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Abstract

Each seed phenotypic trait may be influenced by its metabolite composition which varies during seed development and -
maturation. Therefore, the metabolic components of dry seeds may represent the maternal environment under which seeds
developed and matured. The natural variation of seed metabolite composition has been previously studied and several QTLs
were detected regulating this variation. Here a generalized genetical genomics (GGG) approach was used for the metabolic
analysis of a recombinant inbred (RIL) population obtained from a cross between two tomato species: Solanum lycopersicum
and Solanum pimpinellifolium. The RILs and parental lines were grown in two maternal environments: high phosphate and
low nitrate nutrition. A correlation analysis of metabolite composition and seed phenotypic traits indicated several relations
between metabolite contents and seed quality traits such as seed size, seed weight and seed germination percentage. Seed size
and -weight exhibited a positive correlation with several amino acids and some intermediates of the TCA cycle, such as succinate,
citrate and malate. By performing metabolic correlation analysis and also generating metabolite networks and combining these
with QTL analysis, several relevant mQTLs were identified. We showed that dry seed metabolites and QTLs regulating them
are modulated by genetic factors, maternal environment and their interaction.

Introduction

The maternal environment in which seeds develop and mature have a profound influence on seed properties
such as germination vigour. The sink-source connection between the mother plant and the seeds allows
the seeds to accumulate reserves required for seed germination and seedling growth (Baud et al. 2008).
Metabolites such as amino acids, sugars and organic acids play a vital role in the different stages of seed
development such as maturation, desiccation and germination (Borisjuk et al. 2004; Fait et al. 2006). During
seed maturation, the content of these metabolites in seeds decreases and storage reserves, including starch,
oil and seed storage proteins increase (Fait et al. 2006; Galili et al. 2014). It has also been shown that
the subsequent metabolite content and composition of dry seeds may reflect the maturation environments in
which they developed (He et al. 2016). For example, in different species it has been reported that nitrogen
related metabolites such as asparagine, allantoin and GABA show a lower content in seeds developed under
low nitrate maternal environments (Geshnizjani et al. 2019; Heet al. 2016). Although many studies have been
performed related to the effect of maternal environments on dry seed metabolic content, more information is
required to understand the genetic and molecular mechanisms governing the metabolic changes in response
to the maternal environment.

In general, each observed phenotype in plants is the consequence of different cellular processes such as gene
transcription, protein translation and, finally, metabolite production (Kooke & Keurentjes 2011). Therefore,
genetic variation is not only confined to phenotypic traits such as seed and seedling quality traits. Many



studies have revealed that metabolite composition and content, which play a very critical role in plant growth
and development, is also controlled by genetic variation within a plant species (Windsor et al. 2005). The
existing natural variation for both phenotypic traits and metabolite content is displayed by a continuous
distribution, considered as quantitative variation. Such variations are often regulated by multiple loci and can
be detected in mapping populations like recombinant inbred line (RIL) populations where the different loci
are known as phenotypic or metabolite quantitative trait loci (QTLs and mQTLs, respectively) (Keurentjes
& Sulpice 2009; Lisec et al. 2008). Many QTL analyses have been performed in seeds and many QTLs that
regulate complex quantitative traits such as seed germination characteristics, seed size, seedling traits as well
as seed metabolites have been described (Kazmi et al. 2012; Kazmi et al. 2017; Khanet al. 2012; Schauer et
al. 2006).

Plants are a rich source of biochemical compounds that are mainly contributing to plant development,
adaptation and final appearance and yield (Binder 2010). Therefore, the quantitative variation of these
metabolites may have an influence on different physiological traits like seed germination and seedling es-
tablishment. The integrative analysis of metabolites and genetics has provided valuable information and
knowledge on how natural variation regulates metabolite levels and their subsequent effect on growth of
plants and their adaptation and how this knowledge can be used in plant breeding (Kliebenstein 2009).

Genetical genomics in which QTL analysis is integrated with proteomics, transcriptomics and metabolomics
has provided in-depth understanding of molecular mechanisms regulating complex traits (Jansen & Nap
2001; Keurentjes et al. 2006; Kliebenstein et al. 2006; Schaueret al. 2006). Nonetheless, more advanced
approaches are required for further determination of the complexity of quantitative traits. In addition to
genotype (G), molecular networks are also influenced by the environment (E) and the interaction between
genotype and the environment (GXE). Thus, the incorporation of different environments in genetic studies
is a prerequisite for comprehensive perception of the regulation of molecular mechanisms. Li, Breitling and
Jansen (2008) proposed a new strategy which is called generalized genetical genomics (GGG) by which both
genetic and environmental perturbations can be studied. This approach allows QTL analysis governing the
interesting molecular traits under consideration of multiple environments. It is a cost-effective method to not
only determine the genotype but also the environmental effects and their interaction for detected QTLs (Li,
Breitling & Jansen 2008). In principle, by creating similar subpopulations of RILs and subjecting each of
these to a different environment, G, E and GXE effects can be investigated in a cost-effective experimental
design (Joosen et al. 2013).

