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Impact of predator fear on two competing prey species
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Abstract

Predator-prey interaction is a fundamental feature in the ecological system. The majority of studies has addressed how

competition and predation affect species coexistence. Recent field studies on vertebrate has shown that fear of predators

can influence the behavioural pattern of prey populations and reduce their reproduction. A natural question arises whether

species coexistence is still possible or not when predator induce fear on competing species. Based on the above observation, we

propose a mathematical model of two competing prey-one predator system with the cost of fear that affect reproduction rate

of both the prey population. To make the model more realistic, we incorporate intraspecific competition within the predator

population. Biological justification of the model is shown through positivity and boundedness of solutions. Existence and

stability of different boundary equilibria are discussed. Condition for the existence of coexistence equilibrium point is derived

from showing uniform persistence. Local as well as a global stability criterion is developed. Bifurcation analysis is performed

by choosing the fear effect as the bifurcation parameter of the model system. The nature of the limit cycle emerging through

a Hopf bifurcation is indicated. Chaotic motion is observed when one of two prey has bigger competitive capacities than the

other. Numerical experiments are carried out to test the theoretical results obtained for this model.

1. Introduction

In ecological system, predation and competition are often assumed to be the important factors that affect
species coexistence [7, 8, 11, 25]. It is further investigated thoroughly in [1, 12, 13]. Gurevitch et al. [6]
showed that predator can promote coexistence by lowering the strength of competition. It is a common
phenomenon that predator can affect prey populations by direct killing. Recent field studies show that the
indirect effect of predator species on prey species has a major impact than direct killing [2-5, 14]. Thus, it is
reasonable to incorporate the fear effect in the model focussed on the role of predator regarding coexistence of
competing species. This type of mechanism can slow down the competition in respect of resource competition.
Thus avoidance behaviour developed by fear usually stimulates coexistence provided prey partition resources,
but not predators, whereas it weaken coexistence if prey partition predators but not the resources. Zanette
et al. [29] carried out experiments on song sparrows and observed 40% reduction in offspring production
due to fear from the predator. With this fact in mind, Wang et al. [27] first developed the predator-
prey model incorporating the cost of fear into prey reproduction. They found that the cost of fear has
no impact in dynamical behavior when predation follows Holling type I response function whereas it can
stabilize the system by discarding periodic orbits considering Holling type II response function. Since then
several studies are found in predator-prey models by introducing fear component in prey reproduction. Wang
and Zou [28] investigated a predator-prey model with the cost of fear and adaptive avoidance of predators
and established that both strong adaption of adult prey and the large cost of fear induces destabilizing
effect while large population of predators stabilize the system. Sasmal and Takeuchi [22] discussed the
dynamics of a prey-predator model incorporating two facts: fear effect and group defense. Mondal et al.
[16] analyzed the predator-prey model considering both the effects of fear and additional food and showed
stability of equilibrium points and Hopf bifurcation. Zhang et al. [30] investigated the influence of anti-
predator behavior due to fear of predators to a Holling type II prey-predator model allowing a prey refuge

1
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and demonstrated the global stability analysis of the equilibria of the model and showed Hopf bifurcation.
Previous studies [16-19, 27, 28, 30] are mainly confined in two species that cannot properly explain the fear
effect when multiple species are present. So present study attempts to investigate the predator fear which
affects prey behavior when prey species are in competition. This study also address the question of species
coexistence.

Takeuchi and Adachi [24] studied the following two competing prey and one predator model in Lotka-Volterra
form:

