Association of Toll-like receptor (TLR) 3 & 9 genes' polymorphism with Hepatitis C virus-specific cell-mediated immunity outcome among Egyptian healthcare workers

Sayed Abdelwahab¹, Shaimaa Hamdy², Ahmed Osman^{3,4}, Zainab Zakaria⁵, Iman Galal⁶, Maha Sobhy⁷, Mohamed Hashem⁸, Walaa Allam⁹, Mohamed Abdel-Samiee¹⁰, Eman Rewisha¹⁰, and Imam Waked¹⁰

¹Minia University Faculty of Medicine
²The Egyptian Holding Company for Biological Products and Vaccines
³Cairo University
⁴Cairo University Faculty of Science
⁵Heliopolis University for Sustainable Development
⁶The Egyptian Holding Company for Biological Products and Vaccines (VACSERA),
⁷ The Egyptian Holding Company for Biological Products and Vaccines (VACSERA)
⁸University of Maryland School of Medicine
⁹Zewail City of Science and Technology - Zewail City Campus
¹⁰Menoufia University National Liver Institute

June 23, 2020

Abstract

Immune response variations could define successful resistance to Hepatitis C Virus (HCV) infection. Toll-like receptors (TLR)-3 are innate detectors of dsRNA viruses while bacterial and viral unmethylated CpG motifs are recognized by TLR9. We previously reported that TLR3.rs3775290 "CC" genotype was associated with HCV chronicity, while TLR9 gene played no major role in this infection. This study identified the role of TLR3.rs3775290 (c.1377C/T), TLR9.rs5743836 (-1237T-C) and TLR9.rs352140 (G2848A) gene polymorphisms in predicting the outcome of HCV-specific cell-mediated immunity (CMI) among Egyptian healthcare workers (HCWs) and patients. We enrolled 546 subjects (409 HCWs and 137 patients) divided into four groups. Group1: 265 seronegative, aviraemic subjects; group2: 25 seronegative, viraemic subjects; group3: 87 subjects with spontaneously resolved HCV infection; and group4: 169 chronic HCV HCWs and patients. All subjects were genotyped by PCRrestriction fragment length polymorphism (PCR-RFLP) analysis for the TLR3.rs3775290, TLR9.rs5743836 and TLR9.rs352140 SNPs. We, also, quantified HCV-specific CMI in 265 HCWs distributed among the four groups using an interferon gamma (IFN- γ) enzyme-linked immunospot (ELISpot) assay in response to nine HCV genotype 4a overlapping 15mer peptide pools covering the whole viral genome. No statistically significant difference was found between CMI responding subjects with different HCV states and TLR3.rs3775290 genotype or TLR9.rs352140. However, there was a significant relationship between the outcome of the HCV-specific CMI and the TLR9.rs5743836 genotype among the responding subjects (p=0.005) and the chronic HCV patients (p=0.044). In conclusion, TLR9.rs5743836 SNP; but not TLR3.rs3775290 or TLR9.rs352140 genotypes; could predict the outcome of HCV-specific CMI responses among genotype-4-infected Egyptians.

Association of Toll-like receptor (TLR) 3 & 9 genes' polymorphism with Hepatitis C virusspecific cell-mediated immunity outcome among Egyptian healthcare workers

Running title : TLR3&9 SNPs in HCV-infected Egyptians

Sayed F. Abdelwahab^{1,2,3,#,*}, Shaimaa Hamdy^{1,4,#}, Ahmed M. Osman⁴, Zainab A. Zakaria^{1,5}, Iman Galal¹, Maha Sobhy¹, Mohamed Hashem^{1,6}, Walaa R. Allam^{1,7}, Mohamed Abdel-Samiee⁸, Eman Rewisha⁸, Imam Waked⁸

¹The Egyptian Holding Company for Biological Products and Vaccines (VACSERA), 51 Wizaret El-Zeraa St., Agouza, Giza 22311, Egypt,²Division of Microbiology, Department of Pharmaceutics and Industrial Pharmacy, Taif College of Pharmacy, Al-Haweiah, PO Box 888, Taif 21974,Kingdom of Saudi Arabia;³Department of Microbiology and Immunology, Faculty of Medicine, Minia University, Minia 61511, Egypt,⁴Department of Zoology, Faculty of Science, Cairo University, Giza 12613, Egypt, ⁵Biomedical Research Laboratory, Faculty of Pharmacy, Heliopolis University for Sustainable Development, Cairo, Egypt, ⁶Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD, USA, ⁷Centre for Genomics, University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt,⁸Department of Hepatology and Gastroenterology, National Liver Institute, Menoufia University, Menoufia 32511, Egypt

[#] Contributed equally to this work

* Corresponding Author :

Sayed F. Abdelwahab, PhD

Professor, Department of Microbiology and Immunology, Faculty of Medicine, Minia University, Minia 61511, Egypt and Department of Microbiology, Taif Faculty of Pharmacy, Al-Haweiah, PO Box 888, Taif 21974, KSA

Email: icpminia@yahoo.com

Telephone: +20-10-9000-8885; +966-54-122-1361, Fax: +20-86-234-2813

ORCID: http://orcid.org/0000-0002-9636-7485

Key words: CMI, Cell-mediated immunity; HCV; Healthcare workers; SNP; TLR3; TLR9.

Abbreviations: CMI, Cell-mediated immunity; HCV, hepatitis C virus; HCWs, healthcare workers; TLR, toll-like receptor

Abstract word count: 249; Text word count(Introduction to end of discussion): 3713

Summary:

Immune response variations could define successful resistance to Hepatitis C Virus (HCV) infection. Tolllike receptors (TLR)-3 are innate detectors of dsRNA viruses while bacterial and viral unmethylated CpG motifs are recognized by TLR9. We previously reported that TLR3.rs3775290 "CC" genotype was associated with HCV chronicity, while TLR9 gene played no major role in this infection. This study identified the role of TLR3.rs3775290 (c.1377C/T), TLR9.rs5743836 (-1237T-C) and TLR9.rs352140 (G2848A) gene polymorphisms in predicting the outcome of HCV-specific cell-mediated immunity (CMI) among Egyptian healthcare workers (HCWs) and patients. We enrolled 546 subjects (409 HCWs and 137 patients) divided into four groups. Group1: 265 seronegative, aviraemic subjects; group2: 25 seronegative, viraemic subjects; group3: 87 subjects with spontaneously resolved HCV infection; and group4: 169 chronic HCV HCWs and patients. All subjects were genotyped by PCR-restriction fragment length polymorphism (PCR-RFLP) analysis for the TLR3.rs3775290, TLR9.rs5743836 and TLR9.rs352140 SNPs. We, also, quantified HCV-specific CMI in 265 HCWs distributed among the four groups using an interferon gamma (IFN- γ) enzyme-linked immunospot (ELISpot) assay in response to nine HCV genotype 4a overlapping 15mer peptide pools covering the whole viral genome. No statistically significant difference was found between CMI responding subjects with different HCV states and TLR3.rs3775290 genotype or TLR9.rs352140. However, there was a significant relationship between the outcome of the HCV-specific CMI and the TLR9.rs5743836 genotype among the responding subjects (p = 0.005) and the chronic HCV patients (p = 0.044). In conclusion, TLR9.rs5743836 SNP; but not TLR3.rs3775290 or TLR9.rs352140 genotypes; could predict the outcome of HCV-specific CMI responses among genotype-4-infected Egyptians.