Although the QTLs governing dry seed metabolite content have been previously detected in many plants,
including tomato (Kazmi et al. 2017; Toubiana et al. 2012), the effect of GXE interactions has been studied
to a much lesser extent (Albert et al. 2016; Kazmi et al. 2017; Rosental et al. 2016). In this study we used a
RIL population derived from a cross between two tomato species: Solanum lycopersicum (cv. Moneymaker)
and Solanum pimpinellifolium (Voorrips et al. 2000). We have exploited the existing natural variation in
this population to investigate how QTLs are influenced by the environment to which the mother plants are
exposed. Moreover, metabolic profiling of the seeds which have matured in different environments will be
useful to illustrate important metabolic differences that regulate the development and adaptation of plants
(Joosen et al. 2013). By using a GGG approach we performed metabolite analysis for the RIL population
and their parental lines, grown in high phosphate and low nitrate environments. By generating metabolite
correlation networks and performing mQTL analysis, genetic and molecular aspects of seed metabolic changes
in response to the maternal environments have been discovered.

Materials and methods
Maturation conditions and seed collection

One hundred lines of an F7; RIL population obtained fromsS. lycopersicum cv. Moneymaker (MM) x S.
pimpinellifolium(PI) accession G1.1554 (Voorrips et al. 2000) have been genotyped with 865 single nucleo-
tide polymorphism (SNP) markers. The Fg population was grown in two different nutritional maturation
environments as previously described (Geshnizjani et al. 2020). The fully ripened fruits were collected and



the seeds were extracted and dried as previously reported (Chapter 2). Finally, the dry seeds were stored in
paper bags at 13°C and 30% RH.

Generalized genetical genomics design (GGG)

The population of 100 tomato lines was divided into two sub-populations based on the distribution of parental
alleles. By using the R-procedure DesignGG (Joosen et al. 2013; Li et al. 2009) the tomato lines were allocated
to the suitable sub-population in a way that alleles show a similar distribution in both sub-populations as
compared to the whole population (Kazmi et al. 2017).

Extraction and analysis of dry seed metabolites

The dry seed metabolites were extracted using the method as previously described by Roessner et al., (2000)
with small changes. In short, 10 mg seeds of each tomato line was homogenized using a micro dismem-
brator (Sartorius) in a precooled 2 ml Eppendorf tube with 2 iron balls (2.5 mm). A solution of 700 ul
methanol/chloroform (4:3) together with a standard (0.2 mg/ml ribitol) was added to each Eppendorf tube
and mixed thoroughly. After 10 minutes of sonication 200 ul Milli-Q water was added to the samples followed
by vortexing and centrifugation (5 min, 13,500 rpm). Then, the methanol phase was collected and transferred
to a new 2 ml tube and the remaining organic phase was extracted again with 500 ul methanol/chloroform.
The solution was kept on ice for 10 minutes and afterwards 200 pl Milli-Q water was added. Again after
vortexing and centrifugation (5 min, 13,500 rpm), the methanol phase was collected and combined with the
former collected phase and mixed well. A solution of 100 ul of this mix was transferred to a glass vial and
dried overnight using a speedvac centrifuge at 35°C (Savant SPD1211).

The gas chromatography-time of flight-mass spectrometry (GC-TOF-MS) method which was previously
described by Carreno-Quintero et al., (2012) was used for analysis of the dry seed metabolites. Detector
voltage was set at 1600 V. Analysis of the raw data was performed using chromaTOF software 2.0 (Leco
instruments). Furthermore, the Metalign software was used for further analysis such as aligning the mass
signals (Lommen 2009). The peak threshold for noise was set to 2 and the output was loaded in Metalign
Output Transformer (METOT; Plant Research International, Wageningen) and MSClust (Tikunov et al.
2012) was used to construct Centrotypes. The Centrotypes were identified by matching the mass spectra to
an in-house-constructed library, to the GOLM metabolome database (http://gmd.mpimp-golm.mpg.de/)
and to the NISTO05 library (National Institute of Standards and Technology, Gaithersburg, MD, USA;
http://www.nist.gov/srd/mslist.htm). The identification was based on spectral similarities and comparing
the retention indices calculated by a third order polynomial function (Strehmel et al. 2008).

Statistical analysis (coefficient of variation, PCA and ANOVA analysis)

Within a population the absolute variation or dispersion per trait is defined as the standard deviation (o).
The relative variation called the coefficient variation (CV) for individual traits is the ratio of the standard
variation to the mean (u) of the lines in the population (CV = (o/u)*100). In this study we calculated
CV for each metabolite in two nutritional maternal environments separately. The metabolomics data were
log10 transformed and then used for further analysis such as ANOVA, principal component and correlation
analysis. In order to indicate the effect of the genotype, environment and their interaction, ANOVA analysis
was performed on the metabolite content of the parental lines, MM and PI, grown in different nutritional
environments. The significance threshold of the p -value was set to 0.05. Principal component analysis (PCA)
was performed on metabolic values of the RILs and the parental lines using the R-package “pcaplots”.