dx1
dt

= x1 (r1 − x1 − αx2 − εy) ,

dx2
dt

= x2 (r2 − βξ1 − x2 − µy) ,

dy
dt = y (−d+ cεx1 + cµx2) .(1) Here the variablesx1 and x2represent the densities of prey y that of
predator.r1 and r2 are the intrinsic growth rate of prey. α and β are parameters representing the com-
petitive effects between two prey.ε and µ are coefficients of decrease of prey species due to predation. c
is the equal conversion rate of the predator. All the parameters are assumed to be positive. In [24], the
authors showed stability and Hopf bifurcation. They also pointed out that the stable equilibrium bifurcates
to a periodic motion with a small amplitude when the predation rate increases and chaotic motion appears
when one of two prey is superior than the other. Finally, they remarked that predator mediated coexistence
is possible by the close relationship between preferences of a predator and competitive capacities of two
prey. However, studies in [24] only considers the effect of direct killing on prey populations and ignore the
fear effect in the model equations. In the real world , the intraspecific competition among predator exists.
Taking the cost of fear on reproduction term only and intraspecific competition and unequal conversion rate
of predator, system (1) becomes

dx1
dt

= x1

(
r1

1 + k1y
− x1 − αx2 − εy

)
,

dx2
dt

= x2

(
r2

1 + k2y
− βξ1 − x2 − µy

)
,

dy
dt = y (−d+ c1εx1 + c2µx2 − hy)(2)

where ki, i = 1, 2 represents the level of fear and hdenotes the intraspecific competition within the predator
population.ci, i = 1, 2 is the conversion efficiency of the predator. Justification for considering the fear term
can be found in [27].

The rest of the paper is organized as follows. In Sec. 3, we state results on positivity and boundedness of
the solutions of the system. In Sec. 4, existence and stability of different equilibrium points are discussed.
Furthermore, persistence criterion is developed in the same section. Hopf bifurcation around the positive
equilibrium point and the nature of the limit cycle emerging through Hopf bifurcation are derived in Sec. 5.
Numerical simulations are performed in Sec. 6. A brief discussion concludes in Sec. 7.

3. Positivity and boundedness of solutions

In this section, we first state positivity and boundedness of solutions of system (2) without proof as it is
obvious. These are very important so far as the validity of the model is concerned.

Lemma 1 . All solutions(x1 (t) , x2 (t) , y (t))of system (2) with initial values(x10, x20, y0) ε R3
+,

remains positive for all t > 0 .

2
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Lemma 2. All solutions of system (2) will lie in the region

B = {(x1, x2, y) ∈ R3
+ : 0 ≤ c1x1 + c2x2 + y ≤ M

λ
}

as t→∞for all positive initial values (x10, x20, y0) ε R3
+,where λ < min {r1, r2, d} andM = r21 + r22

4. Existence of equilibria and Stability analysis

Evidently, system (2) has six non-negative equilibrium points.

• The population free equilibrium point E0 = (0, 0, 0).
• The second prey and predator free equilibrium pointE1 = (r1, 0, 0).
• The first prey and predator free equilibrium pointE2 = (0, r2, 0).
• Ifα < r1

r2
< 1

β or α > r1
r2

> 1
β then there exists unique predator free equilibrium pointE12 =

(x1, x2, 0)wherex1 = r1−r2α
1−αβ , x2 = r2−r1β

1−αβ .

• If d < r1c1ε then there exists unique second prey free equilibrium point E13 = (x̂1, 0, ŷ) wherex̂1 = hŷ+d
c1ε

andŷ is the positive root of the equation

k1(h+ c1ε
2)y2 +

(
h+ dk1 + c1ε

2
)
y + d− r1c1ε = 0.

If d < r2c2µ then there exists unique first prey free equilibrium point E23 = (0, x̃2, ỹ) wherex̃2 = hỹ+d
c2µ

andỹ
is the positive root of the equation

k2(h+ c2µ
2)y2 +

(
h+ dk2 + c2µ

2
)
y + d− r2c2µ = 0.

E0 is always unstable.

E1 is stable ifr2 < βr1 and d > c1εr1.

E2 is stable ifr1 < αr2 and d > c2µr2.

E12 is stable ifαβ < 1 and d > c1εx1 + c2µx2.

E13 is stable if r2
1+k2ŷ

< βx̂1 + µŷandE23 is stable if r1
1+k1ỹ

< αx̃2 + εỹ.

To find the existence condition of positive equilibrium point we first show uniform persistence of system (2)
and then application of a result in [10] ensures the existence.

