Maternal pre-pregnancy body mass index, gestational weight gain, and risk of childhood asthma/wheeze: A systematic review and meta-analysis of cohort studies

Rong Wu¹, Runhui Gu², Dexiu Xing¹, Senmao Zhang¹, Lizhang Chen¹, and Tingting Wang¹

¹Central South University Xiangya School of Public Health

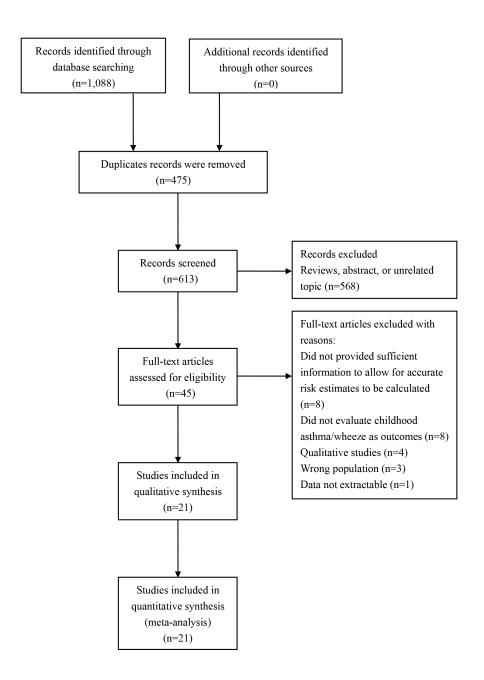
July 16, 2020

Abstract

Introduction: The goal of this study was to evaluate the association between maternal pre-pregnancy body mass index (BMI), gestational weight gain (GWG) and risk of childhood asthma/wheeze by conducting a meta-analysis of cohort studies. Methods: A systematic literature search of several databases was conducted through January 2020 to identify relevant studies. The exposure of interest was maternal pre-pregnancy BMI (e.g., underweight, overweight, obesity, and continuous BMI) and GWG (e.g., inadequate GWG, excessive GWG, GWG < 9 kg, GWG > 15 kg, and continuous GWG). Random-effects models were used to calculate the pooled odds ratios (ORs) and their 95% confidence intervals (CIs). Results: Twenty-one cohort studies were included (N = 150,198 mother-child pairs). Age of children was 3 months to 16 years. Maternal overweight (OR = 1.13; 95% CI: 1.07 - 1.19) and obesity (OR = 1.39; 95% CI: 1.23 - 1.58) were associated with higher odds of childhood asthma/wheeze; each 1-kg/m2 increase in maternal pre-pregnancy BMI was associated with a 4% increase in the odds of childhood asthma/wheeze. GWG < 9 kg (OR = 1.08; 95% CI, 1.01 - 1.14) was slightly associated with higher odds of childhood asthma/wheeze. Subgroup analyses have identified several variables associated with the between-study heterogeneity. Conclusions: Maternal overweight and obesity are associated with an elevated risk of childhood asthma/wheeze, suggesting that maternal pre-pregnancy BMI need to be considered in studies on the early origins of asthma. Further studies are needed to confirm the association between GWG and risk of childhood asthma/wheeze.

Hosted file

Manuscript.doc available at https://authorea.com/users/343456/articles/470095-maternal-pre-pregnancy-body-mass-index-gestational-weight-gain-and-risk-of-childhood-asthma-wheeze-asystematic-review-and-meta-analysis-of-cohort-studies


Hosted file

 $\label{thm:com/users/343456/articles/470095-maternal-pre-pregnancy-body-mass-index-gestational-weight-gain-and-risk-of-childhood-asthma-wheeze-asystematic-review-and-meta-analysis-of-cohort-studies$

