runoff and consequent stream
flow in the Southeast indicate declines, which is consistent with long-term (multi-seasonal) droughts that
are projected for the Southeast (Georgakakos, Fleming et al. 2014).

River floods are more complex to be considered as the direct result of the heavy precipitation and topography,
soil moisture, channel condition, and anthropogenic influences are thought to play the key roles (Georgakakos,
Fleming et al. 2014). River floods have been decreasing in most part of the Southeast at least 6% percent
per decade (Villarini, Serinaldi et al. 2009; Georgakakos, Fleming et al. 2014). Areas close to the Golf Coast
have been hit by hurricanes several times in recent years. Catchment specific characteristics like seasonality
and storm frequencies have implications in the flood peaks (Villarini and Smith 2010). Since it is difficult to
carry out a reliable projection for very heavy rainfall, it is necessary to study hydrological feedback of the
area to the storms. Few studies like Ge Sun et.al., (2013) have studied the impact of climate change on the
entire southeast and demonstrated the importance of water supply stress using projections by 2050. They
showed increase in runoff and sediment yield due to increase in erosivity and/or vegetation cover loss. They
also stated that climate change and possible future stressor like population growth, land use change, energy
security, and policy shift would interact with surface and groundwater availability (Sun 2013).

The Southeast in past has experienced political tensions over water resources (Manuel 2008). Projected warm
weather will increase ET, leading to reduced water availability and ground water recharge (Ingram, Dow et al.
2013; Sun 2013; Walsh, Wuebbles et al. 2014). Uptake of soil water by forests is expected to increase, leading
to decline in water yield under increased temperature and decreased precipitation projections (Ingram, Dow
et al. 2013). Projected population growth and land use change will worsen the situation and pose threat
on the economy and unique ecosystems; and land use change in Southeast which ultimately exacerbates
the water scarcity, is faster than any other areas in US (Carter, Jones et al. 2014). Future trends derived
from projections for 2010-2060, show 5 to 6.5 % decrease in the net water yield for the western part of
the Southeast region including Alabama (Sun 2013). Projected temperature extremes are noticeable in the
Southeast region. Projections show 4.3 and 7.72 rise by mid-century (2036-2065) and late-century (2071-
2100) under RCP 8.5 respectively (Vose, Easterling et al. 2017). The historical changes for temperature
extremes, however, showed insignificant warming of 0.6 (difference between mean of ,1986-2016 and 1901-
1960) for the Southeast, which was the smallest increase over the continental US (Meehl, Arblaster et al.
2012; Vose, Easterling et al. 2017). Projections under RCP 8.5 by mid-century also reveal 40-50 days per
year with temperature greater than 32 as a key temperature threshold (Vose, Easterling et al. 2017). For
changes in numbers of nights below 0, projections (2041-2070 compared to 1971-2000) show increase of 10-15
days for most the region and more than 20 for the northern part of the Southeast (Katz, Parlange et al.
2003). Southeast is categorized as the second vulnerable to weather and climate disasters in the US for the
past three decades (1980-2012); Hurricanes can be considered as disasters for the coastal area and tornados
and storms are disasters for inland regions where they are close to the Golf and Atlantic coasts (Carter,
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Jones et al. 2014). Many factors contribute to the climate of the Southeast region including closeness to the
Atlantic Ocean and the Gulf of Mexico and El Nino-Southern Oscillation (ENSO), and land falling tropical
weather systems (Katz, Parlange et al. 2003). There are few studies that specifically addressed the effects
of climate change on the southeast. On the other hand, the scope of studies was the entire Southeast of
US and land use change had not been considered to quantify the rapid land use change in the area (Trail,
Tsimpidi et al. 2013). Natural hazards like drought, flood, and in general vulnerabilities produced by
climate, are results of regional behavior not global (Mahmood, Pielke Sr et al. 2010). Also, it is essential
to improve regional projections to determine the mechanisms of the regional forcings and related climate
impacts clearly (NRC and CRC 2005). Although, most studies on hydrological future projections have come
to the conclusion that water balance components including water yield, surface runoff, ET, baseflow will
be affected under in the future under climate scenarios, the hydrological response itself varies depending on
region-specific characteristics, topography geography location, and precipitation regimes (Sunde, He et al.
2017). Previous studies have revealed the general impacts of the climate change for the entire Southeast of the
US. But they have not used the Coupled Model Intercomparison Projects -Phase 5 (CMIP5) downscaled data
with increased robustness and detailed outcome than the Coupled Model Intercomparison Projects -Phase 3
(CMIP3) combined with land use projections. Therefore, in this study, we carried out the investigation on the
subbasin scale and with new developed techniques for data preparation. This study provides greater details
for a better understanding of the hydrological process, leading in sustainable climate change adaptation.
We use SWAT for hydrological modeling and couple it with three representative GCM models in which the
data are downscaled using a new developed method called Localized Constructed Analogs (LOCA). In the
recent past, researcher have used the same methodology, but with different downscaling method and with
predecessors of CMIP5 (Sunde, He et al. 2017; Chen, Marek et al. 2019; Hoyos, Correa-Metrio et al. 2019;
Pandey, Khare et al. 2019). Pandey et.al. (2019) have found decline in blue and green water under both
RCP4.5 and RCP8.5 pathways for their study area. Comparing different GCMs coupled by SWAT, Sunde et
al. (2017) showed decrease in stream flow and increase in ET for their case study. Chen et al. (2017) have
investigated land use change and projected 12% to 20 % decline in crop ET by mid and end of 21st century
respectively (Chen, Ale et al. 2017). Impacts of afforestation and deforestation on hydrological response
have also been studied (McNulty, Caldwell et al. 2013; Sunde, He et al. 2017; Cećılio, Pimentel et al. 2019).
Consistent results have not been an outcome of the impact of forest on water yield (Cećılio, Pimentel et al.
2019). Geographical location of the afforestation in Brazilian Atlantic Rainforest showed small significance
regarding impact on the average stream flow; however, the minimum flow was reduced (Cećılio, Pimentel
et al. 2019). Longer growing season and increased wildfire likelihood and reduction in stream flow were
projected for southeast US forests (McNulty, Caldwell et al. 2013). Hoyos et al. (2019) have investigated
the hydrology response to drought and reported that the watershed feedback relies on climatic mechanisms
and catchment characteristics. Since climate variables should be calculated to investigate the climate change
impact on hydrology of a given watershed, it is necessary to couple improved downscaled GCMs with SWAT
(Pandey, Khare et al. 2019). On the other hand, hydrological cycle response is unique for each watershed due
to the different factors engaged in the process. Thus, it is important to study hydrologic behavior in a smaller
scale with greater details. Therefore, herein, we study the hydrological response of Upper Choctawhatchee
Subbasin (UCS) to address the possible hydrological response under different climate and land use scenarios.
The goals of the study are i) to establish a robust hydrological model for the UCS, ii) to couple the detailed
projections with a new downscaling method and iii) to analyze the response of the UCS regarding future
stressors.

Study Area:

The Upper Choctawhatchee Subbasin (UCS) is in Southeast Alabama. It is a Subbasin of the Hydrologic Unit
Code (HUC) of 03140201 (Seaber, Kapinos et al. 1987). The area is in East Golf Coast Plain physiographic
section of Alabama. It is heavily forested, mainly Evergreen land cover type (FRSE), based on National
Land Cover Database (NLCD) land cover classification derived from Multi-Resolution Land Characteristics
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(MRLC) Consortiums (MRLC-Consortium 2019). The second large land cover is Agricultural Land with 15.4
percentage of the UCS area. The main crops are cotton and peanut. Other crop types are corn, soybean,
pecans, and sorghum (Hinson, Rogers et al. 2015). The percentage of all classes of urban land cover adds up to
8%. It comprises of different land cover classes. Table 1 illustrates the main land use and their coverage area.
The total drainage area is 3940 km2.The UCS is located between longitudes -86 and -85.26 and latitudes 31
and 31.88. The topographic characteristic of the area can be described as alluvial flood plains, prairies, sharp
ridges, and gently rolling hills. Geologic structures are originally made from sediment; these units underlie
the Coastal Plain and consist of sand, gravel, porous limestone, chalk, marl, and clay (Hinson, Rogers et
al. 2015). According to the Index of Biotic Integrity, the biological stream condition of the subbasin and
the Pea River Subbasin (located at the west of the UCS) is as follows: 64% is rated very poor to fair, 30%
Is rated good and 6% is rated excellent (O’Neil, Shepard et al. 2006; Hinson, Rogers et al. 2015). Farmers
have been using traditional ways of irrigation, thus undeveloped agricultural practices as a sign of lack water
management could pose threats to the already-degraded ecosystem. Climate in the region is considered to
be sub-tropical, consequently, it is humid with hot summers and mild winters. Annual mean temperature
is around 18.5. Average daily temperature for cold time of the day is 18.5 as opposed to 32 as the hottest
moment. Average annual precipitation ranges from 1295 mm to 1422 mm (USWeatherService 2019). Figure
1 illustrates the area of study.

