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Abstract

Ecosystems wherein social and solitary predators share space, complex asymmetric intraguild interactions actively shape the
group size of social carnivores. Intense intraguild predation has been known to result in reduced group size and low recruitment
rates in subordinate social carnivores. In South and South-east Asia, Dhole, tiger and leopard form a widely distributed
sympatric guild of large carnivores. In this paper we attempted to understand the pack size dynamics of a subordinate social
predator, the dhole, by investigating factors underlying pack size variation at two neighbouring sites. We further evaluated our
local-scale patterns of pack size variation at a larger scale by doing a distribution-wide assessment of pack size across dhole
ranging countries. Across study sites, we found an inverse relationship between the local abundance of a top predator and group
size of a subordinate predator while accounting for variability in resources and habitat heterogeneity. Tiger density was low
(0.71/100 Km2) at the site having large dhole packs (16.8 ± 3.1) whereas, a relatively smaller average dhole pack size (6.4 ± 1.3)
was observed in a higher tiger density (5.67/100 Km2) area. Our results on distribution-wide assessment are concurrent with
local-scale results, showing a positive association between prey abundance and pack size and a negative association between
tiger densities and dhole pack size. Our study takes us one step closer to trying to answer the age-old question of what drives the
pack size of social predators in a multi-predator system. Linking behaviour to population dynamics and carnivore interactions is
another highlight of the study. Often helpful while optimizing conservation triage and formulation of management implications
like recovery and translocations.

Introduction

In the past few decades, there has been a shift in wildlife biology studies from single species targeted approach
to ecosystem conservation approach (Linnell & Strand, 2000). This holistic approach reveals how interspecific
interactions can alter community structures and ecosystem functioning (Ford & Goheen, 2015). One such
interaction is intraguild competition among large carnivores that shape the predatory guild (Palomares &
Caro, 1999). Often considered as keystone species in the terrestrial ecosystems (Caro & O’Doherty,1999),
ecological effects of large carnivores extend down to herbivores and plants (Ritchie & Johnson, 2009) thereby
structuring ecosystems along multiple food web pathways. Therefore, safeguarding of viable large carnivore
populations is essential for ecosystem equilibrium, that cannot be ensured without understanding their
demographic responses to each other.

Over the years, it has been established that competition among predators can be direct or indirect (Case &
Gilpin, 1974; Macdonald, 1983; Crooks & Soule, 1999; Ritchie & Johnson, 2009; Letnic, Ritchie, & Dickman,
2012). The indirect form is termed as exploitative competition (Case & Gilpin, 1974). Wherein resources are
harvested disproportionately by one predator and are not available for other competing predators (Vance,
1984). This type of interaction is mostly unidirectional with larger body sized carnivores i.e. apex predators
(Ordiz, Bischof, & Swenson, 2013), dominating the guild. Evolutionarily, competitively subordinate carni-
vores have adapted to exploitative competition by opting for differential life-history strategies like group
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living, reduced overlap in diet, Spatio-temporal activity and habitat use (Creel & Creel,1996; Durant, 2000;
Creel, 2001; Durant, 2002).

On the other hand, interference interaction is a rather direct form of competition in the predatory guild
(Vance,1984). Some manifestations of interference competition are interspecific territoriality, kleptoparasitism
and direct killing (Linnell & Strand, 2000). However, interference competition is not easy to demonstrate,
because it is multifaceted and involves an array of factors acting along, such as anthropogenic disturbance,
alterations in community structure of prey and other predators and the overall productivity of ecosystems
(Greenville, Wardle, Tamayo, & Dickman, 2014; Newsome & Ripple, 2015; Swanson et al., 2014). Therefore,
there is a dearth of theoretic and practical understanding of interference competition because of the lack of
replicability of such ’natural experiments’ (Linnell & Strand, 2000).