Introduction

Immune response variations may help define successful resistance to Hepatitis C virus (HCV) infection particularly among seronegative healthcare workers, reviewed elsewhere [1]. Toll-like receptors (TLR)-3 are innate detectors of dsRNA of viruses while TLR9 recognizes bacterial and viral unmethylated CpG motifs. HCV virions bind to the cell surface and get into the cell through receptor-mediated endocytosis. The structure of HCV with different parts are recognized by different TLRs. The core and non-structural (NS) proteins are vital sequences recognized by pattern recognition receptors (PRRs), including TLRs. They are, also, important inhibitors of TLR signalling [2, 3]. HCV core and NS proteins are important pathogenassociated molecular patterns (PAMPs) for TLR2, TLR3, TLR4, TLR7, 8, and 9. TLR3 is critical for its antiviral immune actions, as it stimulates non-parenchymal liver to regulate HCV replication through the synthesis of interferon (IFN)- β [4, 5]. In chronic HCV infections, TLR3 mRNA is significantly increased in monocytes [6]. An IFN-responsive element has been identified in the TLR3 gene promoter region and, so, it appears likely that expression TLR3 is responsive to IFN treatment in HCV infection [7]. Myeloid dendritic cells (mDCs) have ordinary operative TLR3 and are capable of producing interleukin (IL)-12, IL-6, IL-10, IFN- γ , and tumour necrosis factor (TNF)- α with TLR3 stimulation regardless of HCV infection [8].

HCV viral proteins activate TLR signalling, which plays a significant role in viral immune clearance. However, HCV can at the same time evade immune clearance by targeting and ruining TLR signal transduction via numerous mechanisms. First, HCV intervenes with signalling via the TIR-domain-containing adapter-inducing IFN β /TANK-binding kinase (TRIF)/TBK)1-Interferon regulatory factor 3 (IRF3) pathway. The HCV NS3 protein induces degradation of TRIF, while the NS3/4A protein prevents IRF3 and NF \times B activation by downgrading the amount of TRIF in serum and by producing cleavage products with dominant-negative action [4, 9]. NS3/4A, also, interacts directly with TBK1 to reduce the interaction between TBK1 and IRF3 and, so inhibit IRF3 activation [10]. HCV, also, interferes with the TLR-MyD88 (Myeloid differentiation primary response 88) pathway through NS5A interaction with MyD88 to prevent Interleukin-1 receptor associated kinase 1 (IRAK1) recruitment and cytokine production in response to ligands for TLR2, TLR4, TLR7, and TLR9 [11].

HCV has been shown to regulate the expression of TLR9 through the transcription factor (Elk-1), which is an essential signal integration point between T-Cell Receptor (TCR) and CD28 in T helper 1 (Th1) cell activation [12]. HCV, also, impedes the production of IFN- α and IFN- β through TLR9 and decreases human leukocyte antigen DR (HLA-DR) expression by pDCs, linked to diminished activation of naïve T cells [13]. TLR9 signalling in mDCs is unchanged [8, 13]. Consequently, it is clear that compartmentalization of the outcomes on TLR function is a crucial strategy by which HCV can escape immune surviellance yet can lead to chronic inflammatory hepatic injury and fibrosis.

We previously showed that TLR3.rs3775290 "CC" genotype was associated with HCV chronicity, while TLR9 gene played no major role in HCV infection [14]. This study identified the role of TLR3.rs3775290 (c.1377C/T), TLR9.rs5743836 (-1237T-C) and TLR9.rs352140 (G2848A) single nucleotide polymorphisms (SNP) in predicting the outcome of HCV-specific cell-mediated immunity (CMI) among Egyptian health-care workers (HCWs) and patients. We show that TLR9.rs5743836 SNP; but not TLR3.rs3775290 or TLR9.rs352140 genotypes; could predict the outcome of HCV-specific CMI responses among genotype-4-infected Egyptians.

Subjects and Methods

Study subjects

Two hundred sixty-five HCWs were selected for the evaluation of IFN- γ producing T-cells by an Enzyme Linked Immuno-Spot (ELISpot) assay in response to nine HCV genotype 4a overlapping 15mer peptide pools covering the whole viral genome. The NLI-Institutional Review Board (IRB) approved the study protocol,

and all subjects had given informed consent prior to enrolment. The demographic characteristics of the participants were previously reported [14].

Laboratory testing

HCV molecular diagnosis and quantification of HCV-RNA

HCV diagnosis was determined by using the Murex third generation anti-HCV ELISA assay (version 4.0 USA) that utilizes antigens from the core, NS3, NS4 and NS5 regions of the virus. All the study subjects were tested by quantitative real-time RT-PCR (qPCR) for detection of current HCV infection and quantification of the HCV viral load using QIAamp® Viral RNA purification kit (QIAGEN, USA). The amplification step was conducted using AgPath-ID one-step assay as instructed by the manufacturer (Applied Biosystems-Life Technologies Corporation, CA).

HCV-genotyping and genotyping for TLR3.rs3775290 (c.1377C/T) SNP

PCR-RFLP was used for HCV genotyping after reverse transcription as described [15].

PCR-RFLP was, also, used for the identification of the TLR3.rs3775290 (c.1377 C/T) gene SNPs. PCR was conducted in a total of 25 μ l reaction volume with 20 pmol of each of the forward and reverse primers as described [16].

Genotyping for TLR9.rs5743836 (-1237T-C) and TLR9.rs352140 (G2848A) SNPs

The total reaction volume of TLR9.rs5743836 (-1237TTBC) PCR was 25 μ l with 20 pmol of each of the forward and reverse primers as described [17]. Also, the total reaction volume of TLR9.rs352140 (G2848A) PCR was 25 μ l with 20 pmol of each of the forward and reverse primers as reported [16].