Persistence

In biological sense, persistence means the long term survival of all populations whatever may be the initial
populations. Geometrically, it means the existence of a region in the phase space at a non-zero distance from
the boundary in which all species enter and must lie ultimately.

Now we state a result establishing the uniform persistence of system (2).

Theorem 2. SupposeE12, E13 and E23 exist. Further suppose that d < c1εx1 + c2µx2,

r2
1+k2ŷ

> βx̂1 + µŷand r1
1+k1ỹ

> αx̃2 + εỹ then system (2) is uniformly persistent.

Proof . We shall prove the theorem by using the idea of average Lyapunov function [9].

Consider the average Lyapunov function of the form :H (x) = x1
m1x2

m2ym3 , where each mi, i = 1, 2, 3 is
assumed positive. In the interior ofR3

+, one has

1
H(x)

dH(x)
dt = ψ (x) = m1

x1

dx1

dt + m2

x2

dx2

dt + m3

y
dy
dt

= m1

(
r1

1+k1y
− x1 − αx2 − εy

)
+m2

(
r2

1+k2y
− βx1 − x2 − µy

)
+m3 (−d+ c1εx1 + c2µx2 − hy) .(3)

3
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We have to show ψ (x) > 0 for allξ βδR3
+ , for a suitable choice ofm1, m2, m3 > 0, to prove uniform

persistence of system (2). That is one has to fulfil the following conditions corresponding to the boundary
equilibriaE0, E1, E2, E12, E13, E23 only as there are no periodic orbits in thex1−x2, x1− y and x2− y
plane respectively.

E0 : m1r1 +m2r2 −m3d > 0 (4)

E1 : m2 (r2 − βr1) +m3(−d+ c1εr1) > 0(5)

E2 : m1 (r1 − αr2) +m3(−d+ c2µr2) > 0(6)

E12 :m3( c1εx1 + c2µx2 − d) > 0(7)

E13 : m2

(
r2

1+k2ŷ
− βx̂1 − µŷ

)
> 0(8)

E23 : m1

(
r1

1+k1ỹ
− αx̃2 − εỹ

)
> 0(9)

Sinced < c1εx1 + c2µx2, r2
1+k2ŷ

> βx̂1 + µŷand r1
1+k1ỹ

> αx̃2 + εỹ positivity of (7), (8) and (9) is obvious.
Again existence ofE13 and E23 implies thatd < c1εr1 and c2µr2 .There are two alternative conditions for
existence of E12 e. g., (i) α < r1

r2
< 1

β or (ii) α > r1
r2

> 1
β . Condition (i) implies thatr1 − αr2 >

0 and r2 − βr1 > 0. In this case, positivity of (5) and (6) are obvious and positivity of (4) will follow by
the suitable choice ofm1, m2 and m3. Condition (ii) implies thatr1 − αr2 < 0 and r2 − βr1 < 0. To show
positivity of (4), (5) and(6), we have to choose m3 as

max{m2(βr1−r2)
−d+c1εr1 , m1(αr2−r1)

−d+c2µr2 } < m3 <
m1r1+m2r2

d . So in any case, positivity of (4), (5) and (6) will follow
for suitable choice of mi, i = 1, 2, 3. This completes the proof.

Now system (2) ensures uniform persistence provided that the conditions of Theorem 2 are satisfied. Further,
it is proved in [10], uniform persistence implies the existence of an interior equilibrium point. Hence E∗ =
(x∗1, x

∗
2, y

∗) exists; that is in effect Theorem 2 implies that E∗ exists. There may exist multiple coexistence
equilibrium point which are not investigated due to complexity of the system.

Theorem 3. Suppose all the conditions of Theorem 2 be satisfied. Then the interior equilibrium point

E∗ of system (2) is locally asymptotically stable if 4p1p2 > (p1α+ p2β)
2

wherep1 = c1ε(1+k1y
∗)2

r1k1
and p2 =

c2µ(1+k2y
∗)2

r2k2
.