3 Methodology

3.1 Spatial data

We incorporated spatial analysis using Geological Information System (GIS) techniques and developed a
code (SWATpy) in Python programming language to semi-automate and perform the analyses. The code
is under development to fully automate the entire modeling process. Python 3 and ArcSWAT version
2012.10.19 (SWAT v2012, rev.667) were used. Soil, Land use, and elevation data (Digital Elevation Model
(DEM)) are in a gridded format. US soil database includes two types of soil data: State Soil Geographic
Database (STATSGO) and gridded Soil Survey Geographic Database (gSSURGO) (SoilSurvey 2019). The
former is in built in SWAT soil database and the later were derived from United States Department of
Agriculture (USDA) (Winchell, Srinivasan et al. 2013). gSSURGO was selected for the modeling due to
greater detail and better performance (SoilSurvey 2019). The UCS soil map has more than 250 soil classes.
The elevation and land use data sets were derived from US Geological Survey (USGS) and Multi-Resolution
Land Characteristics (MRLC) Consortiums, respectively. The Digital Elevation Model (DEM) of 1/3 arc-
second (approximately 10m resolution for the study area) was used. It is a 3DEP (3D Elevation Program)
map (U.S.GeologicalSurvey 2017). The data extent is 1*1 degree. The land use data set is NLCD2016 in 30
m resolution (Yang, Jin et al. 2018); and the corresponding 2001-2006 lookup table was used.

3.2 Hydro-meteorological data

SWAT uses 5 type of daily weather data as input: precipitation, temperature, solar radiation, wind speed,
and humidity (Neitsch, Arnold et al. 2011). For Precipitation and temperature, measured data from weather
stations were used. For other climate variables, we used the model’s Weather Generator (Neitsch, Arnold et
al. 2011). The generated variables are created using statistical data calculated from monthly average values
for the climatic variables within the SWAT weather databases (Neitsch, Arnold et al. 2011; Arnold, Kiniry
et al. 2013). The data used in this study are daily and span from 1998 to 2013.

Big gaps between Land-based weather station (LBWS) can be problematic (Fuka, Walter et al. 2014).
Since we had noticeable gaps between some of the LBWS, two weather data were tested: Climate Forecast
System Reanalysis (CFSR) from the National Centers for Environmental Predictions (NCEP) and LBWS
data. The preliminary result for latter was better. Therefore, the LBWS data were selected. We believe this
is due to the courser resolution of the CFSR data comparing to the distances weather stations. The CFSR
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resolution is 0.5deg latitude x 0.5deg longitude (Saha, Moorthi et al. 2010). A few studies have done the
same analysis and reached the same conclusion (Dile and Srinivasan 2014; Roth and Lemann 2016). Even
though, the distribution of the LBWSs was irregular as opposed to gridded distribution of CFSR data, the
land-based data performed better. SWAT assigns one weather station data to each subbasin (closest LBWS
to the centroid of a subbasin) (Masih, Maskey et al. 2011; Winchell, Srinivasan et al. 2013). There are two
methods to connect LBWS to the subbasins: the centroid method and time dynamic Voronoi tessellation
(Neitsch, Arnold et al. 2011; Andersson, Zehnder et al. 2012; Winchell, Srinivasan et al. 2013; Tuo, Duan
et al. 2016). The former was utilized which had advantages and disadvantages (Cho, Bosch et al. 2009;
Galvan, Olias et al. 2014; Tuo, Duan et al. 2016). Considering the procedure for assigning gauge station in
SWAT, we carried out a sensitivity analysis for our original LBWSs and then three LBWSs were removed
due to false allocation of the weather data.

The observed streamflow data were derived from the National Water Information System (NWIS) of U.S
Geological Survey (USGS). From four stream sites within the UCS, two of them that had representative
location and adequate data were selected. The selected sites (Newton (NW) (USGS2361000) and Bellwood
(BL) (USGS2361500)) have mean daily discharge data since 1921/12/01. The observed discharge data used
for this study spans from 1998 to 2013.

Future climate data:

A set of benchmark emission scenarios referred to Representative Concentration Pathways or RCPs (Moss,
Babiker et al. 2008) are possible development trajectories for the main climate change drivers (Van Vuuren,
Edmonds et al. 2011). Research on the multi-gas emission scenarios were the base of the RCPs development
(Fujino, Nair et al. 2006; Smith and Wigley 2006; Clarke, Edmonds et al. 2007; Riahi, Grubler et al. 2007;
Van Vuuren, Den Elzen et al. 2007; Wise, Calvin et al. 2009). They collectively encompass (extending to
year 2100) radiative forcing values from 2.6 to 8.5 W/m2 relative to year 1750 (59, 27). These scenarios
are as follows: RCP2.6, RCP4.5, RCP6, and RCP8.5. RCP 2.6 is a mitigation scenario and its goal is to
keep the global mean temperature rise under 2 (Moss, Babiker et al. 2008; Moss, Edmonds et al. 2010; Van
Vuuren, Stehfest et al. 2011). The radiative forcing for RCP2.6 increases up to around 3 Watts per square
meter (W/m2) before 2100 and then declines (Meinshausen, Smith et al. 2011; Van Vuuren, Stehfest et
al. 2011). Under RCP4.5 and RCP6, concentration of GHGs are stabilized (without overshoot) after 2100
(Moss, Edmonds et al. 2010). RCP4.5 stops increasing radiative forcing at 4.5 W/m2 by year 2100 and the
forcing becomes constant afterward (Thomson, Calvin et al. 2011). RCP6 pathway controls the increasing
radiative forcing at 6 W/m2without exceeding the value afterward (Masui, Matsumoto et al. 2011). GHGs
emission increase by around 2060 and then decline till 2100 (64). RCP8.5 assumes high population and
slow economic growth which leads to increasing GHGs emissions resulting in radiative forcing as high as
8.5 W/m2 by end the 21st century and it is assumed to rise afterward (Riahi, Rao et al. 2011). Additional
actions are required to halt continuously rising level of GHG concentrations which are due to the growth
of global population and economic activities (Pachauri, Allen et al. 2014). These actions are dependent
upon the political and socio-economic conditions on the global scale (Van Vuuren, Den Elzen et al. 2007;
Van Vuuren, Stehfest et al. 2011). With taking the current global political condition and its possible future
pathway into account, we selected the RCP 4.5 and RCP6.0 as moderate and severe pathways, respectively.

The General Climate Models (GCMs) use these RCPs to produce future climate data. The main source
of climate projections is the modeling results of the Coupled Model Intercomparison Projects (CMIP3 &
CMIP5) (Sunde, He et al. 2017). Since GCMs’ horizontal resolution is low, it is difficult to derive regional
scale climate information from them (Flato, Marotzke et al. 2014). In general, GCM results are not
reliable for models with resolution less than 200 km (Meehl, Stocker et al. 2007). Hydrological processes
occur on a scale (in order of 10km) at which GCMs (resolution of 1o to 2.5olatitude-longitude) cannot
provide reliable results (Kundzewicz, Mata et al. 2007; Pierce and Cayan 2016). Moreover, GCMs are not
able to capture frequency and magnitude of extreme events (Christensen and Christensen 2007; Fowler,
Blenkinsop et al. 2007). Therefore, for important climate variables like precipitation and temperature
it is necessary to use higher resolution. Downscaling techniques have been used rigorously to produce
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climate variables from GCMs on the desired scale for hydrological modeling of climate change impact studies
(Maraun, Wetterhall et al. 2010; Fu, Charles et al. 2013; Sunde, He et al. 2017). Between two types of
the existing downscaling techniques which are dynamical and statistical, we used the statistical downscaling
method. Statistical method downscales GCMs’ output based on the historical relationship between large-
and small-scale conditions (Pierce, Cayan et al. 2014). In this study we used a statistical downscaling
called Localized Constructed Analogs (LOCA). LOCA chooses analog days from observed data and applies
a multiscale spatial matching scheme to estimate suitable downscaled climate variables (Pierce, Cayan et
al. 2014). More realistic regional patterns of precipitation, better estimates of extreme events, and reduced
number of light-precipitation days are the advantages of LOCA (Pierce, Cayan et al. 2014). More information
on LOCA can be found here: http://loca.ucsd.edu/ , (Ficklin and Barnhart 2014).