Most of our understanding on intraguild competition comes from studies on exploitative competition, alt-
hough interference competition is critical in multi-predator systems and is always functioning in the back-
ground (Periquet, Fritz, & Revilla, 2015). Shreds of evidence from classic ecology studies indicate that
subordinate predator experience low recruitment rates and even face extirpations in a high apex predator
density scenario (Carbyn, Armbruster, & Mamo, 1994; Clark, 1994; Lindström, Brainerd, Helldin, & Overs-
kaug, 1995; Henke & Bryant, 1999). However, an inverse pattern is observed when interference competition
is removed. A recent continent-wide review shows expansion of golden jackals (Canis aureus ) as a response
to grey wolf (Canis lupus ) exterminations in Europe due to persecution by humans. (Krofel, Giannatos, Ci-
rovic, Stoyanov, & Newsome, 2017). Ecosystems wherein social and solitary predators share space, intraguild
competition often shape trends of group sizes in social carnivores. The group size of subordinate predators
such as African wild dogs (Lycaon pictus) (Creel & Creel,1996; Creel & Creel, 1998), Spotted hyenas (Cro-
cuta crocuta) (M’soka, Creel, Becker, & Droge, 2016) and cooperative breeding mongooses (Suricata suricata
) (Clutton-Brock et al., 1999) have been studied to be inversely related to lion densities, over temporal and
spatial scales.

One such sympatric guild of solitary and social carnivores, found in South-east Asian forests is of tiger
(Panthera tigris ), dhole (Cuon alpinus ) and leopard (Panthera pardus ). Tigers are considered to be top
predators whereas dhole and leopard are intermediate predators, forming an asymmetric guild (Steinmetz,
Seuaturien, & Chutipong, 2013). In the Indian subcontinent dholes have been widely studied along with
tigers and leopards, to understand sympatric interactions among the three carnivores (Acharya, 2007; Johns-
ingh,1992; Karanth & Sunquist, 2000; Wang & Macdonald, 2009; Wegge, Odden, Pokharel, & Storaas, 2009;
Steinmetz, Seuaturien, &, Chutipong, 2013; Rayan & Linkie, 2016). Competition between these carnivores
is likely because of the high overlap in diet spectrum (Karanth & Sunquist, 1995). Prey rich forests facilitate
sympatry between the carnivores (Karanth & Sunquist, 2000; Wang & Macdonald, 2009; Karanth, 2017).
Studies in sub-optimal habitat conditions with scarce resources have shown evidence of intraguild preda-
tion among the sympatric carnivores (Steinmetz, Seuaturien, &, Chutipong, 2013; Rayan & Linkie, 2016).
Conversely, tiger depleted systems have shown a significant increase in dhole site occupancy (Steinmetz,
Seuaturien, & Chutipong, 2013; Rasphone, Kery, Kamler, & Macdonald, 2019).

Pack size, however, is a vital aspect and considered to be a function of population size in social predators
(Fernandez et al., 2020) but it remains unaddressed for the dhole. So far, we have no long-term studies to
assess and understand various ecological factors that determine group size dynamics of dhole, as seen in case
of other subordinate social predators (Periquet, Fritz, & Revilla, 2014; Green, Farr, Holekamp, Strauss &
Zipkin, 2019).

We observed a significant variation in pack size of dholes at the two neighbouring protected areas having
similar ecological settings, Tadoba Andhari Tiger Reserve and Navegaon Nagzira Tiger Reserve in the Central
Indian Landscape, Maharashtra, India and attempted to investigate factors underlying this variation in pack
size of dholes. Group size variation is a crucial characteristic of carnivore sociality (Macdonald,1983) and is
an attribute of differential ecological settings over temporal and spatial scale (Markham, Gesquiere, Alberts,
& Altmann, 2015). Largely governed by co-predator density and prey abundance (Gusset & Macdonald,
2010). Furthermore, availability of habitat, topography and habitat features elicit prey distribution and
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encounter rate at a given place and time (White & Garrott, 2005; Fedriani, Fuller, Sauvajot, & York, 2000).