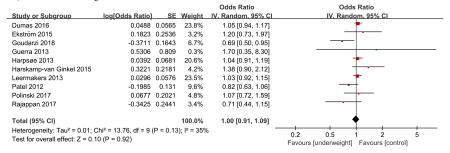
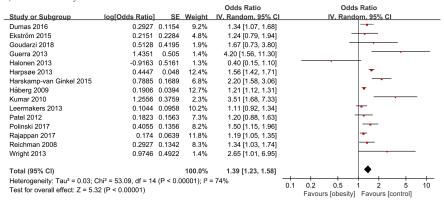
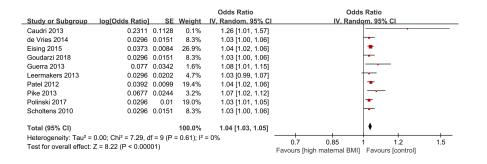
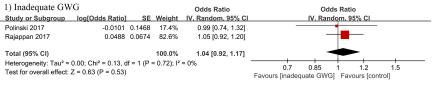

Hosted file

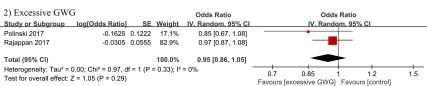
Table 2.doc available at https://authorea.com/users/343456/articles/470095-maternal-pre-pregnancy-body-mass-index-gestational-weight-gain-and-risk-of-childhood-asthma-wheeze-asystematic-review-and-meta-analysis-of-cohort-studies

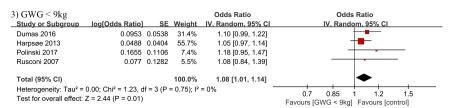
²Nanjing Medical University

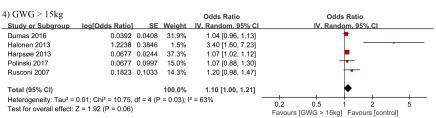

1) Maternal underweight




2) Maternal overweight


				Odds Ratio	Odds Ratio
Study or Subgroup	log[Odds Ratio]	SE	Weight	IV. Random, 95% CI	IV. Random, 95% CI
Dumas 2016		0.0737	9.6%	1.19 [1.03, 1.37]	-
Ekström 2015	0.1133	0.1318	3.9%	1.12 [0.87, 1.45]	+-
Goudarzi 2018	0.1044	0.2114	1.6%	1.11 [0.73, 1.68]	
Guerra 2013	0	0.4875	0.3%	1.00 [0.38, 2.60]	
Halonen 2013	-0.6931	0.4875	0.3%	0.50 [0.19, 1.30]	•
Harpsøe 2013	0.207	0.0343	20.2%	1.23 [1.15, 1.32]	•
Harskamp-van Ginkel 2015	0.1655	0.1439	3.3%	1.18 [0.89, 1.56]	+-
Håberg 2009	0.0583	0.0281	22.4%	1.06 [1.00, 1.12]	•
Kumar 2010	0.4574	0.3758	0.5%	1.58 [0.76, 3.30]	-
Leermakers 2013	0.0296	0.0576	13.0%	1.03 [0.92, 1.15]	<u>†</u>
Patel 2012	0.1484	0.086	7.7%	1.16 [0.98, 1.37]	•
Polinski 2017	0.1989	0.1223	4.4%	1.22 [0.96, 1.55]	
Rajappan 2017	0.1044	0.0584	12.8%	1.11 [0.99, 1.24]	·
Total (95% CI)			100.0%	1.13 [1.07, 1.19]	♦
Heterogeneity: Tau ² = 0.00; 0	Chi ² = 18.52, df = 12	(P = 0.1	0); I ² = 35	%	
Test for overall effect: Z = 4.3	33 (P < 0.0001)	0.2 0.5 1 2 5			
	, ,				Favours [overweight] Favours [control]


3) Maternal obesity



5) Continuous GWG

			Odds Ratio	Odds Ratio
Study or Subgroup	log[Odds Ratio] SE	Weight	IV, Random, 95% CI	IV, Random, 95% CI
Leermakers 2013	0.0953 0.0286	46.1%	1.10 [1.04, 1.16]	
Polinski 2017	0 0.0103	53.9%	1.00 [0.98, 1.02]	#
Total (95% CI)		100.0%	1.04 [0.95, 1.15]	
, , ,	0.00; Chi ² = 9.83, df = 1 (P =			
Test for overall effect: 2		0.85 0.9 1 1.1 1.2		
	(- 3100)			Favours [high GWG] Favours [control]