Considering the complexity of the GCMs, CMIP5 outputs are inevitably biased (Teutschbein and Seibert
2010; Taylor, Stouffer et al. 2012). Bias correction (BC) is the process of transforming GCM outputs using
algorithms in order to adjust the outputs (Teutschbein and Seibert 2010; Chen, Marek et al. 2019). Basically,
biases are detected by comparing the observation and simulation results and then they are used to correct
baseline and projections (Teutschbein and Seibert 2010; Chen, Marek et al. 2019). Bias-corrected inputs
for hydrological modeling improve the result, hence bias correction is needed for GCMs output (Wilby, Hay
et al. 2000; Pierce, Cayan et al. 2015). LOCA as a downscaling technique improved based on constructed
analogs (CA) process contains a bias correction step (Hidalgo Leon, Dettinger et al. 2008; Pierce, Cayan
et al. 2014). The BC in LOCA includes 3 steps. First, a preconditioning technique is used to correct
the annual cycle and then two different distribution techniques are used, one for temperature and one for
precipitation , and finally a frequency-dependent bias correction (FDBC) is used to adjust the sequencing
of variation for different time scale, since the sequencing for GCM outputs potentially differ from observed
ones (Li, Sheffield et al. 2010; Pierce, Cayan et al. 2015). We obtained and analyzed CMIP5 output the
LOCA dataset for three models, CCSM4,GISS-E2-R, and GFDL-CM3, under RCP4.5 and RCP6.0 from
Downscaled CMIP5 Climate and Hydrology Projections (https://gdo-dcp.ucllnl.org/) (Schmidt, Ruedy et
al. 2006; Donner, Wyman et al. 2011; Gent, Danabasoglu et al. 2011; Taylor, Stouffer et al. 2012; Bureau of
Reclamation 2013). The downloaded data are bias-corrected 1/16th degree latitude-longitude (˜6km x6km)
daily precipitation (mm/day), and maximum and minimum temperature (degC) projections. Hereafter the
downloaded dataset, which is downscaled, and bias corrected by LOCA, is referred as “the CMIP5 multi-
model ensemble LOCA”. The LOCA dataset contains future projections under RCP4.5 and RCP6.0 for 32
GCMs for the conterminous US from 1950 to 2099.

In hydrological projection process using GCMs, their initial condition, future scenarios, and hydrological
model incorporate uncertainties to the result (Chen, Brissette et al. 2011). Ouyang et al. (2015) have
concluded that different result of the future projections are partially due to the different climate models
(Ouyang, Zhu et al. 2015). Considering the numerous numbers of the GCMs and the variability they could
cover based on the model skill and independency, we selected the three models to be able to analyze broad
extents of changing climate variables within the UCS; in this way we were able to address the uncertainty
(Sanderson, Knutti et al. 2015; Sanderson, Knutti et al. 2015; Sunde, He et al. 2017). Locating and Selecting
Scenarios Online (LASSO) tool from Environmental Protection Agency (EPA) ( https://lasso.epa.gov/) was
used to filter out the selected model from 32 GCMs. Through the different steps of the tool, we have examined
climate parameters variabilities with two time periods (annual and seasonal) and selection strategies to reach
the goal of three representative models. Models’ name, their associated institution, type of experiment,
and ensemble member are shown in Table 4. For the ensemble member names, the number after r is the
‘realization’ number and is used to identify the initial condition. The number after i is ‘initialization method
indicator’ and the number after p refers to model versions with the same perturbed physics (Taylor, Balaji
et al. 2011). The listed ensemble members are different only in their initial condition.

Scenario development:

Two projection period, both under RCP4.5 (moderate) and RCP6.0 (severe) were presented, mid-century
(2040-2069) and late-century (2070-2099). The results of hydrological simulation were shown in monthly,
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seasonal, and annual time scales. The seasons were defined as DJF (winter: December, January, February),
JJA (summer: June, July, August), MAM (spring: March, April, May), and SON (fall: September, October,
November).

SWAT incorporates CO2 to account for its impact on plant water requirements and on level of the potential
evapotranspiration (PET) (Neitsch, Arnold et al. 2011). It takes the CO2concentration amount as a single
input value for each subbasin. The CO2 concentration values for the historical and future projections are
shown in Table 5. The values are derived from Meinshausen, Smith et al. (2011).

Projected population for the conterminous US indicates significant increase in demand for food, energy, and
urban development (Sohl, Sayler et al. 2014). From 2001 to 2011, the Southeast region (AL, AR, FL, GA,
KY, LA, MS, NC, SC, TN, and VA) has lost more than 100 and 1400 sq2 agricultural land and forest,
respectively, and gained 600 sq2 developed land cover (Sleeter, Loveland et al. 2018). For UCS and Pea
and Yellow River Subbasin, farming land decreased 27.21% and urban area increased 42.55% from 1992 to
2011 (Hinson, Rogers et al. 2015). Regarding land use condition in the future, there have been few studies
(national US and global scale) based on different scenarios including Special Report on Emission Scenarios
(SRES) (96) , RCP, and Shared Socioeconomic Pathways (SSP) (95) of Intergovernmental Panel for Climate
Change (IPCC) (Nakicenovic, Alcamo et al. 2000; Wear 2011; Sohl, Sayler et al. 2014; Sohl, Wimberly et al.
2016; Riahi, Van Vuuren et al. 2017; Sleeter, Loveland et al. 2018). Sohl et al. (2014) using different land
use forecasting model, has predicted 22.9% to 61% increase in urban land cover for conterminous US by the
year 2050. They projected noticeable loss of natural covers which was due to expansion of anthropogenic
land uses. The fourth National Climate Assessment reported 50% and 80% increase in urban land use
allocation by 2100 under SSP2 and SSP5 respectively with 2010 land use condition as the baseline (Sleeter,
Loveland et al. 2018). To account for these changes, we obtained and analyzed projected land covers for
each decade till 2100 from Fourth National Climate Assessment dataset through Global Change Explorer
(GCX) ((GCX) 2020). These maps are based on SSP scenarios with 19 land cover classes (Bierwagen,
Theobald et al. 2010; (EnvironmentalProtectionAgency) 2017). One possible caveat though, is that there
is not much agreement between different forecasting models and they appear to be at the beginning stage
of development (Sohl, Wimberly et al. 2016). Future projection results for all models in this study were
presented in monthly, seasonal, and annual average and compared to the historical result to analyze the
future hydrological condition within the UCS. Then we did the same comparison for SWAT simulation,
mainly discharge. Corresponding land use projections to projection periods (mid-century and end-century)
were used in SWAT modeling to simulate the discharge and evapotranspiration (ET). Finally, we used box
plots to show the changes of the climate and hydrological variables.

SWAT: For this study we used Soil & Water Assessment Tool (SWAT). SWAT is assemblages of mathe-
matical equations representing different parts of hydrological cycle including movement, fate, and transport
of water, sediments and nutrients in and on soil, through groundwater, and in river streams and reservoirs
(Arnold, Srinivasan et al. 1998; ASABE Jun. 2017). The development of the model started in early 1990s
and it has been evolving by USDA (United States Department of Agriculture) agricultural Research Service
(ARS) (Gassman, Reyes et al. 2007; Arnold, Moriasi et al. 2012). It is a process based and semi-distributed
continuous-time river basin scale model (Arnold, Kiniry et al. 2011; Arnold, Moriasi et al. 2012). It has
been written in Fortran language including more than 310 subroutines representing different parts of the
hydrological and bio-geochemical processes (Arnold and Fohrer 2005; Arnold, Kiniry et al. 2011). It was
originally developed to evaluate water resources management and Nonpoint Source (NPS) pollution in large
river basin (Arnold, Moriasi et al. 2012). It has proven to be effective for its purposes and computation-
ally efficient and can be used for long term continuous simulation including climate change impact studies
(Gassman, Reyes et al. 2007; Arnold, Moriasi et al. 2012). It operates on a daily time step and outputs
daily, monthly, and yearly results (Gassman, Reyes et al. 2007; Arnold, Moriasi et al. 2012). SWAT splits a
watershed into subwatersheds that are further split into hydrologic response units (HRUs) (Gassman, Reyes
et al. 2007; Arnold, Moriasi et al. 2012). HRUs are nonspatial units and unique combination of homoge-
neous land use, soil, slope and management characteristics (Gassman, Reyes et al. 2007; Arnold, Moriasi et
al. 2012). This gives SWAT the capability to model surface runoff, infiltration, soil water movement, ET,
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in-stream transformations, sediment movement, canopy interception, plant uptake, and nutrients circulation
including biogeochemical processes at HRU level (Neitsch, Arnold et al. 2011). Main components of a
SWAT model for a given watershed are weather, hydrology, erosion/sedimentation, plant growth, nutrients,
pesticides, agricultural management, stream routing and pond/reservoir routing (Arnold and Fohrer 2005).
Simulation in SWAT has two parts, land phase and routing phase; in land phase, the amount of water,
sediment, nutrient, and pesticide loadings are regulated into the main channel in each subbasin, and in the
routing phase, in- stream processes including water movement, sediment transport and the nutrients loading
are simulated (Neitsch, Arnold et al. 2011; Arnold, Moriasi et al. 2012). In SWAT, Water balance is the
base of all the processes and the hydrological cycle is climate driven, thus, SWAT requires precipitation,
minimum and maximum temperature, solar radiation, relative humidity, and wind speed in daily time scale
(Arnold, Moriasi et al. 2012).