Proof. Consider the positive definite function

V (t) = p1(x1 − x∗1 − x∗1 ln x1

x∗
1
) + p2(x2 − x∗2 − x∗2 ln x2

x∗
2
) +

(
y − y∗ − y∗ ln y

y∗

)
.

The time derivative along the solution of system (2), can be obtained as

dV
dt = p1 (x1 − x∗1)

{
r1

1+k1y
− x1 − αx2 − εy

}
+ p2 (x2 − x∗2)

(
r2

1+k2y
− βx1 − x2 − µy

)
+

(y − y∗)(−d+ c1εx1 + c2µx2 − hy).

We expand dV
dt about(x∗1, x

∗
2, y

∗) and after some algebraic calculations get

dV
dt = −p1(x1 − x∗1)

2 − (p1α+ p2β) (x1 − x∗1) (x2 − x∗2)− p2(x2 − x∗2)
2 − h(y − y∗)

2
+ H. O. T

where H. O. T stands for terms that are cubic or higher orders.

Now dV
dt ≤ 0 if4p1p2 > (p1α+ p2β)

2
. ConsequentlyV is a Lyapunov function and hence the theorem follows.

Remark. One can also determine the local stability of E∗by using the Routh-Hurwitz criterion.

The characteristic equation aboutE∗is

λ3 + a1λ
2 + a2λ+ a3 = 0 (10)

4
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where

a1 = x∗1 + x∗2 + hy∗,

a2 = x∗1x
∗
2 (1− αβ) + hy∗ (x∗1 + x∗2) +

(
r1k1

(1+k1y∗)
2 + ε

)
c1εx

∗
1y

∗ + ( r2k2
(1+k2y∗)

2 + µ)c2µx
∗
2y

∗,

a3 = x∗1x
∗
2y

∗{h (1− αβ) + (c2µ− αc1ε)
(

r2k2
(1+k2y∗)

2 + µ
)

+ (c1ε− βc2µ)
(

r1k1
(1+k1y∗)

2 + ε
)
}.

Clearlya1 > 0. If a2 > 0, a3 > 0 and a1a2 > a3then E∗ is locally asymptotically stable follows from
Routh-Hurwitz criterion.

Theorem 4 . Suppose that4c1c2 > (c1α+ c2β)
2
and det A > 0 where A is defined in the proof. ThenE∗ is

globally asymptotically stable.

Proof. Consider the following positive definite function aboutE∗.

V (t) = c1(x1 − x∗1 − x∗1 ln x1

x∗
1
) + c2(x2 − x∗2 − x∗2 ln x2

x∗
2
) +

(
y − y∗ − y∗ ln y

y∗

)
.

Differentiating V with respect to talong the solution of system (2), we get

dV

dt
= c1 (x1 − x∗1)

{
r1

1 + k1y
− x1 − αx2 − εy

}
+ c2 (x2 − x∗2)

(
r2

1 + k2y
− βx1 − x2 − µy

)
+

(y − y∗)(−d+ c1εx1 + c2µx2 − hy)

= c1 (x1 − x∗1)

{
r1k1 (y∗ − y)

(1 + k1y) (1 + k1y∗)
− (x1 − x

∗
1)− α(x2 − x

∗
2)

}

= c1 (x1 − x∗1)
{

r1k1(y
∗−y)

(1+k1y)(1+k1y∗)
− (x1 − x∗1)− α(x2 − x∗2)

}
−c2 (x2 − x∗2)

{
r2k2(y

∗−y)
(1+k2y)(1+k2y∗)

− β (x1 − x∗1)− (x2 − x∗2)
}
−

h(y − y∗)
2

≤ −c1 (x1 − x∗1)
2

+ (c1α+ c2β) |(x1 − x∗1)| |(x2 − x∗2)| − c2 (x2 − x∗2)
2 − h(y − y∗)

2
+

c1r1k1
(1+k1y∗)

2 |x1 − x∗1| |y − y∗|+ c2r2k2
(1+k2y∗)

2 |x2 − x∗2||y − y∗|

Clearly V̇ is negative definite if the matrixA defined below is positive definite.