Εαλυατιον οφ ΙΦΝ-γ προδυςινγ ςελλς υσινγ ΕΛΙΣΠΟΤ ασσαψ

An ELISPOT assay was used to quantify IFN- γ synthesis by PBMC separated from the study subjects in response to nine HCV genotype 4a isolate ED43 peptide antigen pools consisting of 15 (15mer) and overlapping by 10 amino acids. These were 600 peptides combined in nine pools corresponding to all the HCV proteins. These synthetic peptides were specially manufactured by Mimotopes (Australia). About 15ml of blood was collected in EDTA vacutainer tubes (Becton Dickinson Biosciences, NJ, USA). PBMC were separated from whole blood using Ficoll-Hypaque density gradient centrifugation. Cellular viability was determined by trypan blue exclusion method. Briefly, $2x10^5$ PBMC (200µl/well) were incubated in triplicate cultures in the ELISpot plates (Whatman Unifilter, USA) coated with anti-human IFN_Y antibody and incubated for $^{-16}$ hours with or without recombinant HCV antigens at $3\mu g/ml$ of each single peptide in complete RMPI-1640 medium. A medium containing DMSO alone and 0.1µg / ml of SEB (or other polyclonal stimuli) represented the negative and positive controls, respectively. The assay was developed at the end of the incubation period until the spots appeared. The wells were, then, rinsed with tap water to stop the reaction. The number of spots/well was calculated using an automated ELISpot reader (Cellular Technology Ltd., Cleveland, USA) as reported [18]. The mean number of spot forming cells (SFC) in control wells were subtracted from the mean number of peptide-stimulated wells to correct for background cytokine production and are expressed as SFC/million PBMC. A positive antigen-specific HCV response was considered if the SFC in the presence of antigen was at least three times the number of SFCs in the medium control and >55 SFC / million PBMC were present, as previously reported [19].

Statistical analysis

Allele and genotype frequencies of each SNP were calculated by direct counting. Genotype and allele frequencies between groups were compared using the χ^2 test and Fisher's exact test when appropriate. For allelic associations, p values with Yates correction and odds ratio (OR) with 95% confidence intervals (CI) were calculated using Statcalc program (Epiinfo version 6.0.4, CDC, Atlanta, GA). Pair-wise LD (D', r²) was estimated by use of Haploview software version 4.2. For categorical data, chi-square tests were performed, while the student's t -test (or Mann Whitney U test where appropriate) was performed to compare the continuous data. Differences in mean with a p value <0.05 were deemed significant. Standard errors of the means (and/or deviations) were also calculated

Results

Pelationship between the TAP3.rs3775290 (c.1377 $^{\prime}/T)$ genotype and the H $^{\prime\prime}$ -specific IPN-g EAISpot response

All subjects enrolled into the study were tested for IFN- γ production by PBMCs using ELISpot assay to evaluate CMI response against nine HCV genotype 4a isolate ED43 peptide antigen pools composed of 15 (15mer) and overlapping by 10 amino acids. Only 140 (53%), 20 (80%), 35 (40%) and 70 (41.4%) samples had valid CMI data among the four study groups (seronegative, aviraemic subjects; seronegative, *viraemic*subjects; spontaneously resolved subjects and chronic HCV patients groups, respectively).

There was no association between the results of the HCV-specific immune response and the TLR3.rs3775290 genotype among the 263 HCWs with valid CMI responses and TLR3.rs3775290 genotyping tests (p = 0.222). Also, there was a significantly (p = 0.004) higher proportion of the CC genotype (73.3%) in responding subjects than in non-responding seronegative, aviraemic individuals (65.1%). In addition, there was a differential distribution of the three TLR3.rs3775290 genotypes among the total study participants with and without HCV-specific CMI (Table 1).

The average totals (\pm SEM) of IFN- γ responses measured in SFC per million PBMCs in the *responding* total subjects were 455 \pm 90, 507 \pm 122, and 317 \pm 45 with the TLR3.rs3775290 genotype CC (n=37), CT (n=16) and TT (n=6). On the other hand, among the *non-responding* subjects, the average totals (\pm SEM) of IFN- γ SFC per million PBMCs in total subjects were 29 \pm 5, 23 \pm 5, and 49 \pm 19 with the TLR3.rs3775290 genotype CC (n=130), CT (n=65) and TT (n=9), respectively. There was no significant difference between the responding total subjects with different TLR3.rs3775290 genotypes (p = 0.89; Figure 1A).

For the seronegative, aviraemic subjects, the average totals of HCV-specific IFN- γ SFC/10⁶ PBMCs (±SEM) of the responding subjects were 404±97.7, 1058±807.5, and 249±21.9, among those with the TLR3.rs3775290 CC genotype (n=22), CT (n=4) and TT (n=4) genotypes, respectively. Differences were not statistically significant (p = 0.88). On the other hand, the average totals of IFN- γ SFC/10⁶ PBMCs (± SEM) of the non-responding subjects were 26.7±5.7, 16.7±4, and 13.3±13.3, among those with the TLR3.rs3775290 CC (n=71), CT (n=36) and TT (n=2) genotypes, respectively (Figure 1B).

Regarding seronegative , viraemic subjects, the average totals (\pm SEM) of HCV-specific IFN- γ SFC/10⁶ PBMCs for responding subjects were 657 \pm 443, and 163, among those with the TLR3.rs3775290 genotype CC (n=3) and CT (n=1) genotypes, respectively. There were no responding subjects with the TT genotype. Differences were not statistically significant (p = 0.18). On the other hand, the average totals of IFN- γ SFC/10⁶ PBMCs (\pm SEM) of the non-responding subjects were 42 \pm 22, 30 \pm 11 and 8 \pm 8, among those with the TLR3.rs3775290 CC (n=9), CT (n=5) and TT (n=2) genotypes, respectively (Figure 1C).

For spontaneously resolved subjects, the average totals of HCV-specific IFN- γ SFC/10⁶ PBMCs (±SEM) of the responding subjects were 793±605.8, and 325±121, among those with the TLR3.rs3775290 CC (n=2), CT (n=5) genotypes, respectively. No TT genotype was recorded in this category. Differences were not statistically significant (p = 0.698). On the other hand, the average totals of IFN- γ SFC/10⁶ PBMCs (±SEM) of the non-responding subjects were 51±21, 15±12 and 58, among those with the TLR3.rs3775290 CC (n=14), CT (n=12) and TT (n=1) genotypes, respectively (Figure 1D).