SWAT uses equation (1) to simulate water balance (Arnold, Srinivasan et al. 1998; Neitsch, Arnold et al.
2011):

SW = SW0 +

t∑
i=1

(Rday −Qsurf−Ea − wseep −Qgw) (1)

where SW and SW0 are soil water content for beginning and end of the model, respectively. t (day) is
time.Rdayis rainfall; Qsurfis surface runoff;Eais evapotranspiration; wseepis percolation to vadose zone, and
Qgw is return flow amount, and all variables are in mm (Arnold, Srinivasan et al. 1998; Neitsch, Arnold et
al. 2011).

Water yield as part of subbasins blue water is the amount of water after leaving HRUs and entering the main
channel is calculated with equation (2) (Neitsch, Arnold et al. 2011; Arnold, Kiniry et al. 2013; Veettil and
Mishra 2016):

WY LD = Qsurf + Qlat + Qgw − tloss − Pond abstractions (2)

where WYLD is the amount of water yield, Qsurfis surface runoff, Qgw is return flow amount, Qlat is the
amount of lateral flow, tloss is transmission losses, and the abstracted water from the pond; all variables are
in mm (Arnold, Kiniry et al. 2013; Chanapathi, Thatikonda et al. 2018; Pandey, Khare et al. 2019).

In SWAT surface runoff can be estimated in two ways: SCS (Soil Conservation Service) runoff curve num-
ber method (USDA-SCS, 1972) and the Green & Ampt infiltration method (1911) (Neitsch, Arnold et al.
2011)(45). We used the former. Equation (3) is SCS runoff curve number method (Arnold, Srinivasan et al.
1998; Neitsch, Arnold et al. 2011):

Qsurf =
(Rday − 0.2 S)

2

(Rday + 0.8 S)
Rday > 0.2S (3)

Qsurf = 0 Rday ≤ 0.2S

where Qsurfis surface runoff; Rdayis rainfall; and S is retention parameter. 0.2S is estimated as the initial
abstraction including surface storage (Neitsch, Arnold et al. 2011). Retention parameter varies through the
watershed and time owing to changes in soil, land use and management (Neitsch, Arnold et al. 2011). S is
estimated as follows:

S = 254 (
100

CN
− 10) (4)
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where CN is the curve number which is adjusted for different soil moisture level and slope (Neitsch, Arnold
et al. 2011).

For surface runoff equation 3 was used. For flow routing the variable storage coefficient method were used
(Williams 1969; Neitsch, Arnold et al. 2011). Since our modeling required simulation of CO2 climate change
effects, the Penman-Monteith method was used for calculation of potential evapotranspiration(Monteith
1965; Allen 1986; Allen, Jensen et al. 1989). Actual evapotranspiration (AET) the was calculated by
procedure established by Richtie (1972) (Ritchie 1972). The UCS was delineated into 54 subbasin and 1821
HRUs. ‘SWAT2012 rev64’ version was used to perform the modeling.

Calibration :

calibration can be manually done or through a combination of manual and auto calibration procedures
(Moriasi, Wilson et al. 2012). Our approach to calibrate and validate was the later through a split-sample
strategy (Moriasi, Wilson et al. 2012). To evaluate the performance of the model we have first carried out a
sensitivity analysis (SA) manually and then using SWAT Calibration and Uncertainty Procedures (SWAT-
CUP) to filter out insensitive parameters to reduce the computational workload of the calibration (Gupta,
Sorooshian et al. 1999; Saltelli, Tarantola et al. 2004; Abbaspour, Vejdani et al. 2007; Ghoraba 2015).
Sensitivity analysis is to estimate how much model outputs change with respect to each model parameter
(input) change (Saltelli, Tarantola et al. 2004; Arnold, Moriasi et al. 2012). First a set the parameters were
selected according to UCS hydrologic characteristics and the literature (Abbaspour, Yang et al. 2007; Joh,
Lee et al. 2011; Sudheer, Lakshmi et al. 2011; Arnold, Moriasi et al. 2012; Abbaspour, Rouholahnejad et
al. 2015; Osei, Amekudzi et al. 2019; Qiu, Shen et al. 2019). Then using one-factor-at-a time sensitivity
analysis initial parametrization was carried out and parameters were optimized and their initial ranges were
predicted (Morris 1991; Green and Van Griensven 2008; Abbaspour, Rouholahnejad et al. 2015). After
a set of manual calibration using first set of the parameters, we used SWAT-CUP to modify the selected
parameters and perform sensitivity and uncertainty analysis (Arnold, Moriasi et al. 2012). We used the
Sequential Uncertainty Fitting version algorithm (SUFI2) within SWAT-CUP (Abbaspour, Johnson et al.
2004; Abbaspour, Yang et al. 2007). The SUFI2 is based on the invers modeling and is to estimate parameters
using observed data (Abbaspour, Johnson et al. 2004; Abbaspour, Yang et al. 2007). In other words, it uses
initial large parameter uncertainty and through steps, decrease the uncertainty until the uncertainty range
falls within a range/band called 95% Prediction Uncertainty (95PPU) (Abbaspour, Johnson et al. 2004;
Abbaspour 2015). SUFI2 uses a global search approach to carry out optimization and uncertainty analysis
and it can handle many parameters (Abbaspour, Johnson et al. 2004; Abbaspour 2015). For accuracy
quantification of the model, our objective function includes Nash–Sutcliffe Efficiency (NSE), Coefficient of
Determination (R2), Percent Bias (PBAIS), RMSE-observations standard deviation ratio (RSR) (Nash and
Sutcliffe 1970; Gupta, Sorooshian et al. 1999; Legates and McCabe Jr 1999; Moriasi, Arnold et al. 2007).
The metrics for satisfactory thresholds were selected based on the literature (Santhi, Arnold et al. 2001;
Moriasi, Arnold et al. 2007; Abbaspour, Rouholahnejad et al. 2015). Table 6 shows the objective function
and the thresholds of the metrics and final results for calibration and validation period. Following are the
formulas used for these metrics.

NSE = 1−

[ ∑n
i=1

(
Y obs
i − Y sim

i

)2∑n
i=1

(
Y obs
i − Y mean

)2
]

, −∞ < NSE ≤ 1 (5)

R2 =

 ∑n
i=1

(
Y obs
i − Y mean

i

) (
Y sim
i − Y simmean

)[∑n
i=1

(
Y obs
i − Y mean

i

)2]0.5 [∑n
i=1

(
Y sim
i − Y simmean

)2]0.5

2

, 0 ≤ R2 ≤ 1 (6)

PBAIS =

[∑n
i=1

(
Y obs
i − Y sim

i

)
× (100)∑n

i=1

(
Y obs
i

) ]
, −∞ < PBAIS < +∞ (7)
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RSR =

[√∑n
i=1

(
Y obs
i − Y sim

i

)2]
[√∑n

i=1

(
Y obs
i − Y mean

)2] , 0 ≤ RSR < +∞ (8)

where Y obs
i is the i th measured stream flow;Y sim

i is i th simulated stream flow;Y mean is the mean of observed
stream flow data;Y simmean is the mean of simulated data, n the total number of observations.