A =

 c1 amp;− 1
2 (c1α+ c2β) amp;− c1r1k1

2(1+k1y∗)
2

− 1
2 (c1α+ c2β) amp; c2 amp;− c2r2k2

2(1+k2y∗)
2

− c1r1k1
2(1+k1y∗)

2 amp;− c2r2k2
2(1+k2y∗)

2 amp;h


Thus the condition of the theorem implies thatA is positive definite and consequentlyV is a Lyapunov
function and hence the theorem follows.

5. Hopf bifurcation and its nature

Setf (k2) = a1 (k2) a2 (k2)− a3 (k2) .

Theorem 4 . If there existsk2 = k∗2 such that(i) a2 (k∗2) > 0, (ii) f (k∗2) = 0, (iii) f/ (k∗2) > 0then the
positive equilibrium point E∗ is unstable if k2 < k∗2 but is stable for k2 > k∗2and a Hopf bifurcation of
periodic solution occurs atk2 = k∗2 .

Proof . Proceeding along the lines in [21], we note thatf(k2) is monotonic increasing function in the neigh-
bourhood ofk2 = k∗2 . Asa2 (k2) > 0, f (k2) < 0for k2 < k∗2 thus E∗ becomes unstable. Again, it is obvious
that , f (k2) > 0for k2 > k∗2 and hence E∗ is stable. Therefore, Hopf bifurcation follows from a result in [15].

5
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Similarly, bifurcation phenomenon can be shown by consideringk1as a bifurcation parameter.

5.1. Stability of the limit cycle

Stability of the limit cycle can be derived by calculating the coefficient of curvature of the limit cycle [26].
Detail calculation can be found in [17]. Then the coefficient of curvature of limit cycle of system (2) is

σ0
1 = 1

16 (α− β).

Thus we observed that the coefficient of curvatureσ0
1 < 0 if α < β in that case the limit cycle of system (2)

will be stable. From above analysis one can conclude that the intraspecific competition rate between the prey
species plays a vital role for determining the nature of the limit cycle emerging through a Hopf bifurcation.

In the following table, we summarise the stability criteria of different equilibria of system (2).

Table 1 . Dynamics of system (2). LAS= Locally asymptotically stable, GAS= Globally asymptotically
stable.

Equilibria Stability condition Equilibrium nature

E0 No condition Unstable
E1

r2
β < r1 <

d
c1ε

LAS

E2
r1
α < r2 <

d
c2µ

LAS

E12 αβ < 1, d > c1εx1 + c2µx2. LAS
E13

r2
1+k2ŷ

< βx̂1 + µŷ LAS

E23
r1

1+k1ỹ
< αx̃2 + εỹ LAS

E∗ 4p1p2 > (p1α+ p2β)
2

LAS

E∗ 4c1c2 > (c1α+ c2β)
2

and det A > 0 GAS

6. Numerical simulations

In this section, we carry out numerical simulations of our system (2). First we investigate the effect of fear
on the dynamics of system (2). So it is reasonable to study the system (2) without fear effect (i.e.,ki =
0, i = 1, 2). We choose the other parametric value as

r1 = 3.125, r2 = 2, α = 1.4, β = 1, ε = 1, µ = 0.01, c1 = 1, c2 = 1, d = 1, h = 0.01.(4)

The numerical outputs are depicted in Fig. 1.

Fig. 1a shows the phase diagram of system (2) forki = 0, i = 1, 2. In absence of fear, the system (2)
has a unique coexistence equilibrium point E∗ = (0.8211, 1.0539, 0.9203) which is unstable in nature and
surrounded by a limit cycle.

Fig. 1b,k1 = 0.1, k2 = 0.01, the dynamics remains the same as in Fig. 1a and the coexistence equi-
librium pointE∗ = (1.0530, 0.8535, 0.7660). Here the value of x∗2, y

∗ of E∗decreases while the value of
x∗1 of E∗increases.

Fig. 1c, k1 = 0.1, k2 = 0.08, system (2) has a unique co-existence equilibrium point E∗ =
(0.9973, 0.8918, 0.6794)which is stable in nature. In this case, the increase amount of fear on second
prey stabilize the system and reduces the predator density.