For chronic HCV patients , the average totals of HCV-specific IFN- γ SFC/10⁶ PBMCs (±SEM) of the respondingsubjects were 439±214, 349±181, and 453±9, among those with the TLR3.rs3775290 CC (n=10), CT (n=6) and TT (n=2) genotypes, respectively. Differences were not statistically significant (p = 0.228). On the other hand, the average totals of IFN- γ SFC/10⁶ PBMCs (±SEM) of the non-responding chronic HCV patients were 26±8, 38±13, and 84±36, among those with the TLR3.rs3775290 CC (n=36), CT (n=13) and TT (n=4) genotypes, respectively (Figure 1E).

Relationship between the TLR9.rs5743836 (-1237T-C) genotype and the HCV-specific IFN ELISpot response

There was no association between the results of the HCV-specific CMI response and the TLR9.rs5743836 genotype among the 265 HCWs with valid CMI responses and TLR9.rs5743836 genotyping tests (Table 2,p=0.12). However, there was a statistically significant (p=0.019) lower proportion of the TT genotype in responding spontaneously resolved individuals compared to non-responding spontaneously resolved subjects (20% Vs 80%, respectively, Table 2).

The average totals (\pm SEM) of IFN- γ responses measured in SFC per million PBMCs in the responding total subjects were 624 \pm 125, and 381 \pm 100 with the TLR9.rs5743836 CT (n=18) and TT (n=41) genotypes, respectively. There were no responding subjects with the CC genotype. Additionally, among the non-responding subjects, the average totals (\pm SEM) of IFN- γ SFC per million PBMCs in total subjects were 40 \pm 23, 40 \pm 10, and 26 \pm 4, among those with the TLR9.rs5743836 CC (n=4), CT (n=40) and TT (n=162), respectively. There was a significant difference between the responding total subjects with different TLR9.rs5743836 genotypes (p = 0.005; Figure 2A).

For the seronegative, aviraemic subjects, the average totals of HCV-specific IFN- γ SFC/10⁶ PBMCs (±SEM) of the responding subjects were 617±192, and 398±164, among those with the TLR9.rs5743836 CT (n=10) and TT (n=20) genotypes, respectively. There were no responding subjects with the CC genotype. Differences were not statistically significant (p = 0.159). On the other hand, the average totals of IFN- γ SFC/10⁶ PBMCs (±SEM) of the non-responding seronegative, aviraemic subjects were 32±31, 44±14, and 18±3, among those with the TLR9.rs5743836 CC (n=3), CT (n=25) and TT (n=82) genotypes, respectively (Figure 2B).

For seronegative , viraemic subjects, the average totals of HCV-specific IFN- γ SFC/10⁶ PBMCs (±SEM) of the responding subjects were 238, and 632±455, among those with the TLR9.rs5743836 CT (n=1) and TT (n=3) genotypes, respectively. There were no responding subjects with the CC genotype. Differences were not statistically significant (p = 0.654). On the other hand, the average totals of IFN- γ SFC/10⁶ PBMCs (±SEM) of the non-responding subjects were 65, 18±14, and 38±18, among those with the TLR9.rs5743836 CC (n=1), CT (n=4) and TT (n=11) genotypes, respectively (Figure 2C).

For spontaneously resolved subjects , the average total HCV-specific IFN- γ SFC/10⁶ PBMCs (±) of the responding subjects was 795±345, and 206±49, among those with the TLR9.rs5743836 CT (n=3) and TT (n=4) genotypes, respectively. There were no responding subjects with the CC genotype. Differences were not statistically significant (p = 0.077). On the other hand, the average totals of IFN- γ SFC/10⁶ PBMCs (±) of non-responding subjects were 1, and 36±12, among those with the TLR9.rs5743836 CT (n=1) and TT (n=27) genotypes, respectively. Also, there were no subjects with the CC genotype among non-responding subjects (Figure 2D).

For chronic HCV patients , the average totals of HCV-specific IFN- γ SFC/10⁶ PBMCs (± SEM) of the responding subjects were 610±212, and 354±156, among those with the TLR9.rs5743836, CT (n=4) and TT (n=14) genotypes, respectively. There were no responding subjects with the CC genotype. Differences were statistically significant (p = 0.044). On the other hand, the average totals of IFN- γ SFC/10⁶ PBMCs (±SEM) of the non-responding chronic HCV subjects were 43±19 and 32±8, among those with the TLR9.rs5743836 CT (n=10) and TT (n=42) genotypes, respectively. There were no subjects with the CC genotype among the non-responding chronic patients (Figure 2E).

Pelationship between the TLP9.rs352140 (G2848A) genotype and the H "-specific IPN-g ELISpot response

There was no association between the results of the HCV-specific CMI response and the TLR9.rs352140 (G2848A) genotype among the 258 HCWs with valid CMI responses and TLR9.rs352140 genotyping tests (p=0.356). Also, there was no significant difference (p=0.299) in the proportion of the GG genotype in responding (46.4 %) and in the non-responding seronegative aviraemic subjects (31.4 %; Table 3).

The average totals (\pm SEM) of IFN- γ responses measured in SFC per million PBMCs in the responding total

subjects were 587 ± 176 , 390 ± 85 , and 327 ± 45 , among those with the TLR9.rs352140 GG (n=24), GA (n=23) and AA (n=10) genotypes, respectively. On the other hand, among the non-responding subjects, the average totals (\pm SEM) of IFN- γ SFC per million PBMCs in the total subjects were 30 ± 6 , 31 ± 6 , and 26 ± 7 , among those with the TLR9.rs352140 (G2848A) GG (n=66), GA (n=86) and AA (n=49) genotypes, respectively. There was no significant difference between the responders of the total subjects with the TLR9.rs352140 genotypes (p = 0.652; Figure 3A).

For the seronegative, aviraemic subjects, the average totals of HCV-specific IFN- γ SFC/10⁶ PBMCs (±SEM) of the responding subjects was 672±278.8, 307±86, and 357±68, among those with the TLR9.rs352140 GG (n=13), GA (n=10) and AA (n=5) genotypes, respectively. Differences were not statistically significant (p =0.594). On the other hand, the average totals of IFN- γ SFC/10⁶ PBMCs (±SEM) among the non-responding seronegative, aviraemic subjects were 23±7, 31±8, and 17±5, among those with the TLR9.rs352140 GG (n=33), GA (n=43) and AA (n=29) genotypes, respectively (Figure 3B).

For seronegative, viraemic subjects, the average totals of HCV-specific IFN- γ SFC/10⁶ PBMCs (±SEM) of the responding subjects were 214±24.2, and 853±689, among those with the TLR9.rs352140 GG (n=2) and GA (n=2) genotypes, respectively. There were no responding subjects with the AA genotype. Differences were not statistically significant (p = 1.000). On the other hand, the average totals of IFN- γ SFC/10⁶ PBMCs (±SEM) were 12±2.22, 30±10.4, and 60±47.6, among the non-responding seronegative , viraemic subjects with the TLR9.rs352140 (G2848A) GG (n=3), GA (n=9) and AA (n=4) genotypes, respectively (Figure 3C).