Log2 ratio of metabolites between HP and LN (HP:LN) and metabolite profiles in both maternal environ-
ments (HP and LN) were investigated to identify the metabolic differences between two nutritional maternal
environments with Metaboanalyst 3.0 (http://www.metaboanalyst.ca/faces/home.xhtml).

Correlation analysis and network construction

R-packages “MASS”, “Hmisc”, “VGAM”, “gplots” and “graphics” (https://www.r-project.org/) were used
for analysis and construction of the Spearman correlation between all known metabolites and also between



the metabolites and the seed phenotypic traits. In addition, by using the “rcorr” R-package for each sub-
population the Spearman correlation between the known metabolites was analysed and the significance level
of correlations was described as false discovery rate (FDR). Correlation values with FDR[?]0.05 were used
to create a correlation network for each maternal environment by using Cytoscape v.3.4.0. The Network-
Analyser tool of Cytoscape was used to obtain additional characteristics of the metabolic networks.

mQTL analysis

Log10 transformed data together with the tomato linkage map containing 865 SNP markers were used for
performing QTL analysis using Rqtl v3.3.1 (Arends et al. 2010; Broman et al. 2003). We performed QTL
analysis using the approach as previously described by Joosen et al., (2013) for Arabidopsis and Kazmi et al.,
(2017) for tomato, with small modifications. A model (Y = G + E + GXE + ) was used for the whole RIL
population to identify the effect of genotype (G), maternal environment (E) and their interaction (GxE).
Furthermore, in order to identify the metabolic variation explained by the genetic component we carried out
the QTL analysis for known metabolites in each sub-population with simple interval mapping (SIM) using
MapQTL® 6.0 (Van Ooijen 2004). In both QTL analysis (Rqtl and MapQTL) 1000 permutation tests were
applied to our data to estimate the LOD threshold at a significance level of 0.05.

Results and discussion
Principal component analysis

In this study we used 100 lines of a tomato recombinant inbred line (RIL) population derived from a cross
between Solanum lycopersicum (cv. Moneymaker) (MM), and Solanum pimpinellifoliumaccession G1.1554
(PI) (Voorrips et al. 2000). The RILs, together with the parental lines, were grown in two different nutritional
environments; high phosphate and low nitrate. The harvested seeds were used to measure the metabolite
content in the dry mature seeds. The metabolites were measured by gas chromatography-time of flight-
mass spectrometry (GC-TOF-MS) analysis in a specific GGG design. In total 118 primary metabolites were
detected from which 58 could be identified. These identified metabolites were classified as amino acids,
organic acids, sugars, sugar alcohols and some other compounds (Table S1 ).

Principal component analysis of the primary metabolites in the parental lines (MM and PI) indicated clear
genetic effects as the two genotypes displayed different accumulation of metabolites in each maternal envi-
ronment. In addition, maternal environmental effects were also observed within each genotype as metabolites
accumulated differently in HP and LN (the two different maternal environments) (Figure 1 ).

Furthermore, analysis of significant changes in dry seed metabolites of the two species (MM and PI) between
the different environments revealed that the metabolite contents were influenced to a higher extent in MM
as compared to PI. In MM the level of 36 metabolites, mostly including amino acids and organic acids, had
significantly changed between the environments, while for PI this number decreased to 26 from which 19
were common between the two species (Table S2 ). In general, PI as a wild tomato species is more tolerant
to suboptimal environments (Kumar 2006; Rao et al. 2013; Rodriguez-Lépez et al. 2011) which might be the
reason why it does not need to modify its metabolites to a high extent to cope with a changing environment.
While in the case of MM, which is considered as a domestic sensitive accession, many metabolites may have
to be altered in order to allow it to deal with environmental stresses.

Metabolites are not only influenced by the genetic background of the seeds but also by the environment under
which seeds develop and mature and the interaction between genotype and environment (GxE) (He et al.
2016). In our study, a wide range of the metabolites in the parental lines were also significantly influenced
by the genotype, nutritional environment and their interaction (Table S3 ). In total 15% of the annotated
metabolites did not significantly change in our analysis and 57, 60 and 53% of the metabolites were influenced
by genotype, environment and GxE, respectively.

mQTL analysis

The substantial variation caused by G, E and GXE may be an indication of a sophisticated regulation



of metabolites in developing tomato seeds. Thus, metabolite content of the seeds must be considered as a
complex trait which is likely regulated by multiple quantitative trait loci (QTLs) (Keurentjes & Sulpice 2009;
Lisec et al. 2008).