Fig. 1d, k1 = 1, k2 = 0.08, system (2) has a unique coexistence equilibrium point E∗ =
(0.9973, 0.8918, 0.6794)which is unstable due to the increase amount of fear on first prey species.

It is to be noted that the increase amount of intraspecific competition within the predator

population can induces stability of the system. Taking the value of parameter h = 0.5 and all
other parameters are same as in Fig. 1d, we observe the stable coexistence equilibrium pointE∗ =

6
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(1.1077, 0.8532, 0.2327)(see Fig. 1e). Thus the Fig. 1d and 1e indicates that the fear factor and intraspecific
competition acts in opposite way concerning the stability of the system.

Lastly, we consider the following set of parametersk1 = 0.6, k2 = 0.01,r1 = 12, r2 = 2, α = 5, β = 1, ε =
1, µ = 0.01, c1 = 1, c2 = 1, d = 1, h = 0.001.In this case a chaotic type attractor arises enclosing the
coexistence equilibrium point E∗ = (4.6856, 0.5102, 0.5397)(see Fig. 2).

7. Discussion

In predator-prey interaction, predation is considered to be the main force that promotes coexistence of
competing species by reducing the strength of competition [6]. If the predator chooses strongest competitor
species, mostly then it relives competition pressure on other species, thereby allowing coexistence of multiple
species. Recent field experiments showed that predators can induce a non-consumptive effect on their prey,
for example fear [23]. Due to predation fear, prey can adopt defensive strategies that disrupt coexistence
[20].To address fears induced coexistence on competing species, we developed a mathematical model of
two competing prey species and one predator where predator, not only kill both the prey but also shows
non-consumptive effect upon them. Our system also includes intraspecific competition within the predator
population. Takeuchi and Adachi [24] addresses an ecological system with the same type of species, but no
fear effect, nor intraspecific competition within the predator populations obtaining coexistence results. The
proposed model is biologically meaningful in the sense that any positive solution initiating in the positive
orthant remains both non-negative and bounded.

Mathematical analysis of the model established that the system cannot collapse for any parameter value
as the origin is always unstable. If the second prey has low intrinsic growth rate and the predator has a
high death rate then the predator cannot prevent the first prey and tends to its carrying capacity;E1 is
an attractor whereas the opposite hold if the first prey has low intrinsic growth rate. If the intraspecific
competition if stronger than the interspecific competition and the predator has a high death rate then both
the prey can coexist at E12 while predator population goes to extinction due to large death rate. The first
prey and the predator can coexist atE13 when the second prey has moderate intrinsic growth rate. Again the
second prey and the predator can coexist at E23 as long as the intrinsic growth rate remains below a certain
threshold value. Using invasion analysis, we derived criterion for uniform persistence of our model system
that ensures the existence of positive (coexistence) equilibrium point. Local stability of the coexistence
equilibrium point is possible if the ratio of intake capacity by the predator lie within an interval. The
existence of Hopf bifurcation is shown by considering the level of fear as bifurcation parameter. The nature
of limit cycle emerging through a Hopf bifurcation is predicted by calculating the coefficient of curvature
of the limit cycle. If the intraspecific competition of the first prey is less than that of second prey then
supercritical limit cycle appears. In this paper we have not considered intraspecific competitive rate h as a
bifurcation parameter. But one obtains the bifurcation result for taking h as bifurcation parameter. When
most of the predators are involved in intraspecific competition, stable coexistence increases (see Fig. 1e).

The novelty of our work is the inclusion of fear effect and intraspecific competition within the predator
populations which are not considered in [24]. This investigation generalizes the existing knowledge of fear
effect of predator on single prey species [16-18, 27, 28, 30]. As high level of fear can destroy coexistence that
agrees with [20]still coexistence of predator and competing prey is possible with the increase of intraspecific
competition within the predator population. Our theoretical observations will be helpful to verify some
experimental data set of two competing prey and one predator system.