For spontaneously resolved subjects, the average totals of HCV-specific IFN- γ SFC/10⁶ PBMCs (±SEM) of the responding subjects were 244±48.2, and 619±301, among those with the TLR9.rs352140 GG (n=3) and GA (n=4) genotypes, respectively. There were no responding subjects with the AA genotype. Differences were not statistically significant (p = 1.000). On the other hand, the average totals of IFN- γ SFC/10⁶ PBMCs (±SEM) were 26±14.1, 60±26.9, and 10±10, among the non-responding spontaneously resolved subjects with the TLR9.rs352140 GG (n=11), GA (n=10) and AA (n=7) genotypes, respectively (Figure 3D).

For chronic HCV patients , the average totals of HCV-specific IFN- γ SFC/10⁶ PBMCs (±SEM) of the responding subjects were 698±357.2, 245±51.5, and 296±57.8, among those with the TLR9.rs352140 GG (n=6), GA (n=7) and AA (n=5) genotypes, respectively. Differences were not statistically significant (p = 0.775). On the other hand, the average totals of IFN- γ SFC/10⁶ PBMCs (±SEM) of non-responding chronic HCV subjects were 46±13.8, 18±7.9, and 50.9±23.1, among those with the TLR9.rs352140 GG (n=19), GA (n=24) and AA (n=9) genotypes, respectively (Figure 3E).

Discussion

In this study, there was no statistically significant difference between CMI responding individuals in Egyptian HCWs with diverse HCV states with different TLR3.rs3775290 (c.1377C/T) genotypes. Also, there was no association between the results of the HCV-specific CMI response and the TLR3.rs3775290 (c.1377C/T) genotype among the 263 subjects tested. This agrees with another report [20]. TLR3's function was investigated in four different viral models of infection in TLR3-/- mice, including lymphocytic choriomeningitis virus (LCMV), vesicular stomatitis virus (VSV), Murine Cytomegalovirus (MCMV), and reovirus. The researchers found that TLR3 is not always required for effective antiviral responses to be generated, as the absence of TLR3 did not alter either viral pathogenesis or the generation of adaptive antiviral responses to these viruses by the host. Remarkably, intracellular transduction of poly I: C signals begins TLR3-independent activation of an IFN response, therefore, restricting the role of TLR3 in the IFN pathway [21]. Other reports [22, 23] indicate that HCV may use TLR3 pathway to escape immune scrutiny through HCV NS3/4A proteasemediated cleavage of the TLR3 adaptor protein TRIF. Also, HCV NS3/4A impedes RIG-I, which is a key factor in TRIF-independent signalling [21]. In addition, it was suggested that several polymorphisms that alter TLR3 amino acids initiate resulting protein changes and that gene expression may be down-regulated while TLR3 activities required for proper signalling may be reduced. [24]. Lower TLR3 activity results in inability to identify the invading microorganisms and consequently insufficient immune responses. This increases the risk of infections and infectious diseases [25].

Our results provide strong indirect evidence that TLR9 could play a greater role than previously expected in HCV infection. We identified an association between the TLR9.rs5743836 polymorphism within the TLR9 gene and the natural history of HCV infection. In this study, there was a strong association between the results of the HCV-specific CMI response and the TLR9.rs5743836 (-1237T-C) genotype among the 265 subjects with valid CMI responses in total responders of individual HCWs (p=0.005). Also, there was a statistically significant difference between responding individuals in chronic HCV patients with distinct TLR9.rs5743836 genotypes (p = 0.044).

We show that the TLR9-1237T allele was significantly associated with HCV-specific CMI response. In this regard, the TT genotype is transcribed more effectively than the CC genotype as reported by others [26] who showed that the wild-type construct stimulates higher transcriptional activity compared to the CC allele. The data showed that individuals with the "favourable" TT allele would have HCV-specific CMI response when compared to those with the "unfavourable" CC allele. Also, several reports found that the mutant allele "T" imparts the immunity against the various pathogens. However, statistically inconsiderable, the mutant allele was declared to be linked with the depressed microbial load in Africans [27-29]. In addition, the mutant allele T manipulate immunity against establishing the infections, which is convincing that the TLR9 gene had bear the influence of genetic assortment to cope with the infections [30]. Functional analyses of the impact of TLR9 polymorphisms on basal promoter activity, on the other hand, revealed that the rs5743836 SNP causes higher gene expression than the wild type promoter. The findings of others [31] could explain the increased promoter activity of TLR9.rs573836. That study [31] showed that the variant C allele at rs5743836 establishes a potential NF-xB-binding site that increases the gene's transcriptional activity. The presence of this extra putative NF-xB-binding site promotes transcription of TLR9 more effectively than the wild type TLR9.rs5743836 T sequence in response to different stimuli. This finding agrees with another report [32], where TLR9 promoter SNPs were associated with the natural course of HCV infection and exhibit higher transcriptional activities and imply the role of the DNA sensor TLR9 in natural immunity against HCV. Our data are analogous to other studies [1, 33], where the rs5743836 TT variant was reported to have a greater promoter activity than the CC genotype. That study suggested that this activity could lead to increased pro-inflammatory cytokine production during malaria infection, leading to successful malaria control and elimination [33].

There was no association between the results of the HCV-specific immune response and the TLR9.rs352140 (G2848A) genotype among the 258 Egyptian HCWs with valid CMI responses and TLR9.rs352140 (G2848A) and HCV infection. The region around 2848 is the major coding region of the TLR9 protein [34, 35] and a TLR9 2848 GA genotype polymorphism has been reported at the transcriptional level to reduce TLR9 expression [35, 36]. Down regulated TLR9 could reduce the functions of the innate immune response against HCV infection. Our results are related to another study that indicates that the TLR9 gene may play a role in cervical carcinogenesis but has a minor (or no) role in tumour progression where individuals with the favourable" GG allele were reported to be more frequent than the "unfavourable" AA allele [37]. In addition, a recent meta-analysis showed that there is no relationship between TLR9.rs352140 (G2848A) and cervical cancer vulnerability [38]. Our findings suggest that the TLR9.rs352140 (G2848A) genotype does not affect the natural course of HCV infection.

In conclusion, this study shows that TLR9.rs5743836 SNP; but not TLR3.rs3775290 or TLR9.rs352140 genotypes; could predict the outcome of HCV-specific CMI responses among genotype-4-infected Egyptians.

Acknowledgement : This study was supported by the Egyptian Science and Technology Development Fund (STDF) Contract no. 1664 to S.F. Abdelwahab.

