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Abstract

Background Asthma in children is a heterogeneous disease manifested by various phenotypes and endotypes. The level of disease
control as well as the effectiveness of anti-inflammatory treatment is variable and inadequate in a significant portion of patients.
Objectives By applying machine learning algorithms, we aimed to predict treatment success in a pediatric asthma cohort and
to identify key variables for understanding underlying mechanisms. Methods We predicted treatment outcomes in children with
mild to severe asthma (N=365), according to changes in asthma control, lung function (FEV1, MEF50) and FENO values after
6 months of controller medication use, using RandomForest and AdaBoost classifiers. Results The highest prediction power is
achieved for control- and, to lower extend, for FENO-related treatment outcomes. The most predictive variables for asthma
control are related to asthma severity and total IgE, which was also predictive for FENO-based outcomes. MEF50-related
treatment outcomes were better predicted than FEV1-based response and one of the best predictive variables for this response
was hsCRP. Conclusions Our results suggest that asthma control- and FENO-based outcomes can be more accurately predicted
using machine learning than FEV1 and MEF50. This supports the symptom control-based asthma management approach and
its complementary FENO-guided tool in children. T2-high asthma seemed to respond best to anti-inflammatory treatment. The
prediction of MEF50-based treatment outcomes emphasizes the role of the distal airways in childhood asthma. The results of
this study in predicting treatment success will help to enable treatment optimization and to implement the concept of precision
medicine in pediatric asthma treatment.
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Abstract

Background Asthma in children is a heterogeneous disease manifested by various phenotypes and endo-
types. The level of disease control as well as the effectiveness of anti-inflammatory treatment is variable and
inadequate in a significant portion of patients.

Objectives By applying machine learning algorithms, we aimed to predict treatment success in a pediatric
asthma cohort and to identify key variables for understanding underlying mechanisms.

Methods We predicted treatment outcomes in children with mild to severe asthma (N=365), according to
changes in asthma control, lung function (FEV1, MEF50) and FENO values after 6 months of controller
medication use, using RandomForest and AdaBoost classifiers.

Results The highest prediction power is achieved for control- and, to lower extend, for FENO-related
treatment outcomes. The most predictive variables for asthma control are related to asthma severity and
total IgE, which was also predictive for FENO-based outcomes. MEF50-related treatment outcomes were
better predicted than FEV1-based response and one of the best predictive variables for this response was
hsCRP.

Conclusions Our results suggest that asthma control- and FENO-based outcomes can be more accurately
predicted using machine learning than FEV1 and MEF50. This supports the symptom control-based asthma
management approach and its complementary FENO-guided tool in children. T2-high asthma seemed to
respond best to anti-inflammatory treatment. The prediction of MEF50-based treatment outcomes empha-
sizes the role of the distal airways in childhood asthma. The results of this study in predicting treatment
success will help to enable treatment optimization and to implement the concept of precision medicine in
pediatric asthma treatment.

Keywords: asthma control, asthma controller medication, childhood asthma, machine learning, treatment
outcome

Introduction

The aim of personalized medicine is to provide a target therapy for each individual or phenotype, based on
the corresponding syndrome or disease1. Even though machine learning techniques have identified a number
of structures and/or phenotypes in asthma, one has to be careful in clinical interpretation of these structures,
as they may not represent true endotypes (underlying immunopathological mechanisms)2. Overlaps in endo-
types as well as clinical presentation of the disease make the delivery of personalized asthma treatment quite
elusive3,4. Furthermore, the same pattern of symptoms does not necessarily indicate the same underlying
mechanism and moreover, different mechanisms are not mutually exclusive and may even act synergistically.

The emergence of advanced machine learning algorithms, abundance of clinically significant data and com-
puting power can be attributed as key enablers in the development of personalized medicine. There is a
substantial body of scientific work on data-driven methods in asthma phenotyping and the variables as well
as the model chosen can largely affect the models and obtained results5-11. Careful selection of both the
predictive model and the dataset are essential in such studies, with expert clinical interpretation being of
utmost importance.