NSE value between 0.0 and 1 is considered acceptable with 1 being the optimal value indicating the plot of
observed versus simulated fits perfectly (Nash and Sutcliffe 1970; Moriasi, Arnold et al. 2007). For R2, the
higher the value the lesser the error variance and values greater than 0.5 are considered to be acceptable
(Santhi, Arnold et al. 2001; Moriasi, Arnold et al. 2007). Negative PBIAS means overestimation and posi-
tive PBIAS means underestimation, with 0 being the optimal value. RSR ranges from 0.0 to a positive large
number, with 0.0 being the optimal condition meaning the RMSE is zero. The lower RSR, the lower residual
variation, indicating better model performance (Moriasi, Arnold et al. 2007). NSE, R2, and RSR are unitless
and PBAIS has the unit of the constituent being evaluated which for our case is cms (m3/s). The global
sensitivity analysis (where all parameters are allowed to change through analysis) were carried out through
SWAT CUP to prioritize the most responsive parameters and remove parameters with smaller sensitivity
from further sampling (Abbaspour, Yang et al. 2007). Through the SA, a multiple regression analysis was
used to determine the parameter sensitivity statistics (t-stat and p-value) (Abbaspour 2015). t-stat and
p-value were used to describe the relative significance and significance of sensitivity, respectively (Chanap-
athi, Thatikonda et al. 2018). Sensitive parameters correspond to larger absolute t-stat values among the
parameters and to smaller p-values (close to 0; commonly accepted threshold is 0.05) (Abbaspour 2015). The
SA results are shown in Table 7. Based on the sensitivity analysis the following parameter were identified as
responsive: SOL AWC (Available water capacity of the soil layer), RCHRG DP (Deep aquifer percolation
fraction), CH K2 (Effective hydraulic conductivity in main channel alluvium), SLSUBBSN (Average Slope
Length), ESCO (Soil evaporation compensation coefficient), GWQMN (Threshold water level in the shallow
aquifer for the base flow), and ALPHA BF (Baseflow alpha factor). Table 8 shows final parameters and
their fitted values. It is worth to mention that the SA result is the prediction of the average changes of the
objective function being produced by changes in a given parameter as other parameters are also changing
(Khalid, Ali et al. 2016). p-factor and r-factor were also considered for SUFI2 performance evaluation as well
as measuring the goodness of calibration (Abbaspour, Johnson et al. 2004; Abbaspour, Yang et al. 2007). p-
factor is the percentage of observations covered by the 95PPU and r-factor is the ratio of the 95PPU average
thickness and the standard deviation of the observations (Abbaspour 2015; Abbaspour, Rouholahnejad et
al. 2015). The extent from 2.5% to 97.5% of the cumulative distribution of the simulated variable resulting
from the Latin hypercube sampling is 95PPU (Abbaspour, Johnson et al. 2004; Abbaspour, Yang et al.
2007; Abbaspour, Rouholahnejad et al. 2015). p-factor ranges from 0 to 1; p-factor greater than 0.7 means
acceptable goodness of fit; r-factor varies between 0 and infinity; here r-factor less than 1.5 was considered
satisfactory (Abbaspour, Johnson et al. 2004; Abbaspour, Yang et al. 2007; Abbaspour 2015; Abbaspour,
Rouholahnejad et al. 2015). Table 6 shows the goodness of fit metrics. The selected parameters were used
to calibrate SWAT at two USGS site (Newton (USGS2361000) and Bellwood (USGS2361500)) for subbasins
29 and 52, respectively. Observed data from the later site is used for SA and uncertainty analysis. The
number of simulations was 450 with 4 iteration. SWAT was performed for period from 1998 to 2013. From
1998 to 2000 was considered as warm up; from 2001 to 2010 was the calibration period and from 2010 to
2013 was the validation period. Given the final values for the model performance metrics (Table 6) and the
accepted thresholds, it was determined SWAT stream flow estimation for the UCS was efficient. Figure 2
shows the calibration result for both calibration (2001-2010) and validation period (2011-2013).
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Results and Discussion:

The CMIP5 multi-model ensemble LOCA results for precipitation and temperature during baseline period
show consistency with the observed values (Figure 3). Between the 3 models, GFDL-CM3 has the closest
distribution to the observed precipitation with the 6.8% median difference and the closest number of outliers.
The 25th percentile for the observation and GFDL-CM3 are 71.4 and 74.68 respectively. 75th percentiles
are the same (148.3). Therefore, it indicates similar distribution. Figure 3b illustrates the temperature
distribution for the observed and baseline period. It represents quiet similarity, especially for model GFDL-
CM3, where the distance is between 25th and 75th percentile and the whiskers’ length are the same. The
median difference of models (CCSM4, GFDL-CM3, GISS-E2-R) from the observed ones are 4.2%, 2.6%, and
4.7% respectively. We also compared the baseline ET from the climate data with the observation period
(Figure 3c). Figure 3c also demonstrates similar distribution from 25th to 75th percentile from all dataset.
However, upper whiskers for the observation is longer. This difference has no implication on the study, since
here, we are not focused on extreme weather situation.

Average maximum and minimum temperature has important repercussions on hydrological implications.
Figure 4 and 5 illustrate temperature behavior on daily and seasonal base, respectively. Figure 4 represents
monthly average of basin-wide daily maximum temperature (Figure4b), monthly average of basin-wide daily
minimum temperature (Figure 4c) and monthly average of basin-wide daily temperature (Figure 4a). For
average temperature (Figure 4a) models match the observed average temperature, from mid-March to June
(Spring) and from mid-September to mid-November (Fall). For Winter (DJF) and Summer (JJA), however,
there are differences up to 1. This trend is the same of maximum temperature (Figure 4b) and minimum
temperature (Figure 4c). However, the discrepancies for maximum temperature during Summer (the peak
of the graph) and for minimum temperature during Winter (the legs of the graph) are more noticeable. This
behavior indicates the more extreme the temperature, the more the difference between the models and the
observed data. This also can be seen in daily temperature representation of the subbasin (Figure 5). On the
figure, intensified wiggling behavior of the graphs at the troughs and sometimes at the peaks supports the
idea. This specially is more obvious in months of December and January.

Figure 6 shows the monthly average of precipitation, ET, water yield, and surface runoff for 10 year for
both the beasline and observed period. From mid-March to mid-June, and September and November, the
average observed rainfall is the same as the models prediction with negligible differences. During Summer
and Winter, however, there exist some discreppencies. These discrepencies could be attributed to the model
baises. As SWAT model uses these model results as climate data, the baises can be projected to the simulated
hydrological results such as ET, water yield, and surface runoff. Model predictions for ET (Figure 6b) match
with the observed data except during summer with small differnces up to 8% in July. Highest level of water
yield occurs during the month March (Figure 6c) where the differnces with the model predictions is around
13%. During Spring, Summer, and Fall models perdict the amount of average water yield close to the
observed data. Since surface runoff amount and water yield are linked, the yearly pattern of surface runoff
follows the water yield pattern. Surface runoff is understimated. For example in March when the highest
amount of surface runoff happens through the year, the models predictions is 17% low for CCSM4 and GISS-
E2-R and 11% low for GDFL-CM3. This difference is due to land use changes through the time period.
Therefore, it indicates the biases of the land use map. In this study, we have not looked for extreme events
that partially acount for these biases. Thus, considering the different source of inevitable baises it can be
concluded that the results based on the models are reliable

Future climate and hydrological condition:

Observed annual average percipitation in UCS for observation period is 1440 mm. For the omission scenarios
(moderate and severe) and perojected future time period (mid-century and late-century) considered in this
study, annual average rainfalls vary from 1486 mm to 1569 mm (table 9). Average annual maximum and
minimum temperature for baseline period are 13 and 26 respectively. The projected average annual maximum
and minimum has increases ranging 0.98 -2.4 and 1.55-2.55 , respectively.
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Figure 9 demonstartes the monthly behavior of the projected tempertaure (average, maximum, and mini-
mum) thruogh a year for the entire simulation period (2040-2099). The projecte maximum and minimum
temperature shifts above with increases up 3 in June, July, and August during mid-century. There are
not noticeable changes between moderate and sever emission scenarios for mid-century, except in summer,
where changes are up 1. For the late-century period, however, changes are significant (Figure 9 lower panel).
Projected increase for RCP6.0 is doubled compared to the projected increase in temperature under RCP4.5
during late century. For both mid and late century temperature increases for Spring and Fall is not as high
as increases in Summer and Winter. This indicates a general warming weather with hotter Summer and
Winters that could potentially lead to seasonal time shifting and early snow melts and consequently changes
in hydrological cycle in UCS. The annual trend of average, maximum, and minimum temperature behavior
shown in Figure 10 supports these changes towards the end of the century. The upper panel shows average
annual temperature under RCP4.5 and RCP 8.5. The regression line under severs emission scenarios are
steeper indicating more increase as we approach towards the end of the century. Maximum and minimum
temperature (the mid and lower panel on Figure 10) also have the same trend. These changes have been
quantified in Table 9. Maximum and minimum temperature is projected up to 10% increase by 90s under
moderate scenario and 30% increase under sever scenarios compared to baseline period. Table 9 also reflects
decadal percent change of rainfall. Based on the models and under moderate scenarios, annual rainfall is
projected to increase slightly (Figure 11). However, under sever scenarios no pattern was found. For in-
stance, average precipitation for 40s under RCP4.5 is projected to decrease 6.33% and 1% increase during 90s
compared to baseline period. Under RCP6.0, however, for 40s, precipitation change is projected to be 6.8%
decrease and for 90s is 8.45% increase. This pattern implicates the wiggling behavior of the precipitation
which can implicate extreme precipitation.