Author contributions :

Conceptualization and design of experiments: SFA, SH, AO, ZZ, ER, and IW; Data collection, experimentation, analysis, and investigation: SH, SFA, MA, ZZ, IG, MS, WA; Funding acquisition and resources: SFA, ER, and IW; Writing-original draft (SH and SFA); Writing-review and editing (SFA, AO, MS, MH, WA, MA, ER, and IW). All authors approved the final version of the manuscript.

Compliance with Ethical Standards :

Conflict of Interest: None declared.

Data Sharing and Data Accessibility: All data pertinent to this article are included herein.

Research involving human participants and/or animals :

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments.

Informed Consent : Informed consent was obtained from all enrolled study participants.

Table (1): Relationship between TLR3.rs3775290 (c.1377C/T) and HCV-specific cell mediated immune (CMI) response among NLI HCWs in terms of CMI responders frequencies.

p-value	Total	TLR3.rs3775290 genotype	TLR3.rs3775290 genotype	TLR3.rs3775290 genotype
		TT	СТ	CC
0.004	30(21.6)	4 (13.3)	4 (13.3)	22 (73.3)
	109(78.4)	2 (1.8)	36 (33)	71 (65.1)
0.694	4 (20)	0(0)	1 (25)	3 (75)
	16 (80)	2 (12.5)	5 (31.3)	9 (56.3)
0.425	7(20.6)	0(0)	5 (71.4)	2 (28.6)
	27(79.4)	1 (3.7)	12 (44.4)	14 (51.9)
0.57	18(25.7)	2 (11.1)	6 (33.3)	10 (55.5)
	52(74.3)	4 (7.7)	12 (23.1)	36 (69.2)
0.222	59 (22.3)	6 (10.2)	16(27.1)	37 (62.7)
	204(77.7)	9 (4.4)	65 (31.9)	130 (63.7)

Table (2) : Relationship between TLR9.rs5743836 (-1237T-C) and HCV-specific cell mediated immune (CMI) response among NLI HCWs in terms of CMI responders frequencies.

p-value	Total	TLR9.rs5743836 genotype	TLR9.rs5743836 genotype	TLR9.rs5743836 genotype
		TT	СТ	CC
0.353	30(21.4)	20 (66.7)	10 (33.3)	0 (0)
	110 (78.5)	82 (74.5)	25 (22.7)	3 (2.7)
0.87	4 (20)	3 (75)	1 (25)	0 (0)
	16 (80)	11 (68.8)	4 (25)	1 (6.3)
0.019	7 (20)	4 (57.1)	3 (42.9)	0 (0)
	28 (80)	27 (96.4)	1 (3.6)	0 (0)
0.74	18(25.7)	14 (77.8)	4 (22.2)	0 (0)
	52(74.3)	42 (80.8)	10 (19.2)	0 (0)
0.12	59 (22.3)	41 (69.5)	18 (30.5)	0 (0)
	206(77.7)	162 (78.6)	40 (19.4)	4 (1.9)

Table (3): Relationship between TLR9.rs352140 (G2848A) and HCV-specific cell mediated immune (CMI) response among NLI HCWs in terms of CMI responders frequencies.

p-value	Total	TLR9.rs352140 genotype	TLR9.rs352140 genotype	TLR9.rs352140 genotype	GRO
		AA	GA	GG	
0.299	28(21.1)	5(17.9)	10 (35.7)	13(46.4)	Respo
	105(78.9)	29 (27.6)	43 (41)	33 (31.4)	Non-r
0.32	4 (20)	0 (0)	2(50)	2 (50)	Respo
	16 (80)	4 (25)	9 (56.3)	3 (18.8)	Non-r
0.299	7(20)	0 (0)	4 (57.1)	3 (42.9)	Respo
	28 (80)	7 (25)	10 (35.7)	11 (39.3)	Non-r
0.627	18(25.7)	5 (27.8)	7 (38.9)	6 (33.3)	Respo
	52(74.3)	9 (17.3)	24 (46.2)	19 (36.5)	Non-r
0.35	57(22.1)	10 (17.5)	23 (40.4)	24(42.1)	\mathbf{Resp}
	201(77.9)	49 (24.4)	86 (42.8)	66 (32.8)	Non-

References

1. Abdelwahab SF. Cellular immune response to hepatitis-C-virus in subjects without viremia or seroconversion: is it important? Infectious agents and cancer 2016; **11**:23.

2. Ghany MG, Strader DB, Thomas DL, Seeff LB, American Association for the Study of Liver D. Diagnosis, management, and treatment of hepatitis C: an update. Hepatology 2009; **49** :1335-74.

3. Rosen HR. Clinical practice. Chronic hepatitis C infection. N Engl J Med 2011; 364 :2429-38.

4. Li K, Chen Z, Kato N, Gale M, Jr., Lemon SM. Distinct poly(I-C) and virus-activated signaling pathways leading to interferon-beta production in hepatocytes. J Biol Chem 2005; **280** :16739-47.

5. Broering R, Wu J, Meng Z, Hilgard P, Lu M, Trippler M, Szczeponek A, Gerken G, Schlaak JF. Toll-like receptor-stimulated non-parenchymal liver cells can regulate hepatitis C virus replication. J Hepatol 2008; **48** :914-22.

6. Dolganiuc A, Garcia C, Kodys K, Szabo G. Distinct Toll-like receptor expression in monocytes and T cells in chronic HCV infection.World J Gastroenterol 2006; **12** :1198-204.

7. Geiss GK, Carter VS, He Y, Kwieciszewski BK, Holzman T, Korth MJ, Lazaro CA, Fausto N, Bumgarner RE, Katze MG. Gene expression profiling of the cellular transcriptional network regulated by alpha/beta interferon and its partial attenuation by the hepatitis C virus nonstructural 5A protein. J Virol 2003; 77 :6367-75.

8. Shiina M, Rehermann B. Cell culture-produced hepatitis C virus impairs plasmacytoid dendritic cell function. Hepatology 2008;47:385-95.

9. Foy E, Li K, Wang C, Sumpter R, Jr., Ikeda M, Lemon SM, Gale M, Jr. Regulation of interferon regulatory factor-3 by the hepatitis C virus serine protease. Science 2003; **300** :1145-8.

10. Otsuka M, Kato N, Moriyama M, Taniguchi H, Wang Y, Dharel N, Kawabe T, Omata M. Interaction between the HCV NS3 protein and the host TBK1 protein leads to inhibition of cellular antiviral responses.Hepatology 2005; **41** :1004-12.