It may also be worthwhile to see how the other response function rather than Holling type I affects the
dynamics of the system. From experimental observation, we have considered the fear effect on reproduction
term of prey population still it is reasonable to see the fear effect on intraspecific, interspecific competition
or death rate of prey populations.

References .

[1] P. Chesson, J. J. Kuang, The interaction between predation and competition. Nature. 456 (2008) 235-238.

7



P
os

te
d

on
A

u
th

or
ea

13
J
u
l

20
20

—
T

h
e

co
p
y
ri

gh
t

h
ol

d
er

is
th

e
au

th
or

/f
u
n
d
er

.
A

ll
ri

g
h
ts

re
se

rv
ed

.
N

o
re

u
se

w
it

h
ou

t
p

er
m

is
si

on
.

—
h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
59

46
69

82
.2

93
47

03
3

—
T

h
is

a
p
re

p
ri

n
t

an
d

h
a
s

n
o
t

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

a
ta

m
ay

b
e

p
re

li
m

in
a
ry

.

[2] S. Creel, D. Christianson, Relationships between direct predation and risk effects. Trends Ecol. Evol. 23
(2008) 194-201.

[3] S. Creel, D. Christianson, S. Liley, J. A. Winne, predation risk affects reproductive physiology and
demography of elk, Science 315 (2007) 960-960.

[4] W. Cresswell, Non-lethal effects of predation risk in birds. Ibis. 150 (2008) 3-17.

[5] W. Cresswell, Predation in bird populations, Journal of Orinthology 152 (2011) 251-263.

[6] J. Gurevitch, J. A. Morrison, L. V. Hedges, The interaction between competition and predation: a
meta-analysis of field experiments. American Naturalist. 155 (2000) 435-453.

[7] R. D. Holt, Predation, apparent competition, and structure of prey communities. Theor. Pop. Biol. 12
(1977) 197-229.

[8] R. D. Holt, Spatial heterogeneity, indirect interactions, and the coexistence of prey species. American
Naturalist. 124 (1984) 377-406.

[9] V. Hutson, A theorem on average Lyapunov function, Monatsh Math. 98 (1984) 267-275.

[10] V. Hutson, The existence of an equilibrium for permanent systems, Rocky Mountain journal of Mathe-
matics. 20(1990) 1033-1040.

[11] B. P. Kotler, R. D. Holt, Predation and competition: the interaction of two types of species interactions.
Oikos. 54 (1989) 256-260.

[12] V. Krivan, Competitive co-existence caused by adaptive predators. Evolutionary Ecology Research. 5
(2003) 1163-1182.

[13]J. J. Kuang, P. Chesson, Interacting coexistence mechanisms in annual plant communities: frequency-
dependent predation and the storage effect. Theor. Pop. Biol. 77 (2010) 56-70.

[14] S. L. Lima, Nonlethal effects in the ecology of predator-prey interactions-what are the ecological effects
of anti-predator decision making? Bioscience. 48 (1998) 25-34.

[15] W. M. Liu, Criterion of Hopf bifurcation without using eigenvalues, J. Math. Anal. Appl. 182 (1994)
250-256.

[16] S. Mondal, A. Maiti, G. P. Samanta, Effects of fear and additional food in a delayed predator-prey
model, Biophysical Reviews and Letters. 13 (2018) 157-177.

[17] D. Mukherjee, Study of fear mechanism in predator-prey system in the presence of competitor for the
prey. Ecol. Genetics and Genomics. 15(2020) 10052.

[18] S. Pal, S. Majhi, S. Mandal, N. Pal, Role of fear in a predator-prey model with Beddington-DeAngelis
functional response, Z. Naturforsch. 74 (2019) 581-585.

[19] P. Panday, N. Pal, S. Samanta, J. Chattopadhyay, Stability and bifurcation analysis of a three-species
food chain model with fear, Int. J. Bifurcation Chaos. 28 (2008).

[20] R. M. Pringle et al., Predator-induced collapse of niche structure and species coexistence. Nature. 570
(2019) 58-64.

