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Abstract

Single amino acid variation (SAV) is an amino acid substitution of the protein sequence and might influence
the whole protein structure, binding affinity, or functional domain and related to disease, even cancer.
However, to clarify the relationship between SAV and cancer using traditional experiments is time and
resource consuming. Though there are some SAVs predicted methods using the computational approach,
most of them predict the protein stability changed caused by SAV. In this work, all of the SAV characteristics
generated from protein sequences, structures, and micro-environment would be converted into feature vectors
and fed into an integrated predicting system by using Support Vector Machine and genetic algorithm. The
critical features were used to estimate the relationship between their properties and cancer caused by SAVs.
In the results, we have developed a prediction system based on protein sequence and structure, which could
distinguish the SAV is related to cancer or not, and the accuracy, the Matthews correlation coefficient,
and the Fl-score yield to 90.88%, 0.77 and 0.83, respectively. Moreover, an online prediction server called
CanSavPre was built (http://bioinfo.cmu.edu.tw/CanSavPre/), which will be a useful, practical tool for
cancer research and precision medicine.
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1 | INTRODUCTION

Single amino acid variation (SAV) is one amino acid substitution resulting from genetic polymorphisms. The
non-synonymous encoding variant would alter the protein sequence. However, in some extreme cases, this
slight difference might affect the whole protein structure or function. Due to the unique physicochemical
properties of each amino acid, the mutation in different positions of the sequence causes various effects for
the whole protein conformation and its function. It is vital to understand how the single amino acid variation
could influence protein and clarify the links between genetic variation and human disease. In previous studies,
most disease-related SAVs occur in the structurally or functionally essential positions (Juritz et al., 2012;
Sunyaev, Ramensky, & Bork, 2000; Yue, Li, & Moult, 2005). Just like some cases, as we have known, some
conserved residues mutated, it could directly damage the native protein folding. These mutation residues
might affect protein structure or the complex aggregation. Protein destabilization is a primary factor in many
Mendelian diseases (Guo et al., 2011; Redler, Das, Diaz, & Dokholyan, 2016; Teng, Srivastava, Schwartz,
Alexov, & Wang, 2010).

Further, structural dynamics are correlated to protein function because the missense-folding structure may
result in protein dysfunction (Bromberg & Rost, 2009; Ponzoni & Bahar, 2018). If missense variants occur
at the functional sites, it will change protein activity and binding affinity, resulting in diseases. Moreover,
SAVs occurring at interfaces are also related to diseases, since it might ruin the network of protein-protein
interaction (David, Razali, Wass, & Sternberg, 2012; Yates & Sternberg, 2013). At present, there are many
large-scale studies; however, most of them focus on human genetic diseases (X. Wang et al., 2012).

Additionally, there are more and more studies indicating that SAVs are also associated with several cancers
(Lori et al., 2013; Niroula & Vihinen, 2015; Song et al., 2014). Cancer, which is caused by a particular change
to chromosome, is often regarded as a genetic disease. However, the mechanism is distinct from Mendelian
diseases, and little do we know this complicated network. Until now, a large number of studies reveal massive
radical changes in cancer patient genomic sequences. Investigated mutation spots are often biomarkers or
targets for treatment (Ma et al., 2018; Nie et al., 2014; Renaud et al., 2016). Previous studies reported that



a set of missense variations that disrupt protein function was associated with cancer (B. Li et al., 2009).
Recent studies suggested that the accumulation of somatic mutation is a vital factor in carcinogenic progress.
Some variations seem neutral, but they might contribute to cancer progressing, known as driver mutation
(McFarland et al., 2017). However, identifying the trigger point preciously is still not easy, but observing
the accumulation of possibly threatening is very helpful. In the proteome level, amino acid substitution
caused by genetic codon transition might be the reason for human cancer (Son, Kang, Kim, & Kim, 2017).
The chemical properties of replaced amino acid could lose or gain protein function. Besides, amino acid
alteration seems to follow special rules. For example, arginine has a positive charge that is important to
balance the charges of protein and DNA binding; however, it is highly mutated in various cancer types. The
loss of function of cancer-associated proteins is frequently due to the loss of arginine.