To detect these mQTLs, we analysed metabolite profiles in the dry mature seeds of all the RILs. PCA
analysis of this data revealed a clear separation between the known metabolites of the seeds grown in the
two nutritional maternal environments (Figure 2A ). Twenty-three and 15% of the total variation was
explained by PC1 and PC2 respectively. Similar results were obtained after analysis of all 118 detected
metabolites (Figure S1A ). Both PCA plots show that predominantly PC2 explained the variation related
to the maternal environment. The loading plot of the PCA showed that the main components contributing
to PC2 were organic acids including glycolate, glycerate, malonate and succinate and amino acids such as
glutamate, serine, threonine and asparagine (Figure 2B, Table S4 ).

Metabolite profile and correlation in HP and LN

ANOVA analysis of the metabolites in the two maternal environments indicated that contents of 36 of 58
known metabolites were significantly changed between HP and LN maternal conditions. These metabolites
included mostly amino acids such as serine, pyroglutamate and GABA and organic acids including TCA
cycle intermediates such as galacterate, malate, succinate and malonate (Table 1 ).

In general Log2 ratios of HP:LN in the RIL population showed that most of the metabolites had a higher
level in seeds from the HP environment as compared to the LN environment (Figure 3, Table 1 ).

The metabolite profiles of seeds from the two maternal environments showed that seeds grown in HP condi-
tions contained a higher amount of metabolites, such as many sugars, amino acids and organic acids (Figure
3, 4 ). A high metabolite level was predominantly observed for GABA, sugars (maltose, fructose and glu-
cose), organic acids including benzoate, salicylate, glycerate and also some TCA cycle intermediates such
as galacterate, malate, malonate and succinate. The TCA cycle, including several catabolic reactions, plays
a very critical role in energy metabolism in plants. In addition, it contributes in many other ways to the
metabolome by being involved in a large number of metabolic networks (Araujo et al. 2012). In plants, it
has been shown that amino acids such as leucine, iso-leucine and valine can be degraded into new products
which can be used as precursors for the TCA cycle to provide additional energy for plants. The rate of
the degradation of these compounds can be increased due to sub-optimal conditions such as abiotic stresses
(Binder 2010).

Both HP and LN maternal environments could be sub-optimal environments for plant growth and seed
development. Our results revealed that most of the amino acids were not significantly altered between the
two maternal environments; however some of them such as GABA, pyroglutamate, glycine, leucine and
aspartate showed significantly lower values in seeds grown in LN. This result was consistent with findings
for tomato and Arabidopsis plants that reported a general decrease of amino acid levels under low nitrate
conditions (Tschoep et al. 2009; Urbanczyk-Wochniak & Fernie 2004). GABA is one of the amino acids
which frequently shows higher levels under stress conditions (Michaeliet al. 2011; Renault et al. 2011; Shelp,
Bown & McLean 1999). GABA is an amino compound which is produced via the so-called GABA shunt
pathway which has a primary role in keeping a balance in central C/N metabolism (Bouche & Fromm 2004).
It has been shown that GABA levels increased rapidly under stressed growth conditions. Thus, GABA is
thought to be involved in the tolerance of plants to sub-optimal environments (Fait et al. 2008; Kinnersley &
Turano 2000; Renault et al. 2011). In our study we have observed that the GABA content was lower in seeds
developed in LN conditions in comparison with those of the HP maternal condition. Our findings confirmed
previous studies, where seeds also showed low amounts of GABA under LN maternal conditions (He et al.
2016); (Geshnizjani et al. 2019).

It has previously been reported that nitrate starvation resulted in a decrease in TCA cycle intermediates in
tomato (Urbanczyk-Wochniak & Fernie 2004) and Arabidopsis (Tschoep et al. 2009) leaves. We also found
that in comparison to the HP condition, seeds developed under LN possessed a lower amount of TCA cycle
intermediates such as malate, succinate and malonate (Figure 4 ). This could be an indication of higher



consumption of TCA cycle intermediates to produce more energy under LN to allow the plants to survive
and continue growth.

