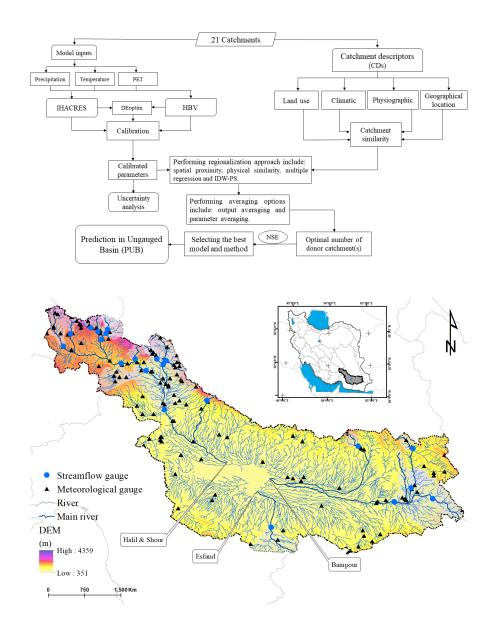
Simulating streamflow in ungauged catchments using regionalization methods in southeast Iran

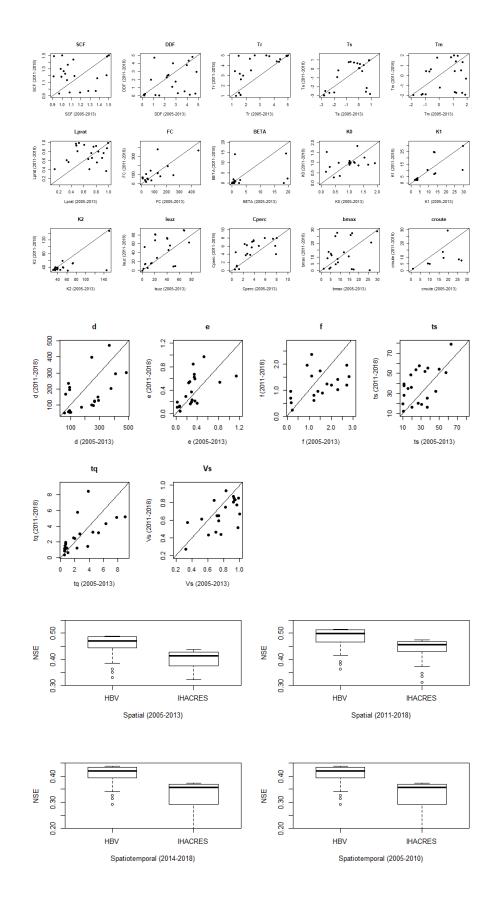
Afshin Jahanshahi¹, Kaka Shahedi¹, Karim Solaimani¹, Alireza Moghaddam Nia², and Ralf $\rm Merz^3$

¹Sari Agricultural Sciences and Natural Resources University
²Tehran University
³Helmholtz-Centre for Environmental Research - UFZ

July 7, 2020

Abstract


Simulating streamflow in ungauged catchments is a challenge for the management of surface water resources around the world, especially in dry regions. Here, we transfer parameters of two HBV and IHACRES hydrological models from gauged (donor) to ungauged catchments using three main regionalization approaches including Physical Similarity (PS), Multiple Regression (MR), Spatial Proximity (SP) and an integrated approach, which is basically an extension of PS approach through Inverse Distance Weighted (IDW) method (IDW-PS). We use a set of 21 catchments in Hamoun-Jazmourian River Basin in southeast Iran, to compare regionalization approaches. The results indicate that (1) generally, the HBV model performs slightly better than IHACRES model in calibration, verification, and regionalization, (2) the physical similarity method under 2 to 4 donor catchments and multiple regression method provide the best and least satisfactory results respectively. The IDW-PS method improves the performance of IDW method, (3) for the physical similarity, eight Catchment Descriptors (CDs) in four main groups of climate, physiographic, location, and land use perform best in prediction performance, (5) the HBV parameters related to snow and runoff components, are associated with highest and lowest uncertainties respectively. For the IHACRES, the most and least robustness parameters are plant stress threshold factor, f and the proportion of slow flow to total flow, vs respectively. Testing the parameter transferability using main approaches of regionalization at two distinct climate regions located in such an extensive river basin is a novelty. The results suggest that the methodology used in this study is rather suitable to simulate streamflow time series of ungauged catchments in the southeast Iran. However, further research is still needed to use this approach in other river basins of Iran.


Hosted file

Main Document.docx available at https://authorea.com/users/340594/articles/467763-simulatingstreamflow-in-ungauged-catchments-using-regionalization-methods-in-southeast-iran

Hosted file

Tables.docx available at https://authorea.com/users/340594/articles/467763-simulatingstreamflow-in-ungauged-catchments-using-regionalization-methods-in-southeast-iran

NSE for HBV	2 0.4 0.6																										
	N																		_ <u>i_</u>	_ <u>i_</u>						_	
	0																										
		Ps1	Ps2	Ps3	Ps4	Ps5	Ps6	Ps7	Ps8	Ps9	Ps10	Ps11	Ps12	Ps13	Ps14	Ps15	Ps16	Ps17	Ps18	Ps19	Ps20	Ps21	Ps22	Ps23	Ps24	Ps25	

Number of parameter sets

ACRES	9.0	T	T	T	T	T	T	T	T	T	T	_T	T	T	T	T	-	T	Ŧ	+	-	-					
NSE for IH	0.2 0.4			H					H						F			₽		╞	Ė	Ė		$\overline{\square}$	Ē	Ē	
	-	Ps1	Ps2	Ps3	Ps4	Ps5	Ps6	Ps7	Ps8	Ps9	Ps10	Ps11	Ps12	Ps13	Ps14	Ps15	Ps16	Ps17	Ps18	Ps19	Ps20	Ps21	Ps22	Ps23	Ps24	Ps25	

² 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	NSE for HBV 0.3 0.5 0.7	- [Ps1	Ps2	Ps3	Ps4	Ps5	Ps6	Ps7	Ps8	Ps9	Ps10	Ps11	Ps12	Ps13	Ps14	Ps15	Ps16	Ps17	Ps18	Ps19	Ps20	Ps21	Ps22	Ps23	Ps24	Ps25		
--	----------------------------	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	--	--

Number of parameter sets

NSE for IHACRES 0.3 0.5 0.7	-	Ps1	Ps2	Ps3	Ps4	Ps5	Ps6	Ps7	Ps8	Ps9	Ps10						Ps16	Ps17	Ps18	Ps19	Ps20	Ps21	Ps22	Ps23	Ps24	Ps25	
												1	lumber	of paran	neter set	s											