Part 1: Bypassing the Multi-reference Character of Singlet Molecular Oxygen

Malte Jespersen ${ }^{1}$, Solvejg Jørgensen ${ }^{1}$, Matthew Johnson ${ }^{1}$, and Kurt Mikkelsen ${ }^{1}$
${ }^{1}$ University of Copenhagen

June 26, 2020

Abstract

Ab initio calculations on systems involving singlet molecular oxygen ($\mathrm{O} 2(1 \mathrm{~g})$) are challenging due to signicant multi-reference character arising from the degeneracy of the HOMO and LUMO orbitals in singlet oxygen. Here we investigate the stragegy of bypassing singlet oxygen's multi-reference character by simply adding the experimen- tally determined singlet/triplet splitting ($22.5 \mathrm{kcal} / \mathrm{mol}$) to the triplet ground state of molecular oxygen. This method is tested by calculating rate constants for the reactions of singlet molecular oxygen with furan, 2-methylfuran, 2,5-dimethylfuran, pyrrole, 2-methylpyrrole, 2,5-dimethylpyrrole, and cyclopentadiene. The calculated rate con- stants are within a factor of 15 compared to experimentally determined rate constants. The results show that energy renement at the CCSD (T)-F12 level of theory is cru- cial to achieving accurate results. The reasonable agreement with experimental values validates the bypassing approach which can be used for other systems involving the 1,4 -cyclo-addition of singlet oxygen. 2

Hosted file

Malte_int_j_quant.pdf available at https://authorea.com/users/337008/articles/462680-part-1-bypassing-the-multi-reference-character-of-singlet-molecular-oxygen