Annual and seasonal impacts of future climate on water regime:

To obtain data required for future water regime, the CMIP5 multi-model ensemble LOCA was integrated with
SWAT model. We then derived precipitation, surface runoff, water yield, ET, and discharge for Bellwood
(USGS2361500) monitoring point. We analyzed the data at monthly, seasonal, and annual scales (Figure
10-13). Table 10 represents the projected mean annual changes to hydrological components for the entire
simulation period and each decade. Mean annual change to the discharge at Bellwood station has an
increase of 30.45% under moderate scenario and 29.67% increase under the severe scenarios during the entire
simulation period. Similarly, mean annual surface runoff during the period has significantly increased with
337.4% and 325.66% under moderate and severe scenarios, respectively. Water yield also has shown increase
of 18.34% and 18.08% under moderate and severe scenarios through the entire period. Slight decreases of
0.8% under moderate scenario and 2.46% under severe scenario were observed to mean annual ET during
the entire simulation.

Table 10 indicates the simulated mean annual changes to water balance components for mid-century and late-
century period. During mid-century mean annual discharge at Bellwood station was estimated to increase
by 24.2% under RCP4.5 and 32.93% under RCP6.0. for late century. However, the mean annual discharge
at the station shows 36.72% increase under RCP4.5 and 26.4% increase under RCP6.0. Under the severe
scenario, despite the increased urbanization, the discharge amount at the station is projected to decrease
towards the end of the century. It can be suggested that the last decade of water balance variables has
been affected dramatically (Table 10). Average annual surface runoff during the mid-century is estimated
to increase by 286.3% under RCP4.5 and 315.5% under RCP6.0. Mean annual surface runoff continues to
increase during the late-century by an average increase of 388.5% under moderate scenario and 335.9% under
the severe emission scenarios. These changes indicate the significant impact of the land use change on water
balance variables. Increases to mean annual water yield were observed under both scenarios of moderate
and severe emissions by 12.55% and 21.42% during mid-century. During late-century, average annual water
yield is expected to increase by 24.14% under RCP4.5. For RCP6.0, however, average annual water yield is
estimated to increase by 14.73% compared to baseline period. Increase in mean annual water yield under
RCP6.0 compared to the increase under RCP4.5 is much smaller during the late-century. This is partially
due to the dramatic drop of the hydrologic components during the 90s. Unlike the other variables, slight
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decreases occur to mean annual ET during the mid and late century. For mid-century, a decrease of 0.63%
and 0.01% respectively under the moderate and severe scenarios, is estimated. During late-century, average
annual ET decreases further with 0.95% and 4.92% under RCP4.5 and RCP6.0, respectively.

Figure 10 shows the mean annual trend of water balance variables (surface runoff, water yield, and ET) during
the simulation period based on the models and under the scenarios. The regression line for the surface under
both scenarios indicate the increase during the entire simulation period. For water yield under moderate
scenario the regression lines for all models are slightly steep. The regression slope, however, increases under
the severe scenario. Annual trend towards end of the century, shows obvious decrease for ET under sever
emission scenarios.

Basin-wide monthly average of the hydrological components is informative in investigating the water balance
behavior of the watershed. The hydrological response to projected climate data in UCS changed for each
month. Table 11 and Figure 11 illustrate these changes based on the models under both scenarios. During
mid-century, under moderate GHG emission the largest changes to precipitation is projected in May (during
flooding season) with increase of 48.5% compared to mean rainfall in the same month during the baseline
period. For January, February, and March, it increases 18.9%, 22.6%, and 27.4%, respectively. The largest
decrease in rainfall, however, is estimated in August and October with 23% and 26.7% respectively (RCP4.5,
Mid-century). During the late-century under RCP4.5, the largest increase and decrease are projected in
March with 36.1% and in August with 26.1%, respectively. For the severe emission scenario, the largest
rainfall increase and decrease during mid-century are in January (41.8%) and December (21.1%), respectively.
For the late century, however, precipitation decreases overall. The largest increase is expected to happen in
September (29.9%) and the largest decrease in October (39.2%). Overall, August, October, and December
are expected to be drier and January, March, and May are expected to be significantly wetter through the
entire simulation period under both scenarios (Table 11 and Figure 11). Similar to mean annual behavior of
surface runoff, monthly estimates are also projected to increase dramatically. Under both scenarios, June has
the highest increase of up to 5 times baseline period in monthly basin-wide surface runoff. The second highest
increase is expected to happen in January with up to 4 times of the baseline period. The smallest increases
in monthly mean surface runoff is projected in December with the lowest increase under RCP6.0 during
late-century (36.2%) (Table 11 and Figure 11). Monthly behavior of water yield amount differs from rainfall
and surface runoff. Under RCP4.5, overall water yield is projected to be higher than that of mid-century.
The largest changes under the moderate scenario is estimated in February (+58.6%) and March (+62.1%)
during late century and in June (+42.9%) and July (+44.4%) during mid-century (RCP4.5). Under the
moderate scenario water yield is estimated to decrease during mid-century in December by 12.4% and in
August by 6.3%. Mean water yield for each month indicates different behavior under the sever emission
scenario than expected. Under RCP6.0 and during mid-century, January and June, and October have the
increase of 58.4%, 62.7%, and 53.7%, respectively. Through the late-century, however, November has the
largest increase of 99.4% in water yield amount. Under RCP6.0, water yield decreases only in December
though the entire simulation period (Table11 and Figure 11). Overall ET is expected to decrease slightly. For
all months mean ET drops except for April and May. Under both scenarios the largest decrease is estimated
in November with close to 20% drop. From the Figure 11, one can notice the level of decrease in ET during
Summer and Fall. Monthly discharge projection is shown in Figure 12 and Table 11. Under both scenarios
discharge is estimated to decrease in April and December at Bellwood station with the largest drop of
31.2% in December during the mid-century under sever emissions. In other months, discharge is expected to
increase. During the mid-century, the largest increase is observed in July (106.7%) and September (115.7%)
under RCP4.5 and RCP6.0, respectively. During the late-century, February, July, and November have almost
the same discharge under the moderate emissions. For the severe emission conditions, however, September
and November have the highest increase of 133.7% and 186.3%, respectively. The discharge projections
indicate increases in the months in which rainfall is expected to decrease. This can be attributed to the land
use change.

Seasonal variations are also expected in hydrological response to future climate data. Interquartile range
(IQR) can be used to express this variability (Figure 13). Outliers can be attributed to extreme weather.
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Also, larger IQRs indicate more frequent severe weather. For Spring precipitation during the simulation
period, under moderate emissions, the largest IQR ranging from -27.1% to 46.9% is projected at the end of
mid-century (70s); under sever emissions the largest IQR ranging from -40.4% to 34.8% is estimated at the
beginning of the mid-century (40s). Under RCP4.5 the medians for percent changes increase through the
mid-century. Through the late-century, however, the medians for each decade and their IQR show modest
changes. This means the most frequent extreme rainfall in Spring is expected during 60s under moderate
emissions. These extreme behaviors, however, is expected 2 decades earlier (40s) under the severe emissions.
Under RCP6.0, the medians increase from 10.2% to 33.2% during the mid-century. Under RCP6.0, medians
drop at the start of the late-century and then fluctuate during the last century meaning that Spring rainfall
peaks in 80s with the same frequency behavior. Under moderate emissions 50s has the wettest Spring and
80s has the driest. Under severe emissions, 60s and 70s have the wettest and driest Spring, respectively
(compared to the baseline period). IQR ranges for Summer rainfall are noticeably smaller than that of
Spring, meaning smaller changes for Summer rainfalls. Overall IQR under RCP6.0 is longer indicating more
changes (decrease and increase) under severe emissions. Moderate emissions, however, reflects more outliers
indicating greater likelihood for heavy rainfalls during Summer. Under RCP4.5 the largest IQR ranging from
-21.9% to 28.8% occurs at the start of late-century (70s), making the decade with wettest Summer (compared
to baseline) under moderate emissions. The driest Summer is expected to happen at the beginning of the
midcentury under RCP4.5. Under RCP6.0 the largest IQR ranging from -13.2% to 29% is expected at the
end of mid-century (60s) making the period with wettest Summer compared to the baseline. Under RCP6.0,
UCS is expected to experience the driest Summer in the middle of late-century period (80s) with the IQR
ranging from -24.9% to-8.2%. Similar to Summer rainfall, Fall rainfall also has larger overall IQR under
RCP6.0 than RCP4.5, indicating more changes (decrease and increase) under sever emissions.