Metabolite correlation networks

In general, correlations between metabolites can be used to assist in unravelling the biological basis of
variation caused either by different environments or genetic backgrounds (Ursem et al. 2008). In order
to understand the correlation between metabolite contents within the RIL sub-populations and how their
interaction is influenced by the nutritional maternal environment, pairwise Spearman correlation analysis was
performed between the metabolites. For each environmental condition, correlation analysis of all 118 detected
metabolites has been performed and a correlation heatmap was generated (Figure S2, Table S5 ). The
results showed that most of the unknown metabolites are highly correlated with annotated metabolites such
as amino acids and organic acids including TCA cycle intermediates. Only known metabolites that showed
significant correlations (FDR[?]0.05) were selected for constructing correlation networks (Figure 5, Table 2
). By using the network approach, the correlation between metabolites within each sub-population as a result
of similar genetic regulation can be visualised, while different metabolic patterns in between the different
maternal environments could provide more insight into the influence of environment and GxE on regulation
of metabolites. Correlation networks have often been used in metabolomics studies (Morgenthal, Weckwerth
& Steuer 2006; Steueret al. 2003) to provide additional information to multivariate approaches which have
been described previously (Graffelman & van Eeuwijk 2005). In our study, the correlation network for the HP
maternal environment contains in total 395 significant correlations (edges) between 56 metabolites (nodes).
The HP condition resulted in a network with higher density (0.256) as compared to LN, which had in total
238 edges and 51 nodes (Table 2 ). In general, the network related to the HP environment showed higher
levels of some attributes such as range of node degree, number of nodes and edges, network density and
average number of neighbours by possessing more metabolite connections and correlations (Table 2 ). This
higher connectivity in the network could be related to the overall higher metabolic levels under this specific
condition. In our study dry seed metabolites were connected more under the HP condition, in comparison
with LN, which indicates that the regulatory mechanisms under HP conditions induce several changes in
metabolism. These metabolic changes could assist plants to cope with sub-optimal growing conditions and
may result in acclimation of the plant (Hochberg et al. 2013).

The most highly connected metabolites in each condition can be found inTable S6 . Under LN, mainly
amino acids are highly correlated with each other and thus could be predominantly involved in metabolic
changes due to LN conditions (Figure 5A ). However, under HP maternal condition, in addition to the
amino acids such as alanine, glycine, serine and threonine, some of the TCA cycle intermediates including
malate, fumarate and succinate are also highly connected (Figure 5B ). In both environments we observed
strong correlation between metabolites within the same category such as amino acids. Such a consistent
correlation observed in both environments suggested that these metabolites are mainly under genetic control
and not much influenced by the environment or GxE interactions. In our results under HP conditions
glycine showed a strong correlation with malate (one of the TCA cycle intermediates, R = 0.6, FDR =
0.00021) while we could not find it back in the LN network. Such different network topologies indicate a
strong environmental effect on the correlation between these metabolites. These examples show that the
correlation networks and the differences amongst them may provide imperative information to understand
the molecular basis of metabolic changes (Schauer et al. 2006).

Correlation of metabolites within the whole RIL population

Spearman correlation analysis was performed and a correlation matrix was generated between all pairs of
known metabolites across the whole RIL population. The results revealed that some metabolites are highly
correlated with each other (Figure 6 ). Except a few exceptions, all amino acids cluster together. They
showed a high degree of correlation of mostly greater than 0.5 with p -values of less than 0.001 (Table S7 ).
Such a high positive significant correlation could be an indication of a preserved metabolism of amino acids
in seeds. It has previously been reported that the metabolism of amino acids in seeds might be regulated by
post-transcriptional regulators in order to regulate the distribution of nitrogen (Kazmi et al.2017; Toubiana



et al. 2012). We also observed a high number of significant correlations between amino acids and TCA cycle
intermediates such as citrate, malate, fumarate and succinate. Such a correlation between amino acids as
a nitrogen (N) source and TCA intermediates as carbon (C) metabolites, indicates a maintained crosstalk
between N and C metabolism in the seeds (Figure 6, Table S7 ). A similar crosstalk has been previously
suggested for different species including Arabidopsis and tomato (Gutierrez et al. 2007; Kazmi et al. 2017;
Nunes-Nesi, Fernie & Stitt 2010; Stitt & Fernie 2003).

We have also detected significant correlation between galactinol and myo-inositol (R=0.53 and p -
value=1.06E-6) (Figure 6, Table S7 ). These metabolites are classified as sugar alcohols which have
been reported to be involved in responses of seeds to stressful environments, such as low temperature (He et
al. 2016).

Correlation between metabolites and seed phenotypic traits

In order to assess the relationship between metabolites and seed phenotypic traits, seed performance phe-
notypes which were previously assessed for the same seeds (Geshnizjani et al. 2020), were integrated into
the metabolic correlation matrix (Figure 7 ). We found many positive and negative correlations between
metabolites and phenotypic traits. The results revealed that seed size and weight are positively correlated
with most of the amino acids and TCA cycle intermediates such as succinate, citrate and malate (Figure 7,
Table S8 ). The strongest positive correlation was found between seed size and amino acids including pyrog-
lutamate, leucine and isoleucine (R[?]0.4, p -value<0.0001). Among all the seed germination traits maximum
germination percentage (Guax) showed the highest number of significant correlations with metabolites of
which most are negative. Gpax under osmotic stress (mannitol and NaCl) has a significant positive corre-
lation with 2-ketoglutarate which is one of the TCA cycle intermediates, involved in supplying the required
energy for seed germination (Table S8 ). Gy,ax under optimal and sub-optimal germination environments
showed strong negative correlation with many of the amino acids (such as pyroglutamate, GABA, methionine
and leucine), organic acids (glycerate and malonate) and TCA cycle intermediates (malate and succinate).