[21] Z. Qiu, Dynamics of a model for virulent phase T4, J. Biol. Syst. 16 (2008) 597-611.

[22] S. Sasmal, Y. Takeuchi, Dynamics of a predator-prey system with fear and group defense. J. Math.
Anal Appl. (2019). Doi: org/10.1016/j.jmaa.2019, 123471. Model. 64 (2018) 1-14.

[23] O. J. Schmitz, Predators affect competitors’ coexistence through fear effects. Nature.570 (2019) 43-44.

8



P
os

te
d

on
A

u
th

or
ea

13
J
u
l

20
20

—
T

h
e

co
p
y
ri

gh
t

h
ol

d
er

is
th

e
au

th
or

/f
u
n
d
er

.
A

ll
ri

g
h
ts

re
se

rv
ed

.
N

o
re

u
se

w
it

h
ou

t
p

er
m

is
si

on
.

—
h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
59

46
69

82
.2

93
47

03
3

—
T

h
is

a
p
re

p
ri

n
t

an
d

h
a
s

n
o
t

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

a
ta

m
ay

b
e

p
re

li
m

in
a
ry

.

[24] Y. Takeuchi, N. Adachi, Existence and bifurcation of stable equilibrium in two-prey, one-predator
communities. Bull. Math. Biol. 6 (1983) 877-900.

[25] R. R. Vance, Predation and resource partitioning in one predator-two prey model communities, American
Naturalist. 112 (1978) 797-813.

[26] X. Wang, L. Deng, W. Zhang, Hopf bifurcation analysis and amplitude control of the modified Lorenz
system. Appl. Math. Comp. 225 (2013) 333-344.

[27] X. Wang, L. Zanette, X. Zou, Modelling the fear effect in predator-prey interactions, J. Math. Biol. 73
(2016) 1179-1204.

[28] X. Wang, X. Zou, Modelling the fear effect in predator-prey interactions with adaptive avoidance of
predators. Bull. Math. Biol. 79 (2017) 1-35.

[29] L. Y. Zanette, A. F. White, M. C. Allen, C. Michael, Perceived predation risk reduces the number of
offspring songbirds produce per year. Science. 334 (2011) 1398-1401

[30] H. Zhang, Y. Cai, S. Fu, W. Wang, Impact of the fear effect in a prey-predator model incorporating a
prey refuge, Appl. Math. Comp. 356 (2019) 328-337.

Figures

Hosted file

image1.emf available at https://authorea.com/users/341750/articles/468630-impact-of-

predator-fear-on-two-competing-prey-species

Fig. 1a. Phase portrait of system (2) for with parameters values (4) and ki = 0, i = 1, 2.
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Fig. 1b. Phase portrait of system (2) for with parameters values (4) and k1 = 0.1, k2 = 0.01.
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Fig.1c. Phase portrait of system (2) for with parameters values (4) and k1 = 0.1, k2 = 0.08.
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Fig.1d. Phase portrait of system (2) for with parameters values (4) and k1 = 1, k2 = 0.08.
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Fig.1e. Phase portrait of system (2) for with parameters values k1 = 1, k2 = 0.08,r1 = 3.125, r2 = 2, α =
1.4, β = 1, ε = 1, µ = 0.01, c1 = 1, c2 = 1, d = 1, h = 0.5.
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predator-fear-on-two-competing-prey-species
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Fig. 2. Phase portrait of system (2) for with parameters values k1 = 0.6, k2 = 0.01,r1 = 12, r2 = 2, α =
5, β = 1, ε = 1, µ = 0.01, c1 = 1, c2 = 1, d = 1, h = 0.001.

figures/dfig1a/dfig1a-eps-converted-to.pdf
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figures/dfig1b/dfig1b-eps-converted-to.pdf
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figures/dfig1c/dfig1c-eps-converted-to.pdf
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figures/dfig1d/dfig1d-eps-converted-to.pdf
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figures/dfig1e/dfig1e-eps-converted-to.pdf
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figures/dfig2/dfig2-eps-converted-to.pdf
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