Under RCP4.5, very small changes are projected to happen to medians during Fall. Under RCP6.0, however,
medians increase during the entire simulation period after large drop in the start of the mid-century. Under
RCP4.5, the largest IQR is projected during 50s ranging from -23.3% to 34.9% change compared to baseline
mean Fall. 70s also shows the same variations. However, the smallest IQR ranging from -19.5% to-5.1%
(under RCP4.5) is estimated during 60s where change variations indicate noticeable number of outliers
meaning, strong Fall precipitations compared to baseline period. Under severe emissions, the largest IQR
for Fall precipitation occurs in the end late-century (90s) ranging from -12% to 51.2%. This variation is
followed by 50s IQR ranging from -47% to 10.6%. Big portion of the 90s’ IQR indicates increase, but for
50s a decrease is observed. This makes the end of the late-century to have wettest Fall and middle of the
mid-century to have the driest Fall (under RCP6.0). Early late-century is projected to have the smallest
range changes (IQR ranging from -15.7% to 12.2%) under RCP6.0. Projected Winter rainfall has the shortest
IQRs (smallest changes) compared to the other three seasons (both emission scenarios). For both scenarios,
during the entire simulation period, IQRs and medians fall below zero line, meaning decreased amount of
precipitation during Winter. More outliers under RCP4.5 indicates more extreme changes under moderate
than sever scenario during Winter. Under RCP4.5, medians increase towards the end of century, starting
from -21.7% and ending at -1.9%. This indicates overall less changes towards the end the simulation period.
Under RCP4.5, the largest IQR for Winter rainfall is projected during the late-century (80s) ranging from
-32.9% to 1 8% with the median of -27.7% (close to the 25thpercentile). Under moderate emission the
smallest variation is projected to be during the end of the late century (90s) with IQR ranging from -16.5%
to 1.2% (median of -1.9%). Under sever emissions, however, end of the late-century period has the largest
IQR ranging from -7.9% to 38.7% with median close to 25th percentile, making the decade wettest for the
Winter rainfalls. The smallest variations of Winter precipitation are estimated to occur at the start of the
late century (70s). the direst Winter under severe emissions is projected to end of the mid-century (60s)
where the median is -21.5% (figure 13).

Comparing the percent change variations for projected precipitation under both scenarios shows the largest
changes in Summer and Winter when switching from RCP4.5 to RCP6.0. similar results were observed by
Sunde et al. (2017). Surface runoff variations under future climatic data, shows dramatic changes (figure 13).
For all seasons and under both scenarios, surface runoff is projected to increase up to several folds. For Spring
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surface runoff, under RCP4.5, the largest IQR is expected by end of the mid-century (60s) ranging from 76.9%
to 526.5%. The second largest variation is estimated in middle of the late-century period (80s) ranging from
155.22% to 601.7% (under RCP4.5). The smallest variation (IQR) under the moderate emissions, however,
is observed in beginning of the mid-century ranging from 229.4% to 330.9%. The medians change barely
through the entire simulation period. Spring surface runoff, under RCP6.0, has overall length of IQR shorter
than the that of RCP4.5 indicating less variations in percent changes except for beginning (40s) and end
(80s) of the simulation period. The largest IQR under the severe scenario is estimated for the end of the
late-century period (90s) with variations ranging from 278.8% to 731.2%. The smallest IQR, however, is
estimated during the end of the mid-century (60s) ranging from 272.4% to 517.3%. Medians, under the
RCP6.0, follow the general pattern of increasing towards the end of the century. Figure 13 indicates the
expected difference between moderate and severe emissions. Comparison of Spring surface runoff under both
scenarios shows significant differences during the beginning of the simulation where moderate emissions make
shortest IQR while severe emissions make one the largest variations. Figure 13 indicates more outliers are
projected under moderate emissions. The variations for Summer surface runoff can be as large as Spring’s.

Through the entire simulation period the overall IQR for Summer surface runoff under RCP6.0 is larger than
that of Rcp4.5 indicating more variations under severe emissions. Under RCP4.5 medians increase towards
the end the century with the highest of 465% during 80s and the lowest of 221% during the 50s. under
RCP4.5, the largest IQR is projected for the middle of the mid-century (50s) period and the shortest IQR
for Summer surface runoff is estimated for the beginning pf the late-century period (70s). Summer surface
runoff under sever emissions has higher variations. The largest IQR, under RCP6.0, is estimated during the
end of the late-century period ranging from 207.6% to 615.6% and the shortest IQR ranging is projected
during 50s ranging from 146.7% to 342%. For Fall surface runoff variation, under both emission scenarios,
the medians follow the increasing pattern towards the end of the century (slight increase under RCP4.5
and more accelerated increase under RCP6.0). Under severe emissions, however, more outliers are observed
indicating more extremes. The overall length for IQR varies through the simulation for both scenarios. The
percent change values for Fall are also as high as Spring’s and Summer’s indicating several fold surface runoffs
during Fall too. Under RCP4.5 the largest IQR is projected at the beginning of the late-century period (70s)
ranging from 138% to 510%. The shortest IQR, however, is observed for a decade after that during 80s.
Under RCP6.0, the largest and shortest IQR ranging from 44.7% to 434.4% and from 239.9% to 387% is
estimated during the beginning (40s) and the end (60s) of the mid-century period, respectively. For Winter
surface runoff the overall length of IQR under moderate emissions is greater than that of sever emissions
indicating more variation compared to the baseline period. Under both scenarios, medians follow slight
increase pattern towards the end of the simulation period. Under RCP4.5, the largest IQR ranging from
133% to 605.1% is projected at the middle of the late-century period (80s) and the shortest IQR (smallest
variations) is estimated for 50s. Under RCP6.0, however, the largest variations (IQR) ranging from 103% to
349% is expected during the beginning of the mid-century period, and the shortest IQR is observed during
the middle of the late-century period. Water yield percent change variations from figure 13 indicates both
increasing and decreasing amounts through all seasons.

Under moderate emissions, medians appear to follow slight decreasing pattern towards the end of the century
and under sever emissions the pattern turns into slight increasing trend by end of the simulation period.
Since the surface runoff and water yield are related, water yield follows the same pattern as the surface
runoff does (Arnold, Kiniry et al. 2013). For Spring water yield, under RCP4.5, the largest IQR ranging
from -38.2% to 68.6% is projected to happen during the middle of the mid-century period and the shortest
IQR ranging from -14% to 9.7% is observed during the start of the mid-century indicating the smallest
changes of water yield amount compared to the baseline period. While the beginning of the simulation
period has the smallest variations of water yield under RCP4.5, severe emission projects largest IQR ranging
-50.2% to 32.9%. Under RCP6.0, the shortest IQR ranging from -0.5% to 37.2% is observed during 70s. For
Summer water yield, variations under RCP6.0 appears to be greater. This discrepancy is more obvious in the
beginning and at the end of the simulation period. Under RCP4.5, the largest IQR ranging from -28.7% to
38.8% is projected at the beginning of the late-century period (70s). The shortest IQR (from -15% to 7.2%),
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however, is expected at the beginning of the mid-century period (40s). RCP4.5 has resulted in more outliers
than RCP6.0 indicating higher chance of extreme amounts. Summer water yield, under sever emissions,
shows longer IQR and less outlier. The largest IQR is observed during the middle of the simulation period
(60s and 70s) ranging from -23% to 62%. The smallest variations (-16.5% to 24.7%), however, is estimated
during the middle of the late century. For Fall water yield variations, medians under both scenarios show
mild changes towards the end the century. The overall length of IQR under RCP6.0 is longer than that
of RCP4.5, indicating more variations under severe emissions. The largest IQR under RCP4.5 is estimated
during 50s (ranging from -24.6% to 63%). The shortest IQR, however, is observed during 80s with ranging
from -21.9% to 14.21%. Under severe emissions, the largest variations are projected during 50s (middle of the
mid-century period) ranging from -62.2% to 30.4%. The shortest IQR is estimated in the beginning of the
simulation period (40s) with ranges of -10.2% and 32.9%. Winter water yield projections indicate decrease
during the mid-century period and slight increase by end of the century under both emission scenarios.
Under RCP4.5 medians increase slightly by end of the century. Under RCP6.0, however, the trend shows no
change. Under RCP4.5, the largest and the shortest IQR ranging from +41.8% to 23.6% and from -18.8%
to 4.3% are estimated during 80s and 90s, respectively. During Winter, water yield for late-century period,
RCP4.5 projects wide variations while RCP6.0 projects small changes compared to the base line.