After investigating factors linked with pack size variation of dholes at the two reserves, we further elucidate
our local scale patterns at a wider scale by doing a distribution-wide assessment of pack size across dhole
ranging countries. 1. Hypothesis: High apex predator density negatively affects pack size of subordinate
carnivores (Groom, Lannas, & Jackson, 2017). Prediction: Areas with higher tiger density will show smaller
pack sizes and vice-versa. 2. Hypothesis: When tiger density are low pack sizes are determined by prey
abundance. Prediction: Dhole pack size will positively correlate to higher prey abundance. 3. Hypothesis:
Terrain ruggedness influences pack size as dholes are cursorial predators (White & Garrott, 2005). Prediction:
Areas with high ruggedness will correspond to low pack sizes and vice-versa.

Methods and Materials:

2.1. STUDY AREA

The study was primarily conducted at two neighbouring sites in the Eastern Vidarbha Tiger Landscape
within the greater Central Indian Tiger Landscape. The Two sites were; the Tadoba Andhari Tiger Reserve
(TATR) and Navegaon Nagzira Tiger Reserve (NNTR) (Figure 1). TATR (19.95428 E to 20.51695 E and
79.12749 N to 79.73494 N) is 625 km2 and NNTR (20.86209 E to 21.44738 E and 79.69802 N to 80.39064 N)
is 656 km2 (core) in area. Both the study sites are in the Deccan Plateau zone according to the biogeographic
classification of India (Rodgers & Panwar, 1988) and are located at a distance of ~85 km from each other.
The study sites experience subtropical climate with three distinct seasons- summer, monsoon, and winter.
The Reserves receive southwest monsoons with rainfall (1100-1500 mm) persisting from June to September.
The Forest type is Southern tropical dry deciduous (Champion & Seth, 1968). Teak (Tectona grandis) is
the dominant species followed by Terminalia tomentosa and Lagerstroemia parviflora in the study sites.
The terrain type is mostly plain with shallow valleys and rounded hills. Tiger, leopard and dhole form the
major predatory guild in the study sites and chital (Axis axis) , sambar (Rusa unicolor) , nilgai (Boselaphus
tragocamelus) , wild pig (Sus scrofa ), gaur (Bos gaurus) , barking deer (Muntiacus muntjac) are the major
prey species (Dhanwatey et al., 2013).

Figure 1. Map showing Tadoba Andhari Tiger Reserve and Navegaon NagziraTiger Reserve
in Eastern Vidarbha Landscape. Inset showing study area location in the map of India.
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2.2 .) Field and Analytical method: Dhole pack size variation across study sites

In field studies individual identification of dholes is challenging because of their uniform pelage pattern
(Modi, Habib, Ghaskadbi, Nigam, & Mondol, 2019), therefore we adhered to pack identification on the basis
of activity centres (Stansbury et al., 2014). We surveyed study sites through camera trapping and identified
activity centres on the basis of pack’s activity hotspots and concentrated indirect signs. The understnading
of movement patterns from telemetry study at our study sites suggests that the core home range/ activity
centres for dhole pack ranges from 1 km2 to 11 km2 i.e. the area exclusive to a pack’s territory (Ghaskadbi
et al. Unpublished).. Therefore, based on our observations of activity hotspots, sightings of packs were
only recorded at their activity hotspots. The sightings at overlapping pack boundaries were not included to
avoided confusion between the packs.

2.3. a) Field and Analytical method: Variation in prey composition and density across study
sites

Line transect based distance sampling (Buckland et al., 2001) was used to estimate prey densities at the two
sites. Line transects were laid in a stratified random framework to ensure spatial coverage of all vegetation
types. All transects were of 2 km length. Survey effort of 950 km and 984 km was put in TATR and NNTR,
respectively. Data for species, group size and composition, GPS (global positioning system) location of every
observation, bearing of the animal using compass and angular sighting distance using laser range finders,
was recorded whenever sightings were made online transects.

b) Estimation of ungulate species across study sites

Individual density of all the species was calculated using Distance program version 6.2 (Thomas et al.,
2010). We first examined the data from both sites for each species separately. Following this, the species
observations at distances beyond which sightings were almost none was dropped or observations were binned
to achieve model fit. Akaike Information Criterion and goodness-of-fit (GOF-p) tests were used to judge and
the fit of the model. Based on the selected model, individual density ( D̂i ) and estimates of group density
(D̂g) were derived for each species.