In childhood asthma, inhaled corticosteroids- ICS (in combination with long-acting beta-agonists, LABA
and/or add-on leukotriene receptor antagonists, LTRA) remain controller medications of choice, although
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evidence shows that a significant proportion of patients fail to respond adequately to such treatment.5–8The
complexity of the disease, or better said, the “umbrella” diagnosis of asthma that encompasses a number
of different phenotypes underpinned by different pathophysiological mechanisms or distinct inflammatory
pathways (endotypes) seems to be the major obstacle in asthma management as well as in the development
of personalized treatment approaches9.

An important study on prediction was conducted by Belgrave et al.10, focusing on preschool wheezers
(N=150) with a large dataset (N(variables)=636) using selected state-of-the-art techniques for data process-
ing and machine learning and obtained 90%+ performance in Kappa statistics. The authors also reported
robustness and performance quality when using Random Forest and that subjective variables are important
in distinguishing ill patients from controls.

A key study focusing on asthma control-based response to controller medication was conducted in the Child-
hood Asthma Management Program (CAMP) cohort using novel machine learning algorithms11. They re-
ported that asthma control, bronchodilator response and serum eosinophils were the most predictive features
of asthma control, regardless of the medication used.

Our aim and contribution

In this work we present the data and results from an observational childhood asthma study in an ethnically
homogeneous, age diverse cohort, reflecting real-life clinical situations with the majority of patients having
mild to moderate disease. The primary aim was to test the predictive possibilities for treatment success
in pediatric asthma patients and reveal key variables for understanding the mechanisms underlying such
response. The primary endpoints were four different parameters of response to treatment, assessed by
changes in lung function i) Forced expiratory volume in one second (FEV1) and ii) Maximal Expiratory Flow
at 50% of Vital Flow Capacity (MEF50), iii) changes in airway inflammation- Fractional Exhaled nitric oxide
(FENO) and iv) the level of asthma control assessed by a pediatric pulmonologist. Each of these targets
was evaluated at baseline and after 6 months of treatment use alongside other parameters and biomarkers.
The predictive possibilities were tested using the Random Forest (RF) and Adaptive Boosting (AdaBoost)
machine learning algorithms. Since these algorithms are considered to be black-boxes, we introduced model
explainability by the use of variable importance for evaluating the most important variables for differentiating
between responders and non-responders. Furthermore, we discuss the use of different classification metrics
for the validation of the results.

Methods

Population studied

365 pediatric patients (355 children aged 2-17 and ten adolescents aged 18-22 ) with atopic and non-atopic,
mild to severe persistent asthma12, were recruited in a prospective, non-interventional type of clinical study
at the Srebrnjak Children’s Hospital outpatient clinic. Informed consent was obtained from the children’s
parents/legal guardians. The study protocol was approved by the local Ethics Committee. All patients
underwent physical examination, anthropometric measurements and standard diagnostic procedures to es-
tablish a diagnosis of asthma and guide its management (Table 1). The patients started treatment with ICS
(alone or in combination with LABA) and/or LTRA, according to disease severity and previously assessed
level of disease control. A follow-up visit with lung function and airway inflammation testing was made after
6 months of treatment use. Additionally, treatment outcomes and the level of asthma control (according
to the Global Initiative for Asthma, GINA12) were assessed at the follow-up visit. In total 280 features
(variables) were collected. The observational study is described in the supplementary file in detail.
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Response variables

According to their response to treatment after 6 months of medication use, the patients were divided into
“responders” and “non-responders” in accordance with the Minimal Clinically Important Difference (MCID)
for lung function adjusted for children (% of predicted lung function) and data from other studies taking into
account changes in the level of asthma control (LOAC) and changes in FENO13–17. The response variables
are described in detail in Table 2.