ET has the smallest changes and variations compared to other hydrologic variables during all seasons.
Positive changes of ET during Spring show general increase. Through the mid-century period ET decreases
(RCP4.5) while during the late-century it increases towards the end of the period. Under RCP6.0 during
the late-century decreases are observed while RCP4.5 shows ET increase during the period. Under RCP4.5,
the largest and shortest IQR ranging from -0.7% to 8.5% and from -1.5% to 3.3% are estimated during 90s
and 80s, respectively. Under RCP6.0, however, the largest (ranging from -3.8% to 6.7%) and the shortest
(ranging from 0.9% to 4.7%) IQR are observed in the beginning of the simulation period (40s and 50s).
During Summer, ET is expected to decrease always under RCP6.0. Since the medians also decrease towards
the end the century, it indicates accelerated decrease with approaching to the end the simulation period.
Under RCP4.5, however, Et increases sometimes. Under RCp4.5 medians follow slight decreasing pattern.
The largest (ranging from -4.6% to 3.9%) and the shortest (ranging from -1.99% to -0.02%) IQR is projected
during middle of the late century (80s) and middle of the mid-century (50s) respectively. Under RCP6.0 the
largest (ranging from -9.2% to 0.5%) variation is expected during 60s and smallest (ranging from (ranging
from -4.9% to -1.6%) variation of ET compared to baseline is estimated at the beginning of the simulation
(40s). ET during Fall shows decrease for both scenarios and for the entire period. The projections indicate
that the largest decrease is estimated during Fall and under RCP6.0 up to -23.5% during 50s. During Fall,
the overall length of IQR under RCP6.0 is longer than that of RCP4.5 indicating more extreme variations
under severe emissions. Under RCP6.0 the largest (ranging from -22.3% to -3.7%) and the shortest (ranging
from -19.1% to 11%) IQR is estimated during 60s and 70s, respectively. Projection for ET during Winter
follows the same pattern as Summer. Under moderate emissions the medians during the mid- and late-
century increases. The overall length of IQR under RCP4.5 is greater than that of RCP6.0 meaning more
variation under moderate emissions. Under sever emission decreases are estimated during the late-century
while moderate emission projections show lesser decrease or increase. Under RCP6.0 the largest (ranging
from -2.1% to 11.3%) and the shortest (ranging from -0.9% to 1.3%) IQR are observed during mid-century
in the middle (50s) and the end (60s) of the period, respectively.

Implication of future water regime:

Here we integrated two types of projection: land use and climate data. Therefore, changes regarding land use
and climate are the two main factors that affected the water regime (Wang, Kalin et al. 2014). Results show
consistency between the moderate and the severe emission scenarios regarding the projected hydrological
variables. Through the simulation period precipitation increases, consequently, annual discharge increases.
This increase is intensified by growing urbanization. Land use classes of URMD, URHD, and UIDU change
from the mid-century period to the late-century period by 10%,47%, and 12.5%, respectively. Therefore, even
decreases of precipitation or attenuation in increase of rainfall towards the end of the century, is compensated
by more increasing impermeable land covers. These land use changes are along with 23.1% decrease in
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forest cover (FRSE, FRSD, FRST), 14.7% hay cover (HAY) and 11.8% agricultural cover (AGRR). RCP4.5
stabilizes atmospheric radiative forcing at 4.5 W/m2 (650 ppm CO2 eq) in 2100 (Thomson, Calvin et al.
2011; Van Vuuren, Edmonds et al. 2011), however, by end of the mid-century period, the increase in the
radiative forcing attenuates significantly. Unlike, RCP4.5, RCP6.0 keep increasing by end of the century
and stabilizes the radiative forcing at 6.0 W/m2 (850 ppm CO2 eq), however, GHG emissions declines
after the end of the mid-century period (Van Vuuren, Edmonds et al. 2011). Therefore, under RCP6.0
precipitation increase during the mid-century and it declines during the late-century period. As a result,
this decline is expected to reflect in discharge amount, but urban-oriented land use change results in increased
discharge. Similarly, surface runoff and water yield increase in a same manner. However, since discharge
and water yield have linked to groundwater (Neitsch, Arnold et al. 2011; Arnold, Kiniry et al. 2013), unlike
surface runoff they are indirectly affected. Surface runoff projection increases are significantly greater for
all types of monthly, seasonal, and annual values. Annual results, for instance, show at least 3 times higher
compared to the baseline. Similar studies have concluded the same result in the region (Wang, Kalin et
al. 2014; Sunde, He et al. 2017). Increase in impermeable land covers (URMD, URHD, UIDU) decreases
the amount of infiltration into the soil, and subsequently while baseflow contribution declines, surface runoff
dramatically increases; this leads to more frequent and intense flooding (Rose and Peters 2001; Huang, Cheng
et al. 2008; Wang, Kalin et al. 2014). Combined effects of increasing in precipitation, and temperature
as well as imperviousness leads in slight decrease in ET during mid and late century period. Chen et
al. (2017) have reported the same result. This indicates increased urbanization compensates increased
demand of evaporation and transpiration. Since, the vegetation and tree cover decrease under the land use
scenarios, much less transpiration and plant uptake are estimated. It can be concluded that the increase in
evaporation due to increase in urbanization cannot be offset by decrease in transpiration. Also decline in
soil water consumption and plant uptake due to less vegetation-covered lands can lead to increase in stream
flow (Price 2011; Sunde, He et al. 2017). Seasonal percent change analysis (figure 10) indicates that most
dramatic changes (more frequent extreme situations) to climate and hydrological variables is projected in the
beginning of mid-century period when switching from the moderate to severe emissions. Seasonal behavior
also agrees with annual changes; however, it indicates more changes in Winter and Summer. similar results
were reported by Sunde et al. 2017 and wang et al. 2013. In a study (Georgakakos, Fleming et al. 2014) for
the entire southeast region, decline in storm water has been projected. The general increase in this study
can be attributed to urban-oriented land use change as well as the watershed specific characteristics like
seasonality and storm frequencies (Villarini and Smith 2010; Sunde, He et al. 2017; Hoyos, Correa-Metrio
et al. 2019). Models also had challenges predicting the monthly average temperature, monthly average of
maximum temperature, and monthly average of minimum temperature for months of Dec., Jan. and in some
cases February.

Previous studies in the region have used CMIP3 or CMIP5 with general bias correction. CMIP5 with finer
resolution and LOCA with more reliable climate data, now, have improved the future climate data projections
(Pierce, Cayan et al. 2014; Ficklin, Letsinger et al. 2016). More realistic regional patterns of precipitation,
better estimates of extreme events, and reduced number of light-precipitation days are the advantages of
LOCA (Pierce, Cayan et al. 2014). These improvements have reflected more reliable results in this study.
This study helped to fill the a current need to investigate the combined effects of the most recent downscaled
and bias-corrected climate projections and the land use projections based on SSP (Shared Socioeconomic
Pathways) of Intergovernmental Panel for Climate Change (IPCC). There have been very few studies of
this type investigating the integrated effect of projected land use and climate data on hydrological responses
southeast US in this study’s scale. UCS is mainly forested and agriculture which complicates the impacts
and responses. More studies are required to investigate the combined effect of this type of watersheds where
notable level of humidity and proximity to the Golf area which is exposed to more hurricanes and tropical
storms effects the land use and hydrologic cycle. Wang et al. 2013 have studied an area close to UCS under
CMIP3 and concluded the same results of this study. Because of the few number of research in the region
where UCS locates and the also because of the approach used in this research, the result and projections
brought here can be put in the overall research body and also can be served as a basis for comparison and
decision making process. The approach also can be utilized for other watersheds to investigate the integrate
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the land use and climate projections to study the hydrologic response. A few Native American Reservations
are located within UCS; therefore, this study can also be used to research the future climate impact on
the reservations’ sustainability and the people. However, it should be noticed that we used SWAT weather
generator to simulate wind speed, relative humidity, and solar radiation. The soil condition has not been
changed i.e. for all models the current condition was used.

Conclusion:

This study presented a method that integrated future climate and land use projection with a hydrologic
model to investigate the water balance under combined effect of climate change and land use change. To
address some level of the uncertainty with the approach we used three CMIP5 GCM outputs under two
emission scenarios (RCP4.5 and RCP6.0). the future time period was split in two time period (mid-century
and late-century). Calibration and sensitivity analyses were carried out to make sure the hydrologic model
output is reliable. Results show increase in temperature and precipitation in UCS. Annual maximum and
minimum temperature are projected to increase up to 30% especially during Summer and Winter. Rainfall
will also increase by around 11%, however different emission scenarios showed different trend through the
simulation period. surface runoff, water yield, and discharge at the two stations were estimated to increase.
However, surface runoff changes were the largest. Increases in discharge during Summer and Fall are more
extreme than other seasons. ET has the modest changes and is expected to decrease. This study can
be helpful as an example for areas that mainly comprised of forest and agricultural cover. Additionally,
this study can provide information for investigating how future climate data and land use projections could
impact hydrological processes. In Southeastern watersheds. This region has not been under focus for climate
and land use management studies. Moreover, data and results shown here can provide help in sustainable
management especially for Native American Reservations located within Upper Choctawhatchee subbasin.
The model used here, showed satisfactory performance that can be further used to study best management
practices, water quality modelling (NPS and PS pollution) and also to track extreme weather footprint such
as hurricane and tropical storms, and droughts which have been more frequent recently.
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