Amino acids, are the precursors of protein synthesis and also precursors of some TCA cycle intermediates
(e.g. citrate and succinate), serve as energy generation units for embryo growth as well as radicle protrusion
(Lehmann & Ratajczak 2008; Ratajczak et al. 1996; Rosental, Nonogaki & Fait 2014). Since energy and
proteins are two elements supporting germination, such a negative correlation between them and germination
of tomato seeds is not expected. However, our results are in accordance with several foregoing studies which
reported that accumulation of amino acids, such as methionine, lysine and GABA, may cause inhibition of
seed germination (Amir 2010; Angelovici et al. 2011). In some other reports, amino acids were considered as
one of the biological methods to control weeds since the external application of many amino acids decreased
the seed germination percentage for some species such as broomrape (Vurro et al. 2006; Wilson & Bell
1978). Such a negative effect of amino acids on seed germination could be related to accumulation of
certain amino acids in the seeds and subsequent reduction of some other metabolites such as TCA cycle
intermediates which may play vital roles in seed germination (Angeloviciet al. 2011; Rosental et al. 2016).
For example, the biosynthetic pathway of lysine uses pyruvate which is the central component of the TCA
cycle. Depletion of pyruvate from the TCA cycle will ultimately result in a decrease in the production of
TCA cycle intermediates. Hence, such a decrease in TCA cycle input results in declined levels of available
energy, which in turn negatively affects seed germination (Angelovici et al. 2011; Day et al. 1994; Shedlarski
& Gilvarg 1970). A strong negative correlation was found between Gpax in water and methionine content
of the seeds (R=0.42, p -value<0.001). Similar results have been found in different species such as lettuce
(Wilson & Bell 1978) and tomato (Rosental et al. 2016). Feedback inhibition of increased methionine on the
upstream enzymes activity such as cystathionine y-synthase (CGS) has been reported before (Chiba et al.
2003; Rosental et al. 2016). Hence high methionine content of seeds may limit the synthesis of sulfur-rich
proteins which subsequently results in the reduction of seed germination (Amir 2010). However, our findings
seem in contrast with a few other studies in which a high level of methionine did not lead to a decrease of
germination which indicated that methionine was not negatively correlated with germination (Amir, Han &
Ma 2012; Gallardo et al. 2002).



We also performed a correlation analysis between metabolites and seed phenotypic traits within each tomato
RIL sub-population and two correlation heatmaps were generated (Figure S3 ). In general, substantial
differences were not observed between the two maternal environments (HP and LN); however, correlations
appeared stronger within HP as compared to LN conditions and some correlations were specifically observed
in one of the environments. For example, the positive correlation observed between many amino acids and
seed size and weight were either lost at LN or were not as strong as what was observed at HP (Figure S3
). In addition, a limited number of metabolites (e.g. galactarate) showed a significant positive correlation
with most of the phenotypic traits in LN; however, the same metabolite showed a weak negative correlation
with the same seed phenotypic traits in HP (Figure S3 ). An association of germination percentage and
metabolic content of the dry seeds may raise the possibility to predict germination behaviour using the
metabolic signature of the dry seeds (Rosental, Nonogaki & Fait 2014).

mQTL profiling of the tomato RIL population

The calculation of the coefficient of variation (CV) showed that most of the metabolites possess a CV
value higher than 40%, which indicates that there is considerable variation within the RIL population for
the metabolite levels in the dry seeds (Figure 8, Table S9 ). In order to investigate if such a high
level of variability within metabolites could be explained by differences in alleles and genetic factors, a
metabolic quantitative trait locus (mQTL) analysis was performed with the obtained metabolite data. Each
metabolite is in general controlled by several pathways and regulators. Thus, as expected, we hardly identified
metabolites for which a single genetic locus significantly explained the metabolite levels.

In our study we performed mQTL analysis for each maternal environment to evaluate the genetic variation
within each sub-population. Furthermore we used the whole set of RILs to detect mQTLs explained by a
genetic component (G) and the genotype by environment interaction (GXE).