Data preparation and balancing

We used Python scripts and methods previously described for data processing and modelling18. Variables
with more than 10% missing values were removed. Those with fewer missing values were imputed by
their respective median for continuous variables or mode for discrete variables. To avoid the “curse of
dimensionality”19, we aggregated individual variables describing allergic sensitization (skin prick test- SPT
and allergen-specific immunoglobulin E- sIgE test results). These variables were binarized and summed
into 4 categories: seasonal inhaled, perennial inhaled, insect venom and food allergens. Strong sensitization
to house dust mite, cat dander and ragweed were treated separately due to their association with disease
severity and more severe outcomes20,21. The dataset consisted of 365 patients and 73 variables. We dealt
with an imbalanced classification problem (see Table 3), i.e. responders (1) or non-responders (0) could have
been underrepresented. In imbalanced classification predictive models tend to recognize the major class
better while struggling with the often scarce minor class, meaning that predictions may be biased towards
the major class18,22. To avoid this, we employed synthetic data generation techniques, namely oversampling
and under sampling (on the training set exclusively).

A powerful method for oversampling is Synthetic Minority Over-sampling Technique (SMOTE)23, that has
previously been reported for predicting lung disease outcomes10. Since our dataset was heterogeneous,
we used the adapted algorithm, Synthetic Minority Over-sampling Technique for Nominal and Continuous
(SMOTENC)23. We utilized Cluster Centroids (CC)24,25 as the most promising under sampling approach.

Machine learning

Our aim was to estimate to which class a patient belongs (0/1) after treatment based on predictive variables
and to predict the patients’ future responses. The employed ensemble classification algorithms follow a
paradigm where multiple “weak classifiers” are trained and averaged to improve the prediction abilities and
lower the prediction error.

The basis for ensemble classifiers are decision trees (Figure 1, left)26. With the appearance of boosting27 and
bootstrapping strategies26 combined predictors started to emerge. Boosting algorithms28 are often utilized in
industry18 and personalized medicine29. RF (Figure 1, right) has shown good results in predicting pediatric
asthma outcomes10. Except for their excellent performance, decision-tree-based classifiers do not require
tedious data preparation and are convenient for working with heterogeneous data. We used two types of
classifiers in our research: the AdaBoost and RF classifier. The data was split22 into train (75%) and test
(validation) sets (25%). The experimental matrix is described in Table 4.

For model explanation we used permutation importance (PI) which we used in our prior work30. It follows
the rationale that a random permutation of a predictor variable values as well as the difference in the
classification metrics before and after permuting a predictor variable are used as an importance measure31.
This procedure is even more relevant when considering that bootstrapping (resampling with replacement)
is used in ensemble classifiers, e.g. not all variables will appear in each tree. This adds up in revealing true
predictors in the models and can be also used for feature selection in machine learning models32. Due to
imbalance in the targets we stratified the minor class in a train and test set. The model quality metrics used
in this work were Accuracy, Sensitivity, Specificity and the Matthews correlations coefficient (MCC).33,34 A
detailed description of these metrics is given in the supplementary data.
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Results and discussion

Performance in prediction of treatment outcomes

Table 5 presents the best achieved classification results for each particular treatment outcome. The highest
prediction accuracy is achieved for LOAC. This is due to a high number of correctly predicted outcomes for
responders (indicated by specificity) and non-responders (indicated by sensitivity), as well as a high MCC.
Although this trait is less objective than lung function and FENO as it encompasses symptom self-assessment,
it reflects real-life treatment success best. This is in concordance with the control-based management ap-
proach, focusing on achieving adequate control of symptoms and minimizing future risks of exacerbations12.