11. Abe T, Kaname Y, Hamamoto I, Tsuda Y, Wen X, Taguwa S, Moriishi K, Takeuchi O, Kawai T, Kanto T, Hayashi N, Akira S, Matsuura Y. Hepatitis C virus nonstructural protein 5A modulates the toll-like receptor-MyD88-dependent signaling pathway in macrophage cell lines. J Virol 2007; **81** :8953-66.

12. Fukuda K, Tsuchihara K, Hijikata M, Nishiguchi S, Kuroki T, Shimotohno K. Hepatitis C virus core protein enhances the activation of the transcription factor, Elk1, in response to mitogenic stimuli.Hepatology 2001; **33** :159-65.

13. Yonkers NL, Rodriguez B, Milkovich KA, Asaad R, Lederman MM, Heeger PS, Anthony DD. TLR ligand-dependent activation of naive CD4 T cells by plasmacytoid dendritic cells is impaired in hepatitis C virus infection. J Immunol 2007; **178** :4436-44.

14. Hamdy S, Osman AM, Zakaria ZA, Galal I, Sobhy M, Hashem M, Allam WR, Abdel-Samiee M, Rewisha E, Waked I, Abdelwahab SF. Association of Toll-like receptor 3 and Toll-like receptor 9 single-nucleotide polymorphisms with hepatitis C virus persistence among Egyptians. Arch Virol 2018; **163** :2433-42.

15. Davidson F, Simmonds P. Determination of HCV Genotypes by RFLP. Methods Mol Med 1999; **19** :175-81.

16. Pandey S, Mittal B, Srivastava M, Singh S, Srivastava K, Lal P, Mittal RD. Evaluation of Toll-like receptors 3 (c.1377C/T) and 9 (G2848A) gene polymorphisms in cervical cancer susceptibility. Mol Biol Rep 2011; **38** :4715-21.

17. Demirci FY, Manzi S, Ramsey-Goldman R, Kenney M, Shaw PS, Dunlop-Thomas CM, Kao AH, Rhew EY, Bontempo F, Kammerer C, Kamboh MI. Association study of Toll-like receptor 5 (TLR5) and Toll-like receptor 9 (TLR9) polymorphisms in systemic lupus erythematosus. J Rheumatol 2007; **34** :1708-11.

18. Abdelwahab SF, Zakaria Z, Sobhy M, Rewisha E, Mahmoud MA, Amer MA, Del Sorbo M, Capone S, Nicosia A, Folgori A, Hashem M, El-Kamary SS. Hepatitis C virus-multispecific T-cell responses without viremia or seroconversion among Egyptian health care workers at high risk of infection. Clin Vaccine Immunol 2012; **19**:780-6.

19. Farid A, Al-Sherbiny M, Osman A, Mohamed N, Saad A, Shata MT, Lee DH, Prince AM, Strickland GT. Schistosoma infection inhibits cellular immune responses to core HCV peptides. Parasite Immunol 2005;27 :189-96.

20. Edelmann KH, Richardson-Burns S, Alexopoulou L, Tyler KL, Flavell RA, Oldstone MB. Does Toll-like receptor 3 play a biological role in virus infections? Virology 2004; **322** :231-8.

21. Takeuchi O, Hemmi H, Akira S. Interferon response induced by Toll-like receptor signaling. J Endotoxin Res 2004;10 :252-6.

22. Li K, Foy E, Ferreon JC, Nakamura M, Ferreon AC, Ikeda M, Ray SC, Gale M, Jr., Lemon SM. Immune evasion by hepatitis C virus NS3/4A protease-mediated cleavage of the Toll-like receptor 3 adaptor protein TRIF. Proc Natl Acad Sci U S A 2005; **102** :2992-7.

23. Chang S, Kodys K, Szabo G. Impaired expression and function of toll-like receptor 7 in hepatitis C virus infection in human hepatoma cells. Hepatology 2010; **51** :35-42.

24. Ranjith-Kumar CT, Miller W, Sun J, Xiong J, Santos J, Yarbrough I, Lamb RJ, Mills J, Duffy KE, Hoose S, Cunningham M, Holzenburg A, Mbow ML, Sarisky RT, Kao CC. Effects of single nucleotide polymorphisms on Toll-like receptor 3 activity and expression in cultured cells. J Biol Chem 2007; **282** :17696-705.

25. Geng PL, Song LX, An H, Huang JY, Li S, Zeng XT. Toll-Like Receptor 3 is Associated With the Risk of HCV Infection and HBV-Related Diseases. Medicine (Baltimore) 2016; **95** :e2302.

26. Novak N, Yu CF, Bussmann C, Maintz L, Peng WM, Hart J, Hagemann T, Diaz-Lacava A, Baurecht HJ, Klopp N, Wagenpfeil S, Behrendt H, Bieber T, Ring J, Illig T, Weidinger S. Putative association of a TLR9 promoter polymorphism with atopic eczema. Allergy 2007;**62** :766-72.

27. Christensen SR, Kashgarian M, Alexopoulou L, Flavell RA, Akira S, Shlomchik MJ. Toll-like receptor 9 controls anti-DNA autoantibody production in murine lupus. J Exp Med 2005; **202** :321-31.

28. Yusuf JH, Kaliyaperumal D, Jayaraman M, Ramanathan G, Devaraju P. Genetic selection pressure in TLR9 gene may enforce risk for SLE in Indian Tamils. Lupus 2017; **26** :307-10.

29. Medhi S, Deka M, Deka P, Swargiary SS, Hazam RK, Sharma MP, Gumma PK, Asim M, Kar P. Promoter region polymorphism & expression profile of toll like receptor-3 (TLR-3) gene in chronic hepatitis C virus (HCV) patients from India. Indian J Med Res 2011; **134** :200-7.

30. Wei XS, Wei CD, Tong YQ, Zhu CL, Zhang PA. Single nucleotide polymorphisms of toll-like receptor 7 and toll-like receptor 9 in hepatitis C virus infection patients from central China. Yonsei Med J 2014; 55 :428-34.

31. Ng MT, Van't Hof R, Crockett JC, Hope ME, Berry S, Thomson J, McLean MH, McColl KE, El-Omar EM, Hold GL. Increase in NF-kappaB binding affinity of the variant C allele of the toll-like receptor 9 - 1237T/C polymorphism is associated with Helicobacter pylori-induced gastric disease. Infect Immun 2010; **78**:1345-52.

32. Fischer J, Weber AN, Bohm S, Dickhofer S, El Maadidi S, Deichsel D, Knop V, Klinker H, Moller B, Rasenack J, Wang L, Sharma M, Hinrichsen H, Spengler U, Buggisch P, Sarrazin C, Pawlita M, Waterboer T, Wiese M, Probst-Muller E, Malinverni R, Bochud PY, Gardiner CM, O'Farrelly C, Berg T. Sex-specific effects of TLR9 promoter variants on spontaneous clearance of HCV infection. Gut 2016.