We identified mQTLs across all conditions (Table 3 ). Regarding the sub-populations 66 and 129 mQTLs
were detected for seeds from LN and HP environments, respectively. The heatmap of the LOD profiles and
characteristics of the mQTLs in each environment are presented inFigure S4 and Table S10 , respec-
tively. In both maternal environments several mQTLs were detected which were hardly detected for other
metabolites. For example, in the seeds developed under HP conditions a single strong QTL on chromosome
9 was detected, regulating asparagine. Another independent significant QTL was identified on the top of
chromosome 11 for phenylalanine under the same environmental conditions (Figure S4A, Table S10 ).
Detection of such specific mQTLs in our data reveals the tight and independent genetic regulation of meta-
bolite biosynthesis in seeds (Keurentjeset al. 2008). Under the same maternal condition some organic acids
such as benzoate, gluconate, glycerate and glycolate mapped to a similar position on chromosome 5 (Figure
S4A, Table S10 ). On chromosome 9, we detected mQTLs for TCA cycle intermediates including citrate
and malate which were co-locating with the one regulating F6P as one of the precursors of the TCA cycle.
There is also a QTL on the top of chromosome 1 affecting amino acids in seeds from the HP environment.
Despite the strong correlation that has been found between amino acids and TCA cycle intermediates in
seeds from HP conditions, no co-located QTLs were identified for them. This might be due to several smaller
QTLs regulating variation of the metabolites, each of them explaining a small part of the variation and
therefore not reaching the threshold LOD score. Regarding the seeds grown in the LN maternal environment
we found more than one QTL for some of the metabolites such as GABA, citrate and malate. The vital
role of these metabolites has been reported in relation with the alleviation of environmental stress effects
(Kaplanet al. 2004; Kinnersley & Turano 2000; Krasensky & Jonak 2012; Obata & Fernie 2012). For the LN
environment many of the amino acids have co-locating QTLs at the bottom of chromosome 4 and in the
middle of chromosome 5 (Figure S4B ). Such strong co-locating QTLs for amino acids was expected since
they showed a high connection in the correlation network of the LN environment (Figure 5A ). In general,
such co-localizing QTLs for metabolites suggest that, in addition to the single independent QTLs regulating
metabolite contents, some general regulatory loci and genes are involved in the regulation of metabolite
synthesis (Keurentjes et al. 2008).

Combining the sub-populations and using the whole set of RILs leads to an increase in the number of detected



QTLs with 382 and 146 QTLs for G and GXE effects, respectively. An overview of the detected QTLs is
provided by the heatmap of the LOD profiles (Figure 9 ). On the top and bottom of chromosome 4 there are
two QTLs that explain the variation for many amino acids such as aspartate, GABA, glutamine, methionine,
serine and threonine. Similarly, a co-located QTL was detected for galactarate and malate on chromosome
10 (Figure 9 ). Co-localization of these mQTLs is not surprising since galactarate is the precursor of 2-
oxoglutarate and 2-oxoglutarate is one of the intermediates of the TCA cycle and is generally converted to
malate in a couple of subsequent reactions. Our results show that myo-inositol and galactinol are highly
associated with each other and closely grouped together. Therefore, it is not surprising that they both have
a co-locating QTL on chromosome two (Figure 6, Figure 9 ). The robust correlation between raffinose
pathway metabolites including galactinol and myo-inositol has also been reported for seeds of other species
that developed under environmental stress (Cook et al.2004; He et al. 2016). These metabolites are known
for their protective role for cellular structures of embryos during seed development and desiccation (Taji
et al. 2002). Furthermore, they are able to play a key role in protecting plants from the effects of stress
resulting from reactive oxygen species (ElSayed, Rafudeen & Golldack 2014). Some of the organic acids
including gluconate, glycerate and glycolate, together with two of the TCA cycle intermediates (malate and
succinate), had a co-locating QTL on chromosome 9 (Figure 9 ). Glutamate and GABA showed a shared
QTL on chromosome 4 which has previously been detected in the same population developed under standard
conditions (Kazmi et al. 2017). Metabolites belonging to the same functional class are often highly correlated
and can have co-locating mQTLs (Kazmi et al. 2017). Although several mQTLs were detected at similar
positions, in general more co-located mQTLs would be expected due to the strong correlation that has been
observed between the metabolites. This could be related to the fact that several small QTLs are involved in
regulation of the metabolites and each of them is explaining only a small part of their variation. Such small
QTLs are likely to escape the QTL significant threshold in the QTL analysis (Keurentjes et al. 2008).

A few mQTLs co-located with the phenotypic QTLs that have been detected in a previous study (Geshnizjani
et al. 2020). For instance, the QTLs on the middle of chromosome 10 affecting galactarate and malate co-
located with ones influencing uniformity of germination (Ugy16) at different germination conditions, such as
high temperature, mannitol, water and NaCl. In addition, the QTL on chromosome 9, which is specifically
regulating methionine, is located at the same position as QTLs affecting seed size, seed weight and fresh and
dry weight of the seedlings. Despite the many strong correlations between metabolites and phenotypic traits
(Figure 9 ), we could hardly detect co-locating QTLs for them. This might be due to the fact that each of
the phenotypes may not be correlated with a specific metabolite but with a group of metabolites and thus
the final metabolic balance between the groups of metabolites could affect phenotypic traits such as Guax.

Conclusion

In this study we performed GC-TOF-MS metabolite profiling of a tomato RIL population and their parental
lines grown in high phosphate and low nitrate environments. Our results show clear genetic variation at the
metabolite level between the two parental lines, where the maternal nutritional environment was also intro-
ducing variation within each genotype. Elucidation of genetic and molecular aspects of metabolic changes
of seeds as a response to different maternal environments was carried out by using metabolite correlation
networks, followed by mQTL analysis. In general the HP environment induced more metabolic changes as
compared to the LN environment. Correlation of metabolites within the whole RIL population revealed a
crosstalk between N and C metabolism in which significant correlations were observed between amino acids
and TCA cycle intermediates. Besides mQTLs detected in the individual environments and the genetic ef-
fects, many mQTLs were detected for GXE. In spite of the strong correlations found between metabolites
and phenotypic traits, the detected mQTLs were hardly co-located with the ones affecting phenotypic traits.
This might be caused by the fact that not a single metabolite, but a group of metabolites together influ-
ence the phenotype. This study has provided novel insights towards better understanding of the effect of
maternal environment on tomato seed and seedling performance by combining various physiological, omics
and genetical analyses. In addition to the new insights that have been provided in this study, more in-depth
investigations are needed to further elucidate the regulation of the dry seed metabolome under different
nutritional environments and its influence on seed and seedling performance.
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Table 1. Name, category, p.value and Logs ratio (HP:LN) of the metabolites in the RILs that significantly changed betwee

Metabolite
Sorbitol
Galactarate
Glycolate
Glycerate
Erythronic acid
Phosphoric acid
Malate
Fructose-6-phospate
Salycilate
Succinate
Ethanolamine
Guanosine
Malonate
Pyroglutamate
Gluconte
Palmitic acid
GABA

Urea

Glutamate
Benzoate
Galactinol
Glycine
Aspartate
Leucine
Glycerol-6-phosphate
2ketoglutaric acid
Fumaric acid
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Table 1. Name, category, p.value and Logs ratio (HP:LN) of the metabolites in the RILs that significantly changed betwee

Citrate

Serine

Trehalose

Phenylalanine

Mannitol

Quinate

Maltose

Threonate

Alanine

“p.value shows the significance level of the metabolite changes by ANOVA analysis between the two maternal environments

Table 2. Properties of the networks constructed from HP and LN seed metabolite levels. Table 2. Properties of the net

Attributes High Phosphate
Number of nodes 56

Total number of edges 395

Number of positive edges 379

Number of negative edges 16

Range of node degree 1-28

Average number of neighbours 14.11

Network density 0.256

Table 3. Number of QTLs identified in each sub-population and for the genetic and genotypei x environment component, -

Condition

High phosphate (HP)

Low nitrate (LN)

Genetic (G)

Genetic by environment interaction (G XE)

Figure 1. Principal component analysis (PCA) of annotated metabolites in the two parental lines grown in
two different nutritional environments. MM, Solanum lycopersicum (cv. Moneymaker) shown as triangles;
PI, Solanum pimpinellifolium shown as circles; HP, High phosphate shown in red; LN, Low nitrate shown
in green.

Figure 2. A, Principal component analysis (PCA) of known metabolites of dry seeds of RILs grown in
HP, High phosphate (green circles) and LN, Low nitrate (red circles) conditions. B, Loading scores of
metabolites for PC1 and PC2.A A, amino acids (red triangles); OA, Organic acids (yellow triangles); SA,
Sugar alcohols (green triangles);Others, Other components (Blue triangle).

Figure 3. Fold change of the metabolites in two nutritional maternal environments. HP | High phosphate
and LN | Low nitrate. AA , Amino acids; OA , Organic acids;SA , Sugar alcohols.

Figure 4. Metabolite profiles in dry tomato seeds. The comparison of metabolite content of the 100 tomato
RILs grown in two nutritional maternal environments, HP , High phosphate andLIN , Low nitrate.

Figure 5. Correlation networks of known metabolites for each maternal environment. A |, Low nitrate; B
, High phosphate. The colours of the nodes represent the metabolites category.AA , Amino acids; OA ,
Organic acids; SA , Sugar alcohols. The Blue and Red colour of the edges (lines) indicate positive and
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negative correlations, respectively. The size of the nodes correlates with the number of connections within
the network (the degree).

Figure 6. Spearman correlation matrix of all pairs of known metabolites across the whole RIL population
derived from S. lycopersicum cv. Moneymaker and S. pimpinellifolium .

Figure 7. Correlation matrix of metabolites with phenotypic traits within the whole RIL population derived
from S. lycopersicum cv. Moneymaker and S. pimpinellifolium .

Figure 8. Distribution of metabolite variation within the genotypes for each nutritional maternal environ-
ment with high phosphate(HP) in black and low nitrogen (LN) in grey.

Figure 9. Heatmap of LOD profiles of the mQTLs detected for G and GxE. A, Heatmap representing the
positions of the mQTLs explained by the genetic component (G); B, Heatmap indicating the position of
the mQTLs affected by genotype by environment interactions (GXE). The 12 chromosomes of tomato are
separated by dashed lines. Coloured spots indicating the significant QTLs. The blue and yellow colours show
loci where the S. pimpinellifolium and theS.. lycopersicum alleles enhance the metabolite levels, respectively.
Metabolites and their categories are shown at the right side of the panels.
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