When predicting response according to FEV1, FENO and MEF50, an average accuracy between 65% and
70% was achieved. This suggests that lung function is not a preferred tool to be used to guide treatment
in children with asthma, which is highlighted in current GINA guidelines. Lung function is a complex trait
and reflects a number of structural and functional changes to the airways due to chronic inflammation.
It does not correlate with symptom occurrence or severity well, especially in children, as certain patients
with poor lung function may not exhibit severe symptoms and vice versa, certain patients with normal
lung function may experience symptom aggravation35,36. Moreover, children with mild-to-moderate asthma
using controller treatment exhibit a slower decline in lung function in comparison with deterioration of
symptom control37, which is probably why the model predicts these traits poorly, given the fact that most
of the patients in our study had milder disease forms. Compared to lung function-based treatment outcomes
predicting outcomes assessed by changes in FENO performed better as it showed a slightly higher accuracy
and much better sensitivity (good prediction performance for responders), see Table 5. This suggests that
FENO can be used as a predictor of steroid responsiveness even more consistently than other parameters,
e.g. lung function16,38. FENO is a good biomarker of Th2- related allergic inflammatory response, as
interleukin-13 promotes nitric oxide (NO)- synthase activity and NO production39. Moreover, the latest
GINA guidelines12 suggest that treatment guided by FENO in children and young adults is associated with
a significant reduction in exacerbation rates and that it may be a good complementary approach compatible
with control-based asthma management. Additionally, since FENO-based response was able to distinguish
true responders quite well, it may be useful in identifying patients with ineffective or suboptimal treatment-
those that require treatment adjustment12and those with poor adherence to treatment40.

However, for treatment outcomes according to lung function and FENO, a much lower MCC (21%-26%) was
achieved when compared to LOAC. This suggests that the model generates a significant proportion of false
responders and non-responders for lung function- and FENO-based outcomes, which further supports the
control-guided asthma management approach as a preferred option in guiding asthma treatment in children.
Additional results by means of Receiver Operating Characteristic (ROC) curves41 and confusion matrices
are presented in the supplementary Figure s1.

Differences in the utilized classification algorithms and sampling method

We utilized two different classification methods and three sampling techniques. Figure 2 shows the distri-
bution of MCC across sampling methods and classifiers. AdaBoost was the better performing classifier for
LOAC, FEV1, FENO, except of MEF50 where RF outperformed marginally. This is of no surprise since
boosting algorithms generally show good performance with imbalanced sets42. Overall, not sampling the
data has in our case led to the best prediction results in combination with AdaBoost. Using oversampling
resulted in a better MCC only for MEF50, which could indicate that when designing experiments like these
one has to take care of non-uniform feature spaces for the rare or minor classes like responders here42. Even
though the differences are marginal, in medicine even the slightest improvement may be important. These
results can be explained by the advantage of AdaBoost which learns sequentially on misclassification from
previous weak learners in the sequence and while over/under sampling improves the results for RF, it is not
the case with AdaBoost. Additionally, since RF is trained in parallel, it is much faster in practice, hence for
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training fast and large data sets RF with oversampling could be used.

Model interpretation

For each target modeled in the experimental matrix, we calculated the average PI for predictive variables
(Table 6). The only predictive variable passing the 1% threshold for the classification of LOAC-based
outcomes is “asthma severity”, highlighting the importance of an expert assessment in asthma management
from the start as well as the impact of asthma heterogeneity and its phenotypes on treatment success.
Additionally, since both asthma control and severity encompass the patient‘s (caregiver‘s) self-estimation
on symptom frequency and severity, these findings emphasize the importance of the patient‘s involvement
in the management plan, an essential part of the ”shared-care approach” in asthma management associated
with improved outcomes12.

Additionally, LOAC appears to be associated with the least complexity in regard to prediction, with only one
important predictor, in spite of its great power of prediction (Table 6). For this reason, we submitted this
subset and the target LOAC to a decision tree classifier (Figure 1, left) to follow the decisions of the complex
classifiers which consist of many such weak classifiers, see Figure 3. This exemplary decision tree (only a sub-
part of an ensemble classifier) shows that children with milder forms of the disease respond well to treatment
with ICS as well as that severe patients do not respond to treatment adequately, even though their treatment
was adjusted according to disease severity, i.e. severe patients at baseline remain uncontrolled after 6 months
of medication use. This suggests that the model is capable of identifying severe patients quite accurately, but
the shortfall is that it does not inform about the potential mechanisms underlying treatment failure. Also,
it seems that prominent markers of atopy (total IgE) are highly predictive of treatment success. The vast
majority of childhood asthma patients have allergic asthma and a number of studies have shown that it is
sensitive to treatment with ICS. More specifically, T helper 2 lymphocyte, T2-high endotypes respond best
to ICS. It also seems that very high total IgE values are predictive of treatment failure (Figure 3), which is
in consistency with previous findings that high serum IgE is observed in children with severe asthma.43–45

Overall, the PI for any of the targets did not include any available treatment variables, meaning the models
did not use treatment variables in creating decisions on treatment outcomes. Even though treatment follows
guidelines, these are not definite nor objective sensu stricto . Guidelines actually provide general choice
recommendations and the physician is left to choose between several treatment options. Although this may
represent a potential bias in identifying true responders vs. non-responders, it actually reflects the model‘s
power of prediction and favors the current symptom control-guided asthma management approach.

Although FENO had a substantially lower accuracy and MCC than LOAC, treatment outcomes according to
FENO changes was capable of identifying true responders quite well, indicating that FENO-guided treatment
may be a complementary tool in guiding asthma management in children. PI revealed that predicting FENO
is more complex in comparison to LOAC (Table 6). This may be due to the fact that FENO reflects the level
and type of airway inflammation that drives the chronicity of the disease. Elevated IgE and sensitization
to inhaled allergens are common markers of T2-high inflammation43 which is known to respond better to
anti-inflammatory treatment.

When comparing MEF50 and FEV1 to each other, MEF50-based outcomes were predicted by FEV1 to a
lesser extent than FEV1-based outcomes by MEF50. Additionally, MEF50-based outcomes were also pre-
dicted by hsCRP (Table 6) which is a marker of subtly elevated systemic inflammation in asthma. Evidence
shows that increased hsCRP is associated with more severe asthma outcomes46. This, in addition to the fact
that the model predicting MEF50-related response performed better in almost all parameters (except speci-
ficity) compared to FEV1-related response (see Table 5) and the fact that oversampling further improved
the models power in predicting true responders and non-responders (see Figure 2) for MEF50, highlights
the importance of the distal airways in children with asthma47. The peripheral airways are the predominant
site of airway inflammation48 and may very well be a predominant site of airflow obstruction in asthmatic
children, involved in the pathophysiology and resistance to treatment with ICS49. Moreover, distal airways
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impairment may be present despite rare and mild asthma symptoms and normal FEV1 in pediatric patients.

Our results are in concordance with those of Ross et al.11 who also identified asthma control as the strongest
predictive variable for LOAC. These authors only focused on one type of ICS (budesonide) and chromones
(nedocromil), while our study encompassed all commonly used classes of anti-inflammatory controller med-
ication (ICS, LABA and LTRA). Ross et al.11 only evaluated response to treatment according to symptom
control, while our study involved lung function- and FENO-based treatment outcomes. Although the homo-
geneity of the population studied (a real-life situation with most of the children having allergic asthma and
milder disease forms) could have been an advantage in identifying certain phenotypes and genetic traits asso-
ciated with treatment outcomes, this was a disadvantage in identifying clear pathophysiological mechanisms
involved. Moreover, the sample size in our study might have been small (N= 365 vs. N= 1019 in Ross et al.),
possibly further hindering more detailed endotype characterization. Ross et al. identified serum eosinophils
as one of the most predictive variables for asthma control, while we identified IgE, supporting previous
findings that children with T2-high allergic asthma responds best to anti-inflammatory treatment.50 Finally,
even though GINA guidelines suggest treatment response review every 3-6 months, the assessment period
in this study may have been too short to reflect biologically significant and measurable effects, especially on
complex traits such as lung function changes in response to treatment.

Conclusion

Our goal was to evaluate the prediction of treatment outcomes in childhood asthma after six months of
medication use based on initial assessment. Our results show that asthma control (LOAC) was well predicted,
while the prediction quality of lung function- based treatment outcomes (FEV1, MEF50) was rather low.
These results are in concordance with the GINA control-based management approach, while lung function
may not be the tool of choice to be used in guiding treatment in children with asthma21. The prediction
model for FENO-based treatment response performed better in almost all aspects than lung function-related
outcomes, which suggests that treatment success guided by changes in FENO might be a complementary
tool in childhood asthma management21.

Our results also suggest that the current guidelines in asthma management and current expertise in clinical
assessment (assessment of severity and disease control) are satisfactory in most cases. Additionally, since
total IgE was one of the best predictive variables for FENO-based outcomes, this indicates that T2-high
asthma subtypes in children respond best to common controller medication. Although machine learning
has shown how treatment outcome prediction can be driven, it has revealed certain issues that need to be
addressed in future studies:

• In respect with asthma chronicity the assessment period of 6 months may not be enough for valid
predictions. Longitudinal and prospective studies are essential;

• Additional studies involving larger numbers of patients with even more clinically relevant parameters
are required to increase the success of treatment outcome prediction and in further characterization of
specific disease phenotypes and endotypes.

Recently, much focus has been given to the implementation of precision medicine in asthma, and experts
emphasize that the time for action is now. The use of big data and machine learning in predicting treatment
success such as the one in this study might enable treatment optimization and the development of new
therapies for each defined endotype.
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subjective clinical data at baseline- personal and family medical history-
atopy status, allergic rhinitis (AR), atopic
dermatitis (AD), food allergy and other
comorbidities

objective clinical data at baseline and after 6 months - symptom control,
frequency and severity of exacerbations in the
period since the last visit, lung function (FVC,
FEV1, MEF50), airway inflammation (FENO)
measurement and medication use; at baseline - skin
prick (SPT) and total and specific IgE to inhaled
allergens, blood eosinophils and neutrophils,
anthropometric measures (height, weight, body
mass index ) and for certain patients with
suggestive history for comorbidities -ENT
examination, pH probing with impedance for
diagnostics of laryngopharyngeal reflux and
gastroesophageal reflux disease, polysomnography
for diagnostics of obstructive sleep apnoea
syndrome, SPT and specific IgE to food and insect
venom allergens for diagnostics of food/insect
venom allergy

genetic data genotypes for rs37973 (GLCCI1 ), rs9910408
(TBX21 ), rs242941 (CRHR1 ), rs1876828
(CRHR1 ), rs1042713 (ADRB2 ) and rs17576
(MMP9 )

Table 2. Patient stratification according to their response to treatment (target variables). Response to
treatment is defined into more detail in the supplementary file. ppb- parts per billion.

FEV1 MEF50 FENO Asthma control
Responders Increase[?]10% predicted Increase[?]15% predicted Decrease <20% for values >35 (50) ppb or <10 ppb for values <35 (50) ppb Improvement in asthma control
Non-responders Change<10% predicted Change<15% predicted Decrease [?]20% FENO [?]20% for values over 35 (50) ppb or ±10 ppb for values <35 (50) ppb or increase >20% for values >35 (50) ppb or >10 ppb for values <35 (50) ppb No changes in partial asthma control or deterioration in asthma control

Table 3. Distribution of responding and non-responding patients per measured outcome after 6 months of
treatment. The 13 missing FENO response values were imputed.

Treatment outcome after 6 months of therapy Responders (1) Non-responders (0)
LOAC 230 135
FENO 248 104
FEV1 129 236
MEF50 126 239

Table 4. The experimental matrix consists of training two different classifiers x three sampling methods x
four targets, meaning there 24 options (2x3x4), each resampled 100x train-test splitting (giving a total of
600 models trained per target).

Classification algorithm Sampling methods Targets after six months of treatment use
AdaBoost No sampling (base) MEF50
Random Forest Under sampling (cluster centroids) FEV1
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Oversampling FENO
LOAC

Table 5. Average classification results for the treatment targets FEV1, FENO, MEF50 and LOAC. The
results are reported for the best performing model (classifier and sampling method) and are calculated by
the mean of accuracy, specificity, sensitivity and the MCC.

Metric Treatment Outcome Treatment Outcome Treatment Outcome Treatment Outcome
FEV1 FENO MEF50 LOAC

Accuracy 0.6503 0.7005 0.6753 0.9698
Specificity 0.8986 0.8531 0.8817 0.9661
Sensitivity 0.7854 0.9560 0.7855 0.9781
MCC 0.2190 0.2146 0.2608 0.9366

Table 6. Top important variables for each of the targets. The variables were aggregated by the median
value of permutation importance per target (600 runs each). The permutation importance is divided by the
respective MCC value from Table 5 and calculated as % of weight respective to the MCC i.e. contribution
to MCC. For each target only several variables returned an aggregated median above 1%. hsCRP- high-
sensitivity C-reactive protein.

Variable LOAC FENO FEV1 MEF50
Seasonal allergens (SPT) 1.1%
Asthma severity baseline 47.0%
hsCRP 1.2%
IgE total 1.5% 3.2%
FENO baseline 12.8%
FEV1 baseline 14.8% 1.8%
MEF50 baseline 8.2% 30.3%

Figure 1. Left: Typical (weak) tree classifier. A group of patients with both responders and non-responders
is to be separated based on given predictive variables. The first split happens with a variable which gives the
best split for the two groups. The algorithms split the groups until it gets leaf nodes (tree bottom) as pure as
possible for the aimed classes. Right: Simplified scheme of the random forest algorithm. The trees represent
weak classifiers which are aggregated via voting to form a strong one. Every tree trains on a random part of
the training data (bootstrapping). The AdaBoost classifier trains the trees sequentially instead of parallel.

Figure 2. Boxplot of the classification results by means of the MCC (x-axis). The comparison includes
classification results for the four targets (FEV1, LOAC, FENO, MEF50), two classification algorithms (AB
– Ada Boost) and two sampling methods (Oversampling- OS and Cluster Centroids- CC) compared to
no-sampling (base). The best models assigned per target by a red square surrounding the box.

Figure 3. An exemplary decision tree classifier where the treatment outcome LOAC after six months was
predicted by three predictive variables (LOAC baseline, Asthma severity baseline, IGE_total). The respon-
ders are assigned as R-LOAC, while the non-responders are assigned as NR-LOAC. Asthma severity baseline
is the first split. Most of the responders will respond well to treatment if their Asthma severity was estimated
to have a value of 1. In an ensemble classifier a few hundreds of these are trained on bootstrapped samples
and averaged for prediction which is explained in Figure 1. Ass_asthma_sev_basline- asthma severity (ac-
cording to GINA) grade assessed at baseline, ass_asthma_ctrl_basline- asthma control assessed at baseline,
biom_ige_total- total serum IgE.
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Decision Tree 1 Decision Tree 2 Decision Tree n

CLASS 0 CLASS 0 CLASS 1

Majority-Voting

Final-Class  | CLASS 0

...

PATIENT

Random Forest Classification

CLASS 0 - non-responders
CLASS 1 - responders

Root

Decision nodes

Leaf nodes

 

Pure leaf
nodes

Decision True Decision False

Responders

Non-responders

Split data on most important variable

Decision Tree Classification
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ass_asthma_sev_baseline <= 1.5
samples = 365

value = [135, 230]
class = R - LOAC

samples = 222
value = [4, 218]

class = R - LOAC

True

ass_asthma_ctrl_baseline <= 2.5
samples = 143

value = [131, 12]
class = NR - LOAC

False

samples = 122
value = [122, 0]

class = NR - LOAC

ass_asthma_sev_baseline <= 2.5
samples = 21
value = [9, 12]

class = R - LOAC

biom_ige_total <= 1621.0
samples = 13
value = [1, 12]

class = R - LOAC

samples = 8
value = [8, 0]

class = NR - LOAC

samples = 11
value = [0, 11]

class = R - LOAC

biom_ige_total <= 1811.5
samples = 2
value = [1, 1]

class = NR - LOAC

samples = 1
value = [1, 0]

class = NR - LOAC

samples = 1
value = [0, 1]

class = R - LOAC
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