On the other hand, if a protein gains cysteine, an active and reducing agent, this might enhance its capability
to neutralize ROS in tumor environment (Anoosha, Sakthivel, & Michael Gromiha, 2016; Halasi et al., 2013;
Tsuber, Kadamov, Brautigam, Berglund, & Helleday, 2017). Proteomic changes by the protein carrying
missense mutation may help the cancer cells adapt to environmental pressure (Szpiech et al., 2017). Even
though different types of cancers have their properties, they might share some substitution patterns. Between
breast and digestive tract cancers, the amino acid substitution spectrum is similar, dominated by glutamic
acid altered to lysine (Tan, Bao, & Zhou, 2015).

Nowadays, machine learning is a favorite tool for data analysis and has solved some conundrums. Thus,
many predictors utilized machine learning as algorithms for SAVs had been developed. Initially, most tools
got on with the protein stability and functional changes caused by missense variations (Radusky et al.,
2018; Schaefer & Rost, 2012; Sim et al., 2012; Vaser, Adusumalli, Leng, Sikic, & Ng, 2016). Further, some
predictors are to distinguish benign and pathogenic variations (Sundaram et al., 2018; Yates, Filippis, Kelley,
& Sternberg, 2014). Hitherto, some web software demonstrated the connection between SAVs and diseases;
however, those are biased towards genetic diseases (I. Adzhubei, Jordan, & Sunyaev, 2013; I. A. Adzhubei
et al., 2010; Ferrer-Costa et al., 2005; Lopez-Ferrando, Gazzo, de la Cruz, Orozco, & Gelpi, 2017; Reeb,
Hecht, Mahlich, Bromberg, & Rost, 2016). Few predictors are established for cancer, but most of them focus
on the specific purpose or particular cancer (B. Wang et al., 2018). Some tools are designed for classifying
driver and passenger mutation (Carter et al., 2009; Kaminker, Zhang, Watanabe, & Zhang, 2007; Shihab,
Gough, Cooper, Day, & Gaunt, 2013). Though they are useful, a comprehensive predictor in cancer biology
research is in pressing demand. In this work, we developed a prediction model that recognizes whether the
SAV is cancer-related or neutral. Though numerous predictors have been developed, the critical question
is how to build the prediction models and what descriptors of SAV are used (Care, Needham, Bulpitt, &
Westhead, 2007). Not only to figure out for each SAV change physically in protein function and structure
but also to estimate how it simultaneously contributes to cancer progression. To take into account every
kind of SAVs might be a vital feature for cancer, we perform an integrated system to discriminate the
cancer-related residues in sequence from multiple predicting models utilizing spread information extracted
from the fundamental of protein in this work. We would provide a novel way for cancer research, not only for
the clinical outcome but also for prognostic biomarker, and a breakthrough for precision medicine. Besides
setting up this predictor for cancer-related variations, it would be helpful to figure out the relationship
between SAV and cancer and the underlying mechanisms.

2 | MATERIALS AND METHODS

2.1 | Dataset of SAVs

All of the SAV data were collected from CanProVar 2.0 (J. Li et al., 2011; Zhang et al., 2017), a human
Cancer Proteome Variation Database. Single amino acid alterations, including both germline and somatic
variations in the human proteome, are stored, notably including those related to the genesis or development
of human cancer based on the published literature. Until now, there are 156,671 cancer-related SAVs and
967,017 neutral SAVs in the CanProVar 2.0. In order to find out the exact protein structure of SAV sequence,



protein BLAST (Altschul, Gish, Miller, Myers, & Lipman, 1990) was used via searching Protein Data Bank
proteins. There were five criteria in searching as following: 1. The e-value of alignment results should be
smaller than 1e-50; 2. The alignment coverage of query protein should be higher than 95%; 3. The organism
of the aligned target protein should be homo sapiens; 4. The experimental method of aligned target protein
structures should be X-ray Diffraction; 5. The SAV position should be identically aligned between the
wild type of SAV sequence and the aligned target protein. Then, CD-HIT Suite (Huang, Niu, Gao, Fu, &
Li, 2010) was used to filter out the homologous proteins by the sequence identity cut-off 0.3. After that,
2,894 cancer-related SAVs and 7,668 neutral SAVs were remained and separated into twenty groups by the
representative wild amino acid type of SAV. For each wild amino acid type, the number of cancer-related
and neutral SAVs were listed in Table 1, and §, the ratio of cancer to neutral was from 22.49% to 65.89%.

2.2 | Prediction systems

In this work, two cancer-related SAV prediction systems were built by the machine learning method. The
first system, CanSavPrey,, contained twenty individual prediction models constructed from twenty groups
according to the wild amino acid type of SAV. In the second prediction system, CanSavPrey,, every twenty
groups were divided into smaller sub-groups by its mutated amino acid type of SAV. For example, an
alanine should have a different prediction model with an acidic (e.g., aspartate or glutamate) and a basic
(e.g., arginine, lysine, or histidine) mutated amino acid type due to their essential factors of SAV should be
distinct. Finally, 100 prediction models were built in the second prediction system.

Each prediction model was a two-level Support Vector Machine (SVM) (Chang & Lin, 2011) classifier
modules. The first level SVM comprised twelve SVM classifiers based on the three specific feature sets,
as sequence-based, structure-based, and micro-environment-based feature sets, which described in the next
section, respectively. For each feature set, four fitness functions (Equations 1-4 ) were used for feature
selection and performance optimization using the genetic algorithm (Lu, Chen, Yu, & Hwang, 2007; Yu &
Lu, 2011).

Four informative measures for predictive performance were used as the fitness functions, which were accuracy
(Acc), Matthews correlation coefficient (MCC), F1 score (F1) and summation of sensitivity and weighted
specificity (Hybrid) and were calculated by true positive (TP ), true negative (TN ), false positive (FP ),
and false negative (FN ) values as follows:

_ TP+TN _ TPXTN—FPXFN __ 2XPrecisionX Sensitivity
Acc = TP+TN+FP+FN > (1)MCC - \/(TP-i-FP)(TP+FN)(TN+FP)(TN+FN) ) ( )F]' ~  Precision+Sensitivity
(3)Hybrid = Sensitivity + 6 x Specificity , (4) where Precision = %,Sensitivity =

%,Specificity = %, TP is the true positives, TN is the true negatives, FP is the false posi-

tives, FIN is the false negatives and J is the ratio of the number of cancer-related to neutral SAV which listed
in Table 1. All of the descriptors of SAV were fed into SVM, and the five-fold cross-validation was performed
when the model training and testing.

The second level of SVM classifiers was used to process the prediction results generated from twelve classifiers
(three feature sets was multiplied by four fitness functions) in the first level to produce the final probability
distribution of the relationship with cancer-related or neutral. The relationship with the largest probability
was used as the final prediction. The two-level SVM system is shown schematically in Figure 1.

FIGURE 1 The two-level SVM prediction system.
2.3 | Feature vectors sets

The descriptors of SAVs used for machine learning were classified into three classes, the sequence-based,
structure-based, and micro-environment-based features sets. For the sequence-based feature set, 44 descrip-
tors were extracted from the protein sequence and partitioned into three groups listed in Table 2. The
first group was from the most generally used substitution index of wild type residue to mutation for the
SAV residue. Three kinds of substitution index were used included the BLOSUM62 (Choi, Sims, Murphy,
Miller, & Chan, 2012; Henikoff & Henikoff, 1992), PAM250 (D. T. Jones, Taylor, & Thornton, 1992), and



position-specific scoring matrix (PSSM), which derived from PSI-BLAST (Altschul et al., 1997). The second
group represented the conservation for each residue comparing to homologs. The fifteen evolutional entropy
values derived from PSI-BLAST were used to denote a sliding window of length 15 centered on the SAV.
Then the average entropy values for the window of length 15 and 5 centered on the SAV were also calculated.
The third group was the amino acid compositions (AAC) (Chou, 2001) of fifteen residues peptide used to
represent the composition of the neighbor residues for centered SAV. According to the physicochemical prop-
erties of residues, we used the following classification schemes (Yu, Chen, Lu, & Hwang, 2006) of amino acid
compositions: H for polar (RKEDQN), neutral (GASTPHY), and hydrophobic (CVLIMFW); V for small
(GASCTPD), medium (NVEQIL), and large (MHKFRYW); Z for low polarizability (GASDT), medium
(CPNVEQIL), and high (KMHFRYW); P for low polarity (LIFWCMVY), neutral (PATGS), and high po-
larity (HQRKNED); F for acidic (DE), basic (HKR), polar (CGNQSTY), and nonpolar (AFILMPVW); E
for acidic (DE), basic (HKR), aromatic (FWY), amide (NQ), small hydroxyl (ST), sulfur-containing (CM),
aliphatic 1 (AGP), and aliphatic 2 (ILV). For clarity, these sequence-based descriptors were summarized in
Table S1.

In the structure-based feature sets, there were thirteen descriptors extracted from PDB and DSSP (Cheng,
Randall, Sweredoski, & Baldi, 2005; Kabsch & Sander, 1983). The b-factor value of Ca atom of SAVs was
used as the first structure-based descriptor, which was the displacement of atoms from their mean position
in a crystal structure diminishes the scattered X-ray intensity. The displacement may be the result of
temperature-dependent atomic vibrations or static disorder in a crystal lattice. Additionally, the critical
information of the related solvent accessibility, eight DSSP defined secondary structures element (e.g., H,
B, E, G, I, T, S, and others), the energy of backbone hydrogen bonds for acceptor and donor, and disulfide
bonding or not gathered from DSSP were also used. These structure-based descriptors were summarized in
Table S2.

In the third feature set, the weighted contact number (WCN) model (Lin et al., 2008) was used to describe
the micro-environment properties of SAVs. The weighted contact number model was a local packing density

profile, and it was reported that the WCN profile has a high correlation with the sequence conservation profile
(Shih, Chang, Lin, Lo, & Hwang, 2012). The WCN value of atom i was calculated byWCN, = Zj\;l %,

where rj; was the distance between the atom ¢ and other atom j, N was the number of calculated atoms.
In this work, atom ¢ was defined as the C, atom of SAV, and the different micro-environment properties
were represented by calculated different atom type or source of atom j. The atom type of jcould be C,
atoms, nitrogen atoms or oxygen atoms of an amino acid. The source of atom j could also be from the
same protein chain with SAV or whole protein to represent the packing density of SAV. Moreover, the
source could also be from the other protein chain or molecules such as DNA, RNA, ligand, or metal ion to
represent the protein-protein or protein-molecule interaction. The packing density of SAV could be divided
into different classification represented the micro-environment properties where the SAV located in, e.g.
polar, hydrophobic, acidic or basic et al . according to the physicochemical properties of residues where C,,
atom jbelongs to. The same classification schemes were used as described in the sequence-based feature set,
and the micro-environment-based descriptors were listed in Table S3.

3 | RESULTS

3.1 | Comparison of different feature sets

Table 2 compare the predictive performance of two prediction systems based on three different feature sets
and the combined by second-level SVM, which are all optimized by using MCC as the fitness function. In
our experiment, the individual prediction model by using the sequence-based feature scheme outperforms
the other two. And then the model by using the micro-environment-based feature better than the structure-
based feature scheme. The combined model by second-level SVM procedure with outstanding performance
shows further information is indeed and very helpful to understand and determine the cancer-related factors.



On the other hand, between two systems, CanSavPre,, performs better than CanSavPre, in three individual
feature sets and the combined. That is because the distinct training and predicting models are built from
the specific sub-group according to the wild and mutated amino acid type of SAV. Our best prediction sys-
tem, CanSavPreyy, with two-level SVM that combined sequence-, structure-, and micro-environment-based
features, could distinguish the SAVs related to cancer or not, and the accuracy, the Matthews correlation
coefficient, and Fl-score yield to 90.88%, 0.77 and 0.83, respectively. The predictive performance for each
wild type of SAV of system CanSavPrey,, is illustrated in Table 3.

3.2 | Case Study: PI3K

The phosphatidylinositol-3-kinase (PI3K) signal pathway contributed to several cellular processes, such as
metabolism, proliferation, differentiation, and activation. The PI3k/AKT/mammalian target of rapamycin
(mTOR) signal pathway is one of the most vital intracellular pathways. However, it is also the most
frequently dysregulated pathway correlated to almost all human cancer (Asati, Mahapatra, & Bharti, 2016;
Benetatos, Voulgaris, & Vartholomatos, 2017; Dong et al., 2014; Hemmings & Restuccia, 2012). Amino acid
mutation of PI3K is closely related to oncogenic transformation, and numerous SAVs have been recorded as
cancer-related, such as P57S, Q75K, K111E, P134L, S361F, N380H, L634F, H677R, E713K, A723V, I776T,
G890R, and L9771 (Beadling et al., 2011; Hou et al., 2007; S. Jones et al., 2010; Kinross et al., 2012; Kuo et
al., 2009; Pita, Figueiredo, Moura, Leite, & Cavaco, 2014). Figure 2 is illustrated the protein structure of
PI3K and p85« complex (PDB ID: 5DXU) (Heffron et al., 2016), fourteen amino acids including a neutral
and thirteen cancer-related SAVs are drawn as spheres. These cancer-related SAVs are all correctly predicted
by our prediction system. It should be noted that another SAV, R104C, has been marked as neutral SAV
and is also predicted correctly. The predicted results of PI3K are listed in Table 4.

3.4 | Case Study: D227Y of CD23

CD23 is the low-affinity receptor for IgE. It is expressed in several hematopoietic cells surface (Acharya et al.,
2010), such as lymphocytes (Delespesse et al., 1991), monocytes (Vercelli et al., 1988), follicular dendritic cells
(Krauss, Mayer, Rank, & Rieber, 1993; Rieber, Rank, Kohler, & Krauss, 1993), and bone marrow stromal
cells (Fourcade et al., 1992). Several stimuli regulate the CD23 expression, which is the critical factor
for B-cell activation, growth, and IgE production (OMIM#151445). The D227Y mutation generated from
FCER2 genetic altered had been reported in head and neck squamous cell carcinoma (HNSCC) (Stransky et
al., 2011) and the colorectal neuroendocrine carcinomas mutational analyses project (Woischke et al., 2017).
D227 located in one of the conserved double-loop, which is the interface between CD23 and the carbohydrate
protein, Fce3-4. Moreover, Ca" is a regulated ligand for CD23 binding affinity. With Ca?t binding, the
loopl and loop4 would change the conformation and increase the binding affinity. D227 (loopl) and D258
(loop4) would form the additional salt bridges between CD23 and Fce3-4 (Dhaliwal et al., 2013; Yuan et al.,
2013). Though there are other bounds involved in CD23 and Fce3-4 binding, the D227Y would affect the
binding affinity and affect the IgE antitumor function (Figure 3).

Figure 4 shows the boxplot of the micro-environment descriptors in ASP altered to TYR sub-group. The
distribution of cancer-related SAVs in several descriptors has a significant difference comparing to the neutral
SAVs, and get a 95% confidence interval by z-test. The cancer-related SAVs are located in the relatively low
packing density region, whether C, atoms, nitrogen, or oxygen in a single SAV chain and whole protein. In
the case of D227Y in CD23, it also has low WCN value in a single SAV chain but has relatively high WCN
value in whole protein or other chains (Figure 4 a, b, and c). It is because D227 is located in the interface
of CD23 and Fce3-4 and is involved in the binding. Subsequently, the cancer-related SAVs has the lower
distributions of specific tendency of H -neutral (AGPHY),V -small (GASCTPD), V -large(MHKFRYW),
Z -low polarizability(GASDT), Z -high polarizability (KMHFRYW),P -neutral polarity (PATGS), F -basic
(HKR),F -nonpolar (AFILMPVW), E -basic (HKR), E -aromatic (FWY) and E -aliphaticl (AGP) of
neighboring amino acid. This unique surrounding pattern is also found in the cases D227Y of CD23 (Figure
4d, e, f, g, h, and i).

3.5 | Case Study: E194G of CASQ



The calsequestrin (CASQ) is the Ca?* buffering protein, which could store large amounts of Ca?* in the
cardiac and skeletal muscles. Ca?t is an essential molecular that could regulate diverse cellular processes,
such as gene transcription, cell proliferation, or migration (Kim, Tam, Siems, & Kang, 2005; MacLennan,
Abu-Abed, & Kang, 2002; Manno et al., 2017). Though most researches of CASQ are focus on the cardiac
muscle, CASQ in the Ca?*t signal pathway is also vital in cancer research (Terentyev et al., 2003). It is
reported that the Ca?* signaling pathway is highly correlated to tumor growth or metastatic (Stewart,
Yapa, & Monteith, 2015), and E194G of CASQ has been found in glioblastoma patients (Parsons et al.,
2008). In CASQ, T189, E194, and D196 would form a pack harboring Ca?* (Sanchez, Lewis, Danna, &
Kang, 2012). Hence, this substitution, E194G, would lose it functional and destroy the Ca?* binding (Figure
5).

Although no micro-environment descriptor has a significant difference at 95% confidence interval between the
distribution of cancer-related and neutral SAVs in GLU altered to GLY sub-group, several relevant descriptors
are found in the case of E194G in CASQ. E194 has higher WCN values of oxygen in a single SAV chain and
atoms in other molecular due to CASQ is a GLU and ASP rich and Ca2* buffering protein (Figure 6 a, b).
Furthermore, for the micro-environment around 194, higher WCN values are found than the third quartile
of cancer-related SAVs in H -polar (RKEDQN), V -medium (NVEQIL), Z -low polarizability(GASDT),
P -high polarity (HQRKNED), F -acidic (DE), and E -acidic (DE) descriptors and lower than the first
quartile in F -sulfur-containing (CM). The boxplot of the micro-environment descriptors in GLU altered to
GLY sub-group is shown in figure 6.

4 | DISCUSSION

We have developed a two-level SVM system CanSavPre to predict cancer-related single amino acid variation.
Not only protein sequences but also structures are used for descriptors extracted for model training. Our
experiment showed much better improvement in the two-level prediction system, and it means more adequate
information is necessary for identifying cancer-related SAVs from the divergent sequence of promiscuous
protein function in an extensive network of cells. Even though without structure resolved for many sequences,
the precise structure information can still be extracted with the help of the homologous search on the PDB
database, like homology modeling method. To take into account the properties of the conformation and
environment surrounding SAVs, the performance of the result in this work significantly enhanced obviously.
Furthermore, the algorithm picked up the optimized the best combination feature vectors using for each kind
of variation for specific amino acid type. Therefore, the difference is distanced feasibly.

In this work, we found that it is essential to divide the training data into proper subsets according to the
wild and mutated type of SAVs when the model is trained. Moreover, by the feature selection procedure, the
critical descriptors could be figured out. The relationship between the mutated residues and the interaction
changed could be studied and characterized, primarily by analyzing the micro-environment-based feature
set. Although further study is needed to reveal out the mechanism of cancer in most selected features, our
results indicate that it is possible to predict cancer-related SAV reliably. Our work will provide a useful,
practical tool for cancer research and precision medicine.

FIGURE LEGEND
FIGURE 1 The two-level SVM prediction system.

FIGURE 2 The protein structure of PI3K and p85 a complex . The PI3K and p85acomplex (PDB
ID: 5DXU) is drawn in the cartoon by PyMOL (Schrédinger, 2015). PI3K is colored wheat, and the p85a is
colored in gray. The ARG104 presented in green spheres is a neutral SAV when mutated to CYS. The other
residues presented in pink spheres are all cancer-related SAVs.

FIGURE 3 The superimposed of the structure of CD23 apo form and holo form from the
complex of CD23 bound to Ca?T and Fc £3-4. The structure of the Ca?* free wild type CD23 lentic



domain (PDB ID:4G96) (Yuan et al., 2013) is represented in the green cartoon. The structure of CD23 holo
form bound to Ca?* complexed with Fce3-4 (PDB ID: 4GKO) (Yuan et al., 2013) is drawn in gray and
wheat cartoons. Ca?* is shown in a yellow bubble, and a close-up view shows the interface of CD23 and
Fce3-4. The D227 of the CD23 apo form is shown in the green stick. The salt-bridges forming residues in
the CD23 holo form and Fce3-4 complex, are also highlighted with sticks.

FIGURE 4 The boxplot of the micro-environment descriptors in the ASP altered to the TYR
sub-group. All micro-environment descriptors are divided in nine groups, which are (a) atoms in SAV chain,
(b) atoms in whole protein, (c¢) atoms in other chains or molecules, (d) H -group, (e) V -group, (f)Z -group,
(g) P -group, (h) F -groups, and (i)E -groups. The white and grey boxes represented the distribution of
cancer-related and neutral SAVs. The boxes have the red frame if the significant difference is found at a 95%
confidence interval by z-test between cancer-related and neutral SAVs. The label of selected descriptors by
the genetic algorithm are bold in the z -axis. The symbol stars are noted as the cases D227Y of CD23.

FIGURE 5 The protein structure of the human skeletal calsequestrin. The structure of CASQ
(PDB ID:3UOM) (Sanchez et al., 2012) is drawn in the cyan cartoon by PyMOL. All of the yellow bubbles
are Ca?t in CASQ. Three Ca?t binding residues are highlighted with sticks in deep pink and the SAV,
E194G is a cancer-related SAV.

FIGURE 6 The boxplot of the micro-environment descriptors in GLU altered to GLY sub-
group. All micro-environment descriptors are divided in nine groups, which are (a) atoms in SAV chain, (b)
atoms in whole protein, (c) atoms in other chains or molecules, (d) H -group, (e) V -group, (f) Z -group,
(g) P -group, (h) F -groups, and (i) F -groups. The white and grey boxes represented the distribution of
cancer-related and neutral SAVs. The label of selected descriptors by the genetic algorithm are bold in the
z -axis. The symbol stars are noted as the cases £E194G of CASQ.
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