2.4. a) Field and Analytical method: Variation in tiger density across study sites

Capture-recapture based camera trapping was done to estimate densities of carnivores following standard
protocols (Karanth & Nichols., 1998). A grid size of 2 km² was used for camera trap placement. Based on
the sign survey, camera traps were stationed on both sides of the trails, at junctions and water sources to
maximize photo captures (Karanth & Nichols., 1998). Distance between the camera stations was between 1
km to 1.5 km to ensure spatial coverage in the sampling area and capture probability of the study population
(Pollock, Nichols, Brownie, & Hines, 1990). A closing period of 30 days (n= 9144 in TATR and n= 13440 in
NNTR Trap nights) was kept to ensure demographic closure.

b) Density estimation of Tiger across study sites:

Using photo captures, tiger density was estimated in SECR framework using maximum likelihood approach
(Borchers & Efford, 2008). The analysis was carried out in program R (3.5.3) (R Core Team, 2013) using
package ”secr” (3.2.1) (Efford & Efford, 2019). In SECR, we laid a buffer of 7 km based on spatial scale
detection (σ) around our camera trap matrix. The best-fit model based on the lowest AIC value was then
selected for density (D̂), capture probability at activity center (gο), and spatial scale of detection (σ).

2.5. a) Data sources for distribution-wide assessment of dhole pack size:

Through google scholar we searched for scientific literature on pack size of dholes, using the keywords “Cuon
alpinus”, “Dhole”, “Average”, “Mean”, “Pack-size”. Our search resulted in 34 scientific assessments from
1973 to 2018 that had reported average pack size of dholes. These 34 assessments belonged to 24 unique
protected areas across dhole ranging countries in South and South-east Asia. 18 of these unique sites were also
a part of the recently published dhole diet review (Srivathsa, Sharma, & Oli, 2020). Subsequently, snowball
sampling approach was used (Handcock & Gile, 2011), by using dhole pack size as baseline information from
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the previously conducted assessments. Literature cited within these assessments were referred to collate data
on tiger density along with prey density (of the closest or same assessment year) and size of the protected
area. We obtained data on the topography of 24 protected areas through google earth engine (Gorelick et
a., 2017).

b) Analytical methods:

We used generalized linear models to examine correlates of dhole pack size reported from 24 unique sites
across dhole distribution range. We used only those studies (n=29) for which data on all the predictor
variables were available i.e., tiger density and ungulate density, size of the protected area (PA), elevational
heterogeneity and terrain ruggedness of the PA. We checked for correlations among predictors and dropped
the correlated ones (r > 0.6), prior to analysis. After screening for normal distribution of response variable,
we used ”gaussian” family for the analysis. We tested for model parameters based on our hypothesis,
and compared them to null model (Intercept only). Model fits were compared using Akaike’s Information
Criterion corrected (AICC), and the effect of parameters was gauged based on direction and statistical
significance of corresponding β-coefficients. We used ”MuMIn” package for model selection and averaging.
Model selection was based on difference between AIC models, (ΔAIC < 2). Further, model selection was
done using Royall’s 1/8 strength of evidence and 95% cumulative weight criteria. Model averaging was
carried out for parameters based on top model selection. All analyses were performed in program R (R
Development Core Team, 2014).

Results:

3.1. Pack size variation

We identified seven packs from TATR and five packs form NNTR based on their exclusive activity hotspots.
Number of individuals in a pack ranged from 7 to 12 for TATR Packs and 10 to 28 for NNTR Packs. The
reported average pack size was 6.4 (1.3) and 16.8 (3.1) for TATR and NNTR, respectively. A significant
difference was found between the pack size of TATR and NNTR (t = -3.05, p-value = 0.02) (Figure 2).

Figure 2. Comparison of dhole pack size from TATR and NNTR
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3.2. Prey composition and density across study sites:

Total prey density per 100 km² was reported as 16.94 in NNTR and 19.28 in TATR. Major prey species in
both the study sites were chital, sambar, nilgai, wild pig, gaur, and barking deer (Table 1). Gaur density
was 5.21 (1.41) the highest followed by chital 4.61(1.2) in NNTR. In TATR, the density of chital was the
highest 5.10 (1.22) followed by sambar 4.68 (0.76).

3.3. Large predator density across study sites

We got 452 photo captures of tigers in TATR and 211 photo captures in NNTR. A total of 71 tigers in
TATR and 8 tigers in NNTR were identified through camera trap images. The heterogeneity model with the
lowest AIC value was chosen based on difference in gender specific capture rate. Tiger density per 100 km²
was found to be 5.67 (0.69) in TATR. The estimated density per 100 km² for tiger in NNTR was 0.71 (0.24).
The number of photo captures of dholes was 68 and 689 in TATR and NNTR, respectively.

3.4. Distribution-wide assessment of dhole pack size:

We used average dhole pack size as the response variable and tiger density, ungulate density, area of PA,
terrain ruggedness as predictor variables. We scaled predictor variables (Size of PA, elevational heterogeneity
and terrain ruggedness) and checked for correlation among all predictor variables. We dropped elevational
heterogeneity as the predictor variables because of its high correlation with terrain ruggedness. We ran a
total of 10 additive and interactive models (Table 2, Figure 3). The top two models achieved the model
selection criterion of ΔAICc <2. Upon model selection we found, additive effect of tiger density and prey
density and interactive effect of tiger density and prey density, to be the top two best models (Table 3,
Figure 4 & 5). On averaging the two top models (Table 4, Figure 6) we found a negative association of tiger
density (-0.89 ± 0.33, p = 0.01) and a positive association of prey density (0.09 ± 0.03, p =0.03) with the
pack size and prey*tiger density (0.01 ± 0.0, p =0.18) was not significant but still explained the relation
with the response variable.

Φιγυρε 3. Σηοωινγ αλλ τηε σιγνιφιςαντ ανδ νον-σιγνιφιςαντ πρεδιςτορ vαριαβλες ωιτη

β ςοεφφιςιεντ vαλυες ατ 95% ςονφιδενςε vαλυε

6



P
os

te
d

on
A

u
th

or
ea

21
J
u
l

20
20

—
T

h
e

co
p
y
ri

gh
t

h
ol

d
er

is
th

e
au

th
or

/f
u
n
d
er

.
A

ll
ri

g
h
ts

re
se

rv
ed

.
N

o
re

u
se

w
it

h
ou

t
p

er
m

is
si

on
.

—
h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
59

53
46

82
.2

82
20

25
7

—
T

h
is

a
p
re

p
ri

n
t

an
d

h
a
s

n
o
t

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

a
ta

m
ay

b
e

p
re

li
m

in
a
ry

.

Figure 4. Dhole pack size in response to tiger density based on distribution wide assessment

Figure 5. Dhole pack size in response to prey density based on distribution wide assessment
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Φιγυρε 6. Αvεραγε μοδελ παραμετερς ωιτη β ςοεφφιςιεντ vαλυες ατ 95% ςονφιδενςε

Discussion

Apex predator actively harvests prey population and suppress mesopredator community structure through
top-down mechanisms (Ripple et al., 2014). However, there is a dearth of evidence for subordinate predator
suppression due to lack of such natural experiment study systems. We got an opportunity to understand the
impact of a solitary apex predator on competitively inferior social predator in a natural experiment setup.

The Asiatic wild dog/ dhole is listed under “Endangered” category by IUCN, with about only 949-2215
mature individuals surviving globally. Indian subcontinent harbors majority of the viable dhole population
(Kamler et al., 2015). However, the species has been exterminated from 60% of its past distributional range
in India (Karanth et al., 2010) due to decline in prey base, habitat loss, human persecution and intra-guild
competition (Hayward, Lyngdoh, & Habib, 2014; kamler et al., 2015). In India, persistence of dholes is
mostly confined to protected areas with infrequent presence records from secondary forests and agro-forest
plantations (Srivathsa, Karanth, Kumar, & Oli, 2019). These remnant habitat patches are also shared
by other large carnivores, thereby limiting dhole population by lethal intra-guild interactions (Steinmetz,
Seuaturien, & Chutipong, 2013). Small size of PAs and lopsided conservation efforts can further result in over-
inflated apex carnivore densities and be detrimental for subordinate predators like dholes (Rayan & Linkie,
2016; Kumar, Awasthi, Qureshi, & Jhala, 2019). Therefore, to conserve the endangered dhole, it is crucial
to understand its response to tigers, itself an endangered and flagship species. A holistic understanding of
guild interactions would improve our ability to optimize ecological triage while conserving charismatic apex
predators and mid-ranking predators.

In this study, we found that the pack size was reduced in higher tiger density areas. This might be due to
the influence of interference competition wherein a narrower niche is available for dholes to occupy which
limits their persistence. Studies from Africa also show a similar trend where pack sizes of African wild dogs
were reduced in areas of higher lion densities (Groom, Lannas, & Jackson, 2017). At high tiger density site
(TATR) we also observed direct intraguild predation events i.e. tigers killing dholes (n= 5) however, no
such events have been observed in NNTR, the low tiger density site. Similar events have been documented
in African system by Creel and Creel (1996), where lions actively chase away dogs and in certain instances
even kill them.

Conversely, in low tiger density area, larger pack size is indicative of a competitive release scenario (Groom,
Lannas, & Jackson, 2017). A similar trend has been observed in spotted hyena clan size and pack size of
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African wild dog due to reduced interspecific competition in a lion depleted system and easy availability of
food subsidies (Periquet, Fritz, & Revilla, 2014; Green, Farr, Holekamp, Strauss, & Zipkin, 2019; Groom,
Lannas, & Jackson, 2017).

There was no significant difference between the individual prey densities at both studies, however, the higher
density of a large-body size prey in NNTR is also interesting to note. This finding is in line with the idea
that low numbers of apex predator lead to an increase in abundance of large-bodied prey in a system. The
subordinate predators are limited by body-size and cannot target such large prey and this might be one of
the possible explanations for our finding. Similar pattern is observed in study systems where wolf (Canis
lupus ) populations are controlled (Burgar, Burton, & Fisher, 2019) that not only causes coyote (Canis
latrans ) abundance to increase but also leads to stable number of adults in caribou (Rangifer tarandus )
population since coyotes are size-limited and cannot take down larger individuals (Lewis, Gullage, Fifield,
Jennings, & Mahoney, 2017).

To examine whether reserve level patterns were concurrent with global scale, we did a distribution-wide
assessment of pack size across dhole distributional range. We found support for our first two hypotheses,
dhole pack size were positively associated with prey density and negatively associated with tiger densities.
Statistically significant but moderate effect size reflects that the patterns were diffused at global scale.
Patterns of subordinate predator response to apex predators numbers do not always mirror each other
over temporal and spatial scales (Jachowski et al., 2020), pertaining to area specific ecological settings,
anthropogenic disturbances, level of protection at reserve level and connectivity in the landscape at regional
scale (Greenville, Wardle, Tamayo, & Dickman, 2014; Newsome, & Ripple, 2015). We did not find support
for our third hypothesis, dhole pack size was not associated with high terrain ruggedness however, a low
pack size has been reported from studies of high altitude and rugged terrain (Bashir, Bhattacharya, Poudyal,
Roy, & Sathyakumar, 2014; Lyngdoh, Gopi, Selvan, & Habib, 2014).

Taken together, our reserve level and distribution wide assessment results are in support of the hypothesis
that area specific ecological settings such as prey composition, abundance, and co-predator density are
drivers of carnivore community structure, group size and behavior (M’soka, Creel, Becker, & Droge, 2016).
Patterns of this study also adhere to trends that have been observed in other long-term studies from Serengeti
National Park, Ngorongoro Conservation Area and Selous Game Reserve, Tanzania, where the group size of
subordinate predators are positively associated with availability of food resources and negatively associated
with, apex predator numbers (Creel & Creel, 1996; Creel & Creel, 1998; Woodroffe & Ginsberg, 1999; Pole,
2000; Périquet, Fritz, & Revilla, 2015; Green, Farr, Holekamp, Strauss, & Zipkin, 2019).

Tiger and dhole belong to the same carnivore guild because of similar diet spectrum (Hayward, Lyngdoh,
& Habib, 2014), and therefore their persistence in an area is linked to each other (Johnsingh,1992). Studies
based on non-invasive sampling such as camera trapping and occupancy surveys suggest that carnivores adapt
to mechanisms of niche partitioning, depending on resource availability to facilitate sympatry (Karanth et
al, 2017). Very few studies have demonstrated that intense intra-guild competition result in reduced density
and spatial displacement of the subordinate predators (Harihar, Pandav, & Goyal, 2011; Mondal, Gupta,
Bhattacharjee, Qureshi, & Sankar, 2012; Steinmetz, Seuaturien, & Chutipong, 2013). Our study provides a
new direction in understanding how intra-guild competition can also potentially limit pack size of dhole.

Competition from dominant carnivores remains one of the major factors that drives densities of other sympa-
tric carnivores in a system (Wrangham, Gittleman, & Chapman, 1993). NNTR and TATR are a comparable
natural experiment setup that allows us to study how these two endangered tropical carnivores interact and
understand consequences of dominance shift. We suggest that the increased pack size of a social subordinate
predator (dhole) is an outcome of low density of apex predator and availability of wider niche. The decision
to form large packs as compared to small packs is going to be more advantageous to limit the growth of top
predator. However, future long-term studies are suggested based on multiple pack-year data, disease preva-
lence, predation, kleptoparasitism events and recruitment rate of dholes, across a gradient of apex predator
density would further validate our hypothesis.
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Table 1. Individual density of various prey species from NNTR and TATR, Maharashtra,
India

Prey Species
NNTR (Individual
density and SE) Group size

TATR (Individual
density and SE) Group size

Chital 4.61±1.2 5.02 5.10±1.22 5.13
Sambar 1.41±0.32 1.88 4.68±0.76 2.25
Nilgai 1.99±0.35 1.81 1.09±0.36 2.50
Wild pig 3.12±1.11 6.32 5.42±2.08 7.22
Gaur 5.21±1.41 5.98 2.03±1.15 2.35
Barking deer 0.6±0.2 1 0.96±0.23 1.37

Table 2. Model selection Following information criterion

Model ID Models (Intercept) Prey.density Reserve.size Terrain.rug Terrain.rug Tiger.density Prey.density:Tiger.density df logLik AICc delta weight R2

mod3 Tiger density + Prey density 8.385 0.106 NA NA NA -0.721 NA 4 -71.68 153.02 0.00 0.56 0.436
mod2 Tiger density * Prey density 9.450 0.066 NA NA NA -1.162 0.011 5 -70.61 153.83 0.81 0.37 0.476
mod1 Tiger density + Prey density + PA size + Terrain ruggedness 10.793 0.102 -0.085 -0.085 -1.309 -0.722 NA 6 -71.09 158.00 4.98 0.05 0.458
mod9 Tiger density 10.191 NA NA NA NA -0.379 NA 3 -77.44 161.84 8.82 0.01 0.161
mod4 Tiger density + Terrain ruggedness 12.986 NA NA NA -1.757 -0.393 NA 4 -76.71 163.09 10.07 0.00 0.202
mod6 Tiger density + PA size 15.950 NA -1.878 -1.878 NA -0.453 NA 4 -76.84 163.35 10.33 0.00 0.194
mod0 Null model 8.286 NA NA NA NA NA NA 2 -79.99 164.44 11.41 0.00 0
mod10 Prey density 7.157 0.034 NA NA NA NA NA 3 -79.37 165.70 12.67 0.00 0.041
mod5 Prey density + Terrain ruggedness 9.296 0.031 NA NA -1.311 NA NA 4 -79.02 167.71 14.69 0.00 0.064
mod7 Prey density + PA size 3.526 0.044 1.146 1.146 NA NA NA 4 -79.20 168.07 15.04 0.00 0.052
mod8 PA size + Terrain ruggedness 11.306 NA -0.228 -0.228 -1.523 NA NA 4 -79.53 168.72 15.70 0.00 0.031

Table 3. Model selection Following AICC,Royall’s 1/8 rule for strength of evidence, and 95%
cumulative weight criteria
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Model
ID

Model Intercept Prey.densityReserve.sizeTerrain.
rug

Tiger.densityPrey.density:Tiger.densityK LogLik AICc delta weight

mod3 Tiger
den-
sity
+
Prey
density

8.385 0.106 NA NA -
0.721

NA 4 -
71.678

153.022 0.000 0.600

mod2 Tiger
den-
sity
*
Prey
density

9.450 0.066 NA NA -
1.162

0.011 5 -
70.611

153.830 0.808 0.400

Model
Se-
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Intercept Prey.densityReserve.sizeTerrain.rugTiger.densityPrey.density:Tiger.densityK LogLik AICc delta weight
mod3 Tiger

den-
sity
+
Prey
density

8.385 0.106 NA NA -
0.721

NA 4 -
71.678

153.022 0.000 0.600

mod2 Tiger
den-
sity
*
Prey
density

9.450 0.066 NA NA -
1.162

0.011 5 -
70.611

153.830 0.808 0.400
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Intercept Prey.densityReserve.sizeTerrain.rugTiger.densityPrey.density:Tiger.densityK LogLik AICc delta weight
mod3 Tiger

den-
sity
+
Prey
density

8.385 0.106 NA NA -
0.721

NA 4 -
71.68

153.02 0.00 0.60

mod2 Tiger
den-
sity
*
Prey
density

9.450 0.066 NA NA -
1.162

0.011 5 -
70.611

153.83 0.81 0.40

Table 4. Model averaging output for all variables present in the top model selection

Estimate Std. Error Adjusted SE z value Pr(>|z|) CI (2.5 % - 97.5%)

Intercept 8.811 1.248 1.299 6.783 <2e-16 *** 6.265 - 11.357
Tiger.denisty -0.897 0.340 0.350 2.562 0.010* -1.583 to -0.210
Prey.density 0.090 0.040 0.042 2.164 0.030 * 0.008 to 0.171
Prey.density*Tiger density 0.011 0.008 0.009 1.315 0.188 -0.005 to 0.028
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Figure legend:

Figure 1. Map showing Tadoba Andhari Tiger Reserve and Navegaon NagziraTiger Reserve in Eastern
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Vidarbha Landscape. Inset showing study area location in the map of India.

Figure 2. Comparison of dhole pack size from TATR and NNTR Figure 3. Showing all the significant and
non-significant predictor variables with β coefficient values at 95% confidence value Figure 4. Dhole pack
size in response to tiger density based on distribution wide assessment Figure 5. Dhole pack size in response
to prey density based on distribution wide assessment

Figure 6. Average model parameters with β coefficient values at 95% confidenc
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