33. Aslam N, Batool F, Iqbal MS, Ashfaq UA, Ayaz S, Khaliq S, Jahan S, Ghani MU, Usman M. Analysis of toll-like receptors-9 (TLR9) gene polymorphism (rs5743836) in Pakistani patients with HCV. Pak J Pharm Sci 2018; **31** :2709-14.

34. Lange NE, Zhou X, Lasky-Su J, Himes BE, Lazarus R, Soto-Quiros M, Avila L, Celedon JC, Hawrylowicz CM, Raby BA, Litonjua AA. Comprehensive genetic assessment of a functional TLR9 promoter polymorphism: no replicable association with asthma or asthma-related phenotypes.BMC Med Genet 2011; 12:26.

35. Kikuchi K, Lian ZX, Kimura Y, Selmi C, Yang GX, Gordon SC, Invernizzi P, Podda M, Coppel RL, Ansari AA, Ikehara S, Miyakawa H, Gershwin ME. Genetic polymorphisms of toll-like receptor 9 influence the immune response to CpG and contribute to hyper-IgM in primary biliary cirrhosis. J Autoimmun 2005; 24:347-52.

36. Chuang TH, Ulevitch RJ. Cloning and characterization of a sub-family of human toll-like receptors: hTLR7, hTLR8 and hTLR9. Eur Cytokine Netw 2000; **11** :372-8.

37. Lai ZZ, Ni Z, Pan XL, Song L. Toll-like receptor 9 (TLR9) gene polymorphisms associated with increased susceptibility of human papillomavirus-16 infection in patients with cervical cancer. J Int Med Res 2013; **41** :1027-36.

38. Tian S, Zhang L, Yang T, Wei X, Zhang L, Yu Y, Li Y, Cao D, Yang X. The Associations between Toll-Like Receptor 9 Gene Polymorphisms and Cervical Cancer Susceptibility. Mediators Inflamm 2018;2018 :9127146.

Figure legends :

Figure (1) : Relation between TLR3.rs3775290 (c.1377C/T) genotype and total HCV-specific CMI response among total subjects (A), seronegative, *aviraemic* subjects (B), seronegativetiveviraemic subjects (C), spontaneously resolved subjects (D), and chronic HCV patients (E). Data are shown as scatter plots. For each subject, the total cumulative number of HCV-specific IFN- γ spot-forming cells (SFC) per 10⁶PBMCs is shown for responding and non-responding healthcare workers (HCWs) and patients. Error bars represent the SEM.

Figure (2): Relationship between TLR9.rs5743836 (-1237T-C) genotype and total HCV-specific CMI response among the total subjects (A), seronegative *aviraemic* subjects (B), seronega-

tive viraemic subjects (C), spontaneously resolved subjects (D), and chronic HCV patients (E). Data are shown as scatter plots. For each subject, the total cumulative number of HCV-specific IFN- γ spot-forming cells (SFC) per 10⁶PBMCs is shown for responding and non-responding healthcare workers (HCWs) and patients. Error bars represent the SEM.

Figure (3): Relationship between TLR9.rs352140 (G2848A) genotype and total HCV-specific CMI response among the total subjects (A) seronegative, *aviraemic* subjects (B) seronegative, *viraemic* subjects (C) spontaneously resolved subjects (D) and chronic HCV patients (E). Data are shown as scatter plots. For each subject, the total cumulative number of HCV-specific IFN- γ spot-forming cells (SFC) per 10⁶ PBMCs is shown for responding and non-responding HCWs and patients. Error bars represent the SEM.

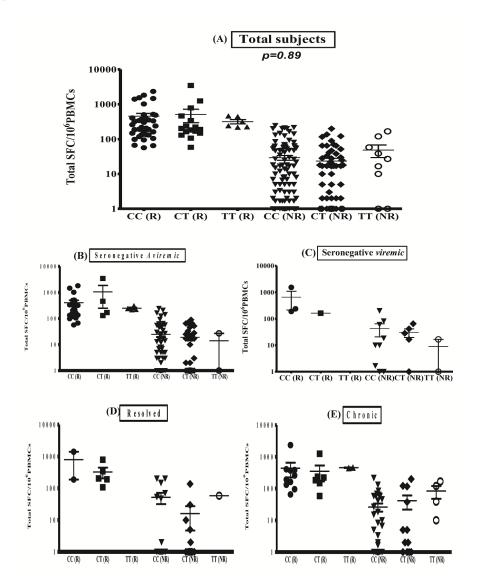


Figure 1:

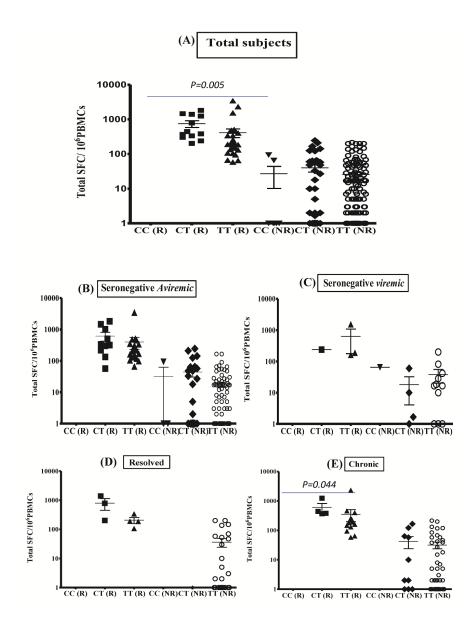


Figure 2:

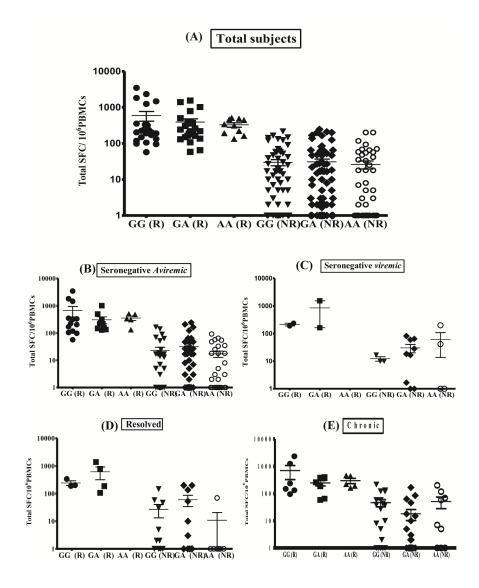


Figure 3: