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Abstract

Extracellular adenosine triphosphate (eATP) mediates pro-inflammatory responses by recruiting and activating inflammatory

cells. eATP is hydrolyzed by CD39 to adenosine monophosphate (AMP), which is converted to the immunosuppressive nucleoside

adenosine (ADO) by CD73. CD39 is the rate-limiting enzyme in this cascade and can be viewed as an immunological switch that

shifts ATP-driven pro-inflammatory immune cell activity to an anti-inflammatory state mediated by ADO. CD39 is expressed

by a broad range of immune cells and can be influenced by genetic and environmental factors. Accumulating evidence suggests

that CD39 is involved in several pathophysiological events, such as inflammatory bowel diseases, sepsis, ischemia-reperfusion

injury, allergic diseases, systemic lupus erythematosus, diabetes, and cancer. Here, we focus on the current understanding of

CD39 in immunity, and presents a comprehensive picture of the multiple roles of CD39 in a variety of disorders.

Keywords: CD39, Inflammation, Cancer

ATP and ADO signaling

Extracellular ATP (eATP) plays an important role in regulating inflammation and immune responses; it
is rapidly released through exocytosis during stress, cell injury, and death[1]. The effects of eATP are
mediated by P2 cell-surface receptors (P2R), which include trans-cell membrane cationic channels (P2XR)
and G-protein coupled receptors (P2YR)[2, 3]. There are 7 P2XR and 8 P2YR, which are expressed in
almost all mammalian cells [4]. In addition to its metabolic functions, eATP is an important extracellular
signal molecule that triggers and regulates a variety of inflammation-related processes. ATP is involved
in the chemotaxis of inflammatory cells [5, 6], production of oxygen free radicals by neutrophils [7] and
production of cytokines by inflammatory cells [8]. CD39 is an enzyme that hydrolyzes eATP into adenosine
monophosphate (AMP), and AMP is further converted by CD73 into nucleoside adenosine (ADO). Although
the production of AMP is thought to be mainly mediated by CD39, AMP is also obtained through the
transformation of NAD+ by CD38 and CD203a [9-12]. The accumulated extracellular ADO performs its
regulatory functions by binding to one of four ADO receptors: A1R, A2AR, A2BR, and A3R [13, 14]. All four
subtypes are members of the GPCR superfamily, and each subtype has a unique pharmacological profile,
tissue distribution, and effector coupling [15]. Upon activation, Gi-coupled A1R and A3R inhibit adenylate
cyclase and cyclic AMP (cAMP) production [16]while Gs-coupled A2AR and A2BR stimulate cAMP synthesis
and its downstream signaling pathways[17, 18]. As a consequence, activation of A2AR and A2BR in immune
cells induces strong immunosuppressive effects [19]. Finally, ADO is either removed from the extracellular
space by ADO deaminase, which converts it into inosine, or is taken by nucleoside transporters back into the
cell and converted back into AMP by ADO kinases[20]. CD39 is the rate-limiting enzyme in the ATP/ADP-
ADO pathway. The expression of CD39 is regulated by pro-inflammatory cytokines, such as transforming
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growth factor-β (TGF-β), interferons (IFNs), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and
prostaglandin E2 [21, 22], and processes, such as oxidative stress production and hypoxia[23, 24].

The functions of CD39 in immune cells

CD39 and T-cells

Within the T-cell population, CD39 is mainly expressed by CD4+ lymphocytes and mainly by regulatory T-
cell (Treg) subsets [25]. The expression of CD39 in CD4+ T-cells increases with age and CD39+CD4+ T-cells
were found to be prone to apoptosis and metabolic stress [26]. Both CD39 and CD73 are expressed in Tregs
and hydrolyze pericellular ATP into ADO, which contributes to Treg immune suppressive functions[27, 28].
Previous reports indicated that 90% of human Foxp3+Tregs are CD39+[25, 29]. Initial phenotypic and func-
tional analyses demonstrated that CD4+CD25highCD39+CD45RO+cells had properties consistent with ef-
fector Treg, CD4+CD25highCD39-CD45RO-cells were näıve Tregs, and CD4+CD25highCD39-CD45RO+cells
were predominantly non-Tregs with effector T-cell functions[30]. CD39+Treg cells demonstrated more potent
suppressive abilities compared to conventional Treg cells. Tregs induced by CD39+ naive T-cells, CD39+

iTregs, demonstrate enhanced proliferation and suppressive abilities [31]. CD8+iTregs displayed increased
CD39 expression in patients with systemic lupus erythematosus (SLE) nephritis, which was shown to play
an important role in the suppressive function of human CD8+ iTregs [32]. CD39high Tregs were more sta-
ble and functional than CD39low Tregs. Cultured CD39highTregs maintained stable forkhead box protein 3
(Foxp3) expression, whereas CD39low Tregs lost Foxp3 expression and trans-differentiated into Th1 or Th17
cells. Furthermore, human CD4+CD39high Tregs, but not CD4+CD39low Tregs, protected against xenograft-
versus-host-disease in mice models [33]. Mouse Tregs showed increased CD39 activity only when their T-cell
receptor (TCR) was activated, while the CD39 enzyme was found to be ineffective in unstimulated cells [34].
CD39 is also highly expressed in tumor-infiltrating Tregs and participates in Tregs-mediated immunosup-
pression [35-37]. Some CD4+ T cells do not express FoxP3, but express CD39[25, 38]. These T-cells have a
unique phenotype called the memory effect, and they have no immunosuppressive capacities.

CD39 is also expressed in CD8+ cells. It was reported to be highly expressed in a variety of human tumor-
infiltrating CD8+ T-cells found in renal cancer, gastric cancer[39], lung cancer, colorectal cancer, breast
cancer [40] and head and neck cancer[41]. Tumor-infiltrating CD39highCD8+ T-cells increase with tumor
growth and exhibit features of exhaustion[40]. CD39+CD8+Tc1 cells limit interferon-γ (IFN-γ) production
of CD39-CD8+ T-cells by generating ADO, which acts in a paracrine manner [42].

CD39 is expressed on Th17 cells, and co-expression of CD39 and CD161 by CD4+ T-cells might serve as a
biomarker to monitor Th17 responsiveness [43]. The expression of CD39 and CD73 on the surface of Th17
cells is closely regulated by IL-6 and TGF-β, which induce Th17 differentiation [44]. Furthermore, CD39
activity regulates the conversion of Th17 cells into IL-10-producing cells in vitro , which is abrogated in
the presence of ATP and the CD39-specific inhibitor ARL67156[45]. In a mouse cancer model, Th17 cells
produced in the presence of TGF-β were shown to have high expression levels of CD39 and CD73, which
inhibit T-cell response and promote tumor growth in an ADO-dependent manner [44]. Moreover, CD39+

Th17 cells in juvenile autoimmune liver disease (AILD) are both quantitatively decreased and qualitatively
deficient. Low expression levels of CD39 and A2AR may contribute to the perpetuation of Th17 cell effector
properties and unfettered inflammation in this disease [46].

CD39 is also expressed in other types of T cells. Tissue-resident memory T-cells (Trm) express high levels of
PD-1, TIGIT, and CD39 and represent tumor-reactive tumor-infiltrating lymphocytes[47]. CD39 has been
reported as a surface marker of mouse regulatory γδT-cells, which have been shown to suppress contact
hypersensitivity [48].

CD39 and B cells

The expression of CD39 is ubiquitous in B cells; however, CD73 expression is uncommon. In certain
mouse strains, approximately 30–50% of B-1 cells (B220+CD23-) and IL-10 producing B (B10) cells
(B220+CD5+CD1dhigh) are CD73high, whereas few conventional B-2 cells (B220+CD23+AA4.1-) express
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CD73. In keeping with expression of both CD73 and CD39, CD73+ B cells produce ADO in the presence
of ATP substrate, whereas B-2 cells do not [49]. Figueiro et al. defined CD39high B cells as the major
contributor to the regulatory network operated by human B lymphocytes[50]. CD39high B cells co-cultured
with autologous effector T cells suppressed T-cell activation/proliferation and increased the secreted levels of
IL-6 and IL-10. The proliferation and functions of these CD39high B cells are regulated by A1R- and A2AR-
mediated autocrine signaling. Saze et al. found that the production of AMP and ADO by CD39+CD73+ B
cell subsets is related to the control of CD4 and CD8 effector immunity[51]. The absence of CD39 did not
change the number of B cells in peripheral blood and spleen. However, CD39-/- mice showed impaired B cell
memory response to T-dependent, suggesting that CD39 may contribute to the antibody affinity maturation
and the post-germinal centers B cell differentiation[52].

B cells express P2XR and P2YR [53] which allows ATP to regulate B cell activation, adhesion, migration, and
IgE secretion [54]. ATP-driven P2X7R activation is crucial for secretion of IgM, indicating that this receptor
plays a key role in the humoral response [55]. It can be speculated that CD39 may affect the ATP-mediated
B cell regulation.

CD39 and neutrophils

CD39 is widely expressed in neutrophils and plays a key role in regulating neutrophil activity by controlling
the extracellular purine energy gradient [56]. In addition, neutrophils express CD73 [57] and all four ADO
receptors[58]. Neutrophils directly secrete ADO and inhibit its degradation. Furthermore, they release ATP
following activation, which is subsequently hydrolyzed by CD39 and CD73 into ADO[59]. The inadequate
activity of the CD39/CD73 axis is related to the amplification and uncontrolled activation of neutrophils [60],
enhancement of their chemotactic function [61], and increased neutrophil adhesion to the vascular endothelium
[60, 62].

Studies have shown that CD39 plays an important role in regulating neutrophil chemotaxis by facilitating
the hydrolysis of eATP. Shah et al. demonstrated that eATP had a regulatory effect on the late stage of
neutrophil recruitment [63]. Once neutrophils reach the ATP-rich region, blocking CD39 may promote the
stop signal of neutrophil chemotaxis [64]. Chen et al. showed that hydrolysis of ATP by CD39 promoted
neutrophil chemotaxis by activating the A3R [5]. Both A3R- and CD39-deficient mice showed impaired
recruitment of neutrophils to inflammatory sites [61, 65]. Paradoxically, lipopolysaccharides (LPS)-induced
accumulation of neutrophil into the lungs was enhanced in CD39-/- mice, which may be due to the loss of
normal endothelial barrier and increased capillary leakage in CD39-/- mice [66].

CD39 and NK cells

It has been reported that the expression of CD39 is very low in resting human NK cells [56]. In murine
NK cells, CD39 is the dominant ectonucleotidase and thereby plays a predominant role in the regulation
of pericellular nucleotide concentration levels. While murine NK cells do not express CD73 and cannot
efficiently generate ADO, they primarily mediate ATP and ADP hydrolysis into AMP[67]. However, the
human NK cells were shown to produce ADO via a CD38-mediated pathway [68].

CD39 deficiency and changes in P2 receptor activation abrogate secretion of interferon gamma by NK cells
in response to inflammatory mediators, and limiting tissue damage mediated by these innate immune cells
during IRI [67]. In addition, CD39 deletion has been shown to have a protective effect in the context of
concanavalin A hepatitis induced by NKT cells [69]. Additional protective effects of CD39 deletion have been
demonstrated in the context of invariant NKT cell-mediated hyperoxic acute lung injury[70]. After trauma,
the subsets of NK cells changed significantly, and the expression of surface CD39 increased in those NK
cells. The observed post-injury increase in CD39 expression levels in NK cells provides an explanation for
the susceptibility to infection of those patients, and it might represent a potential prognostic marker or drug
target [71].

In a tumor setting, the expression of CD39 and the consequential ATP hydrolysis and ADO generation
compromise anti-tumor immune responses, including those that may be mediated by NK cells. Zhang et al.
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showed that both CD39 and CD73 are up-regulated in lung tumor-infiltrating NK cells [72]. Furthermore,
the same study demonstrated that NTPDase inhibitor sodium polyoxotungstate (POM-1) enhanced NK
cell-mediated metastatic control and synergized with combined Braf and MEK inhibition, recombinant IL-2,
or anti-PD-1 and anti-CTLA-4 checkpoint blockade. Moreover, Yan et al. showed that the anti-metastatic
activity of anti-CD39 was NK cell- and IFN-γ-dependent and that the quantity of IFN-γ produced in lung-
infiltrating NK cells was enhanced following tumor challenge and anti-CD39 therapy[73].

CD39 and dendritic cells (DCs)

CD39 is expressed in both human and mouse DCs [74, 75]. Mouse bone marrow-derived DCs constitutively
express CD39 but do not express CD73; thus, AMP is not converted into ADO[76]. The net effect of CD39
on the regulation of DC function may be determined by a number of factors, including the balance of P2XR
and P2YR expression in specific DC populations and the concentration of local eATP, ADP, and certain
nucleotides. Mizumoto et al. demonstrated that CD39 expression on dendritic cells is required for the
optimal stimulation of hapten-reactive T-cells[75]. CD39 is considered necessary to prevent desensitization of
the P2 receptor, which is required for the optimal function of DCs. Langerhans cells are a type of epithelial
dendritic cells, which are characterized by high expression levels of CD39 and show a decrease in antigen
presentation ability in the absence of CD39[75]. CD39-/- mice have major defects in dendritic cell formation,
antigen presentation, and response to semi-antigens [77]. Dwyer et al. proposed that the functional defect
of CD39-/- dendritic cells is due to its impaired ability to initiate and maintain cell-cell contact, and that
CD39 might be transferred to immune synapses to facilitate cell contact signals during antigen presentation
[52]. On the contrary, Yoshida et al. showed that CD39-deficient hepatic dendritic cells exhibit more mature
phenotypes, stronger responsiveness to TLR ligands, and stronger pro-inflammatory and immunostimulatory
activities [78]. IL-27 can up-regulate CD39 on the surface of DC and then reducing the concentration of ATP
and the activation of NLRP3 inflammatory bodies, thus limiting the differentiation of Th1 and Th17 cells
and promoting immune tolerance[79]. LPS can down-regulated membrane CD39 expression via endocytosis
in bone marrow-derived dendritic cells (BMDCs), which was positively associated with decreased enzymatic
activity in ATP metabolism and increased eATP accumulation, leading to the activation of P2X7R, which
mediated a pro-inflammatory effect[80].

CD39 and macrophage cells

Anna et al. defined macrophage extracellular purine metabolism as a novel checkpoint in macrophage cell
fate decision-making and an attractive target to control pathological macrophages in immune-mediated
diseases [81]. The expression of CD39 and CD73 in M2 macrophages was significantly higher than in pro-
inflammatory M1 macrophages [82]. By regulating the concentration of purine in the extracellular space,
the CD39/CD73 system helps fine-tune the differentiation and activity of macrophages. Moreover, the lack
of CD39 can lead to the accumulation of ATP, which stimulates macrophages to release pro-inflammatory
cytokines[83, 84]. Depletion of ATP by soluble CD39-like apyrase suppressed macrophage phagocytosis in
vitro[85]. In the presence of exogenously added ATP, TLR-stimulated macrophages hydrolyze ATP via CD39
to regulate their own activation state, and the loss of CD39 expression blocks the regulatory development
of macrophages and leads to fatal inflammatory responses and septic shock in mice [86]. Luiz et al. found
that CD39-/- macrophages stimulated with LPS and ATP exhibit increased nuclear factor-kB activation
and IL-1β production[87]. In another study, blocking the expression of CD39 on the surface of macrophages
enhanced the production of TNF-α and IL-12 significantly but decreased the production of IL-10[87, 88].

ATP-based intercellular communication is mediated by P2X4R and P2X7R, and is a feature of pro-
inflammatory macrophages. It was shown that CD39-expressing macrophages played a role in modulating
the P2X7R-dependent production of IL-1β [89]. A previous report demonstrated that P2X7R activation
triggers the initiation of lipid raft-dependent regulatory pathways that up-regulate CD39 activity. This
mechanism could limit macrophage responses in inflammation, hence, restoring homeostasis [90]. A different
study showed that cAMP up-regulates the transcription of CD39 in mouse macrophages, which is depen-
dent on protein kinase A (PKA), phosphoinositide 3-kinase (PI3K), and extracellular signal-regulated kinase
(ERK) [91].
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Tumor associated macrophages (TAMs) are an important component of the tumor microenvironment. In
some cancers, TAMs can form up to 50% of tumor tissue and seriously impair anti-tumor immunity[92]. It has
been shown that macrophages were reduced in the lungs of tumor-bearing mice treated with anti-CD39[73].
Co-culture of healthy donor monocytes with ovarian cancer cells induced the differentiation of monocytes
into anti-inflammatory M2 macrophages expressing high levels of CD73 and CD39. These ADO-producing
TAMs were further demonstrated to inhibit CD4+ T-cell activation in vitro[92].

CD39 and endothelial cells

Endothelial cells and related vascular smooth muscle cells express CD39, which plays a key role in in-
flammation and thrombus reduction[93]. CD39 expressed by vascular endothelial cells could limit excessive
polymorphonuclear leukocyte infiltration by providing increased ADO concentrations at hypoxic and inflam-
mation sites[60]. The arterial expression and functionality of CD39 is decreased in hypertension. The reduced
ectonucleotidase activity of CD39 may enhance pathology-associated vascular damage, increase endothelial
permeability and inflammation, and increase the risk of end-organ damage and thrombogenesis [94]. In tu-
mor environment, the expression of CD39 in vascular system, especially endothelial cells, can promote tumor
growth by scavenging eATP[95]. The endothelial CD39/CD73 axis regulates hemostasis by transforming the
local environment from a prethrombotic state rich in ATP and ADP into an antithrombotic environment
rich in ADO[96-98]. CD39 plays the role of an endothelial thromboregulator by demonstrating that CD39-
transfected COS cells acquire the ability to inhibit ADP-induced aggregation in platelet-rich plasma [99-101].
Next to inhibition of platelet activation, the local release of CD39 mRNA in atherosclerotic blood vessels
supports the integrity of the endothelium and inhibits extracellular nucleotide-induced smooth muscle cell
proliferation[102]. Paradoxically, Aho et al. showed that elevated eATP or inhibition of CD39 activity has a
protective effect against DNA damage in endothelial cells [103]. However, this effect could not be replicated
in cancer cells.

CD39 and platelets

Platelets are known to express both CD39 and CD73 on their surface[104]. CD39 rapidly and preferentially
metabolizes ATP and ADP released from activated platelets into AMP, thereby drastically reducing or even
abolishing platelet aggregation and recruitment [105]. Unlike P2Y12R inhibitors and GPIIb/IIIa blockers,
CD39 does not directly interfere with platelets; instead, it clears ADP around the platelets and maintains
platelet functions [106]. A recombinant soluble form of human CD39 strongly inhibits human platelet aggre-
gation induced by agonists [107-109]. Mice over-expressing human CD39 are resistant to arterial thrombosis
induced by oxidative damage, which may be due to the decreased activation of platelet fibrinogen receptor
αIIb/β3 [110]. CD39-null mice manifest an increase in circulating platelet-leukocyte heteroaggregates, which
suggests the presence of heterotypic crosstalk between the coagulation process and inflammatory systems
[111]. The expression of CD39 and CD73 increases significantly on the platelet surface upon stimulation with
thrombin, which indicates a thrombin-mediated externalization of these ectonucleotidases[112]. Although
CD39 has been considered an important inhibitor of platelet activation, Enjyoji et al. reported that CD39
knockout paradoxically leads to disordered hemostasis, and they speculate there is a dual role for adenosine
triphosphate diphosphohydrolase in modulating hemostasis and thrombotic reactions.[113].

CD39 and extracellular vesicles (EVs)

Cell membrane-expressed E-NTPDases include CD39 are also found in circulating microparticles in human
plasma [114]. Tumor-derived EVs, including exosomes, microvesicles, and apoptotic bodies, have been shown
to inhibit anti-tumor T-cells through CD39, CD73, and ADO signaling pathways [115, 116]. Zhang et al.
showed that CD19+ EVs from B cells hydrolyzed ATP from chemotherapy-treated tumor cells into ADO
via CD39 and CD73 vesicle-incorporated proteins, thus impairing CD8+T-cell responses [117]. In microen-
vironments containing CD39+CD73+ exosomes, CD73 is readily available to CD4+CD39+CD73negTregs for
the production of immunosuppressive ADO[118]. Increased plasma microparticles (MP) expressing CD39
were observed in patients with liver injury, and plasma CD133 MP levels increased in a CD39-dependent
manner during experimental acute liver injury [119]. CD4+T-cell-derived CD161+CD39+ and CD39+CD73+
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MPs contain pro-inflammatory and anti-inflammatory information, respectively, and could serve as new
biomarkers for diseases, such as rheumatoid arthritis[120]. Angioni et al. demonstrated that in response
to pro-inflammatory cytokines, bone marrow mesenchymal stromal cells produce EVs that are enriched in
TIMP-1,CD39, and CD73, which inhibit angiogenesis by targeting both extracellular matrix remodeling and
endothelial cell migration [121]. Furthermore, CD39 expressed in EVs derived from endothelial cells influences
thrombus progression [23, 122].

The functions of CD39 in immune-related diseases

CD39 and sepsis

Sepsis is caused by an imbalance in the host immune response to infection, and it can lead to life-threatening
organ dysfunction. CD39 attenuates sepsis-associated liver injury by scavenging eATP and ultimately gen-
erating ADO. Boosting of CD39 can suppress P2X7R response and trigger adenosinergic signaling to limit
systemic inflammation and restore liver homeostasis during the acute phase of sepsis[87]. CD39 enhance-
ment also exhibited an enhancing effect on the ability of renal tubular epithelial cells to resist LPS-induced
damage, improve cell viability and apoptosis, and inhibit NLRP3 inflammasome activation [123]. Increase
CD39+ Tregs was associated with a poor prognosis for sepsis patients, which suggests that the CD39+

Treg level is a potential biomarker for predicting the outcome of sepsis in patients [124]. CD39 affects the
pro-inflammatory response of sepsis mediated by immune cells and endothelial cells. Cohen et al. showed
that TLR-stimulated macrophages modulate their activation state by increasing the synthesis and secretion
of ATP[86]. Macrophages lacking CD39 are unable to transition to a regulatory state and consequently
continue to produce inflammatory cytokines. Furthermore, the macrophage-specific expression of CD39 is
critical for preventing lethal hyperinflammatory responses to LPS in vivo [86] . Overexpression of CD39 in
the endothelium efficiently abrogated the initial phases of ATP secretion in response to LPS endotoxin and
markedly inhibited IL-1α release [125]. CD39 expression is up-regulated during sepsis [126, 127]. Bao et al.
indicate that ADO, the ADO A2AR agonist, E2F-1, and CREB are potential factors contributing to the
increased expression of CD39 and CD73 on Treg cell surface during sepsis [128]. It was reported miR-155
induces an increased percentage of CD39+ Tregs and thus immunosuppression in sepsis patients [129].

CD39 and inflammatory bowel diseases (IBD)

IBD, including Crohn’s disease and ulcerative colitis, is characterized by chronic relapsing intestinal
inflammation[130]. The expression of CD39 on endothelial cells or immune cells integrates the dynamic bal-
ance of immunity, thereby controlling hemostasis and immunobiological responses, which appear disrupted
in IBD [131]. Decreased abundance of CD39-expressing intraepithelial T-cells is common in IBD patients[132].
CD39 expression by Treg was lower in active inflammatory bowel disease and increased significantly after
treatment in responders [133]. Single nucleotide polymorphisms (SNPs) adjacent to the CD39 promoter re-
gion have been associated with low levels of CD39 mRNA expression which confer susceptibility to Crohn’s
disease [131]. The number of SupTh17 cells is diminished in Crohn’s disease patients; however, they express
higher levels of CD39 and effectively generate eAMP and ADO and, hence, can potently suppress effector
T-cell responses via A2AR [134]. In the mouse model, changes in ADO production, such as those associated
with CD39 or CD73 gene deletions, lead to a more severe course of experimental colitis [131, 135]. Paradox-
ically, Kunzli et al.[136] found that 2,4,6-trinitrobenzene sulphonic acid colitis was attenuated in CD39-null
mice, and impaired adaptive cellular immune reactivity of CD39-null environment appears protective in
hapten-mediated Th1-type colitis.

CD39 and ischemia-reperfusion injury (IRI)

In CD39 and CD73 knockout mice, organ damage and inflammation caused by ischemia in the brain [84],
heart[137-139], kidney [140, 141], liver [142, 143], intestine[144, 145] and hindlimb[146] were more severe than those
in the corresponding wild-type mice. Studies have shown that boosting of CD39 can reduce organ damage
caused by IR [147-150]. The protective effect observed in CD39 over-expressing mice on myocardial ischemia
has been shown to work through the A2BR dependence mechanism [151]. This protective effect was also
observed in pigs over-expressing CD39[152]. A variety of immune cells are involved in the protective effect

6



P
os

te
d

on
A

u
th

or
ea

11
A

u
g

20
20

—
T

h
e

co
p
y
ri

gh
t

h
ol

d
er

is
th

e
au

th
or

/f
u
n
d
er

.
A

ll
ri

g
h
ts

re
se

rv
ed

.
N

o
re

u
se

w
it

h
ou

t
p

er
m

is
si

on
.

—
h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
59

71
49

09
.9

80
78

74
3

—
T

h
is

a
p
re

p
ri

n
t

an
d

h
a
s

n
o
t

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

a
ta

m
ay

b
e

p
re

li
m

in
a
ry

.

of CD39 on IRI. In vitro activated Tregs ameliorated IRI through a CD39-dependent mechanism[153]. In
addition, deletion of CD39 in NK cells inhibits their activation and protects partial hepatic IRI by diminishing
IFN-γ production [67].IRI is inherent in organ transplantation and has an impact on both short-term and long-
term outcomes of the transplantation. CD39 expression in mouse liver conventional myeloid DCs (mDCs)
limits the pro-inflammatory activity of mDCs and provides protection against the innate immune response
against liver transplant IRI [78]. Furthermore, liver grafts from CD39-over-expressing mice have been shown
to be protected from IRI due to the reduced numbers of resident CD4+ T-cells [154]. The expression of CD39
can be up-regulated by hypoxia and specificity protein 1 (Sp1)-mediated induction of cardiac CD39 during
myocardial ischemia [24].

CD39 and allergic diseases

CD39 expressed in Tregs is involved in a variety of allergic diseases. Tregs can suppress contact hyper-
sensitivity reactions through a CD39, adenosine-dependent mechanism by blocking leukocyte adhesion to
endothelium [155]. Tregs remove eATP by CD39 and, therefore, abrogate the shedding of CD62L, lead-
ing to defective sensitization in contact hypersensitivity reactions[156]. CD39 mediates the protective role
of CD4+Foxp3+Tregs in allergic airway inflammation by regulating ATP and ADO levels[157]. In allergic
asthma, increased Tc2 and Tc17 may be related to insufficient CD39+Tregs[158]. Wang et al. found that the
plasticity of Tregs transforming into IL-17+Foxp3+CD4+T-cells, the reduced frequency of CD39+ Tregs, and
the less effective suppression of IL-17 produced by residual CD39+ Tregs leads to an imbalance of Th17 and
Tregs in asthma [159]. CD39 expression was down-regulated in allergic asthma and was positively correlated
with serum IL-4, IL-17A, and GATA3 expression and negatively correlated with serum TGF-β and Foxp3
expression [160]. CD39 deficient DCs exhibit limited capacity to induce Th2 immunity in a DC-driven model
of allergic airway inflammation in vivo [161]. Li et al. demonstrated that a reduction in CD39 expression
may be associated with the development of allergic airway inflammation and that apyrase alleviates airway
inflammation by decreasing the chemotactic migration of DCs towards eATP [162].

CD39 and SLE

SLE patients exhibit increased levels of ATP which binds to P2XR resulting in activation of the inflam-
masome and consequent release of cytokines associated with disease pathogenesis[163]. CD39 expression
in lymphocytes was increased in SLE patients, suggesting a compensatory mechanism to help control in-
flammation [164]. However, Loza et al. showed decreased CD39 expression in Tregs from SLE patients,
demonstrating a defect restricted to this subset of cells[165].

CD39 and diabetes

Children diagnosed with type 1 diabetes (T1D) show signs of low CD39+/CD45RA+ Treg cells, which may
indicate loss of its suppressive function [166]. Lower expression of CD39 in memory Tregs has been reported
as a potential mechanism explaining the defective suppressive function of Tregs in T1D patients [167]. The
percentages of CD39+ and CD39+CD19+ cells were associated with glycated hemoglobin and fasting plasma
glucose levels. CD39+ cells might have a balancing regulatory role in the inflammatory process observed
in patients with type 2 diabetes (T2D)[168]. The T2D patients with obesity showed significantly lower
percentages of CD39+ Treg cells and a negative correlation between CD39+ Treg cells and weight, and body
mass index was detected[169]. Mesenchymal stem cells from human gingiva can migrate to the pancreas and
local lymph nodes and act through the CD39/CD73 pathway to regulate effector T-cells. Infusion of GMSCs
significantly controlled blood glucose levels, delayed diabetes onset, and ameliorated pathology scores in
pancreas[170]. CD39 KO mice developed diabetes more rapidly and with higher frequency than WT mice,
while CD39 overexpressing mice were protected. Furthermore, adoptive transfer experiments indicated that
tissue-restricted overexpression of CD39 conferred robust protection, suggesting that this may be a useful
strategy to protect islet grafts from T cell-mediated injury[171].

CD39 and tumor

CD39 is expressed in tumor cells and tumor-infiltrating immune cells and affects tumor development in vari-
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ous interrelated ways. CD39 is up-regulated in a variety of human cancers, such as leukemia and head, neck,
colorectal, liver, and gastric cancers, and the expression level of CD39 is often related to the stage and severity
of a disease[172-178]. CD39 is highly expressed on tumor-infiltrating immune cells, particularly effector T-cells
and Tregs. CD39 has been shown to be highly expressed in tumor-infiltrating CD8+ T-cells in a variety of
human tumors, including renal cell carcinoma, gastric cancer [39], lung cancer, colorectal cancer, breast can-
cer [40] and head and neck cancer [41]. Tumor-infiltrating CD39highCD8+ T-cells increase with tumor growth,
and exhibit features of exhaustion, including decreased TNF, IL-2, and IFN-γ production as well as increased
expression of many inhibitory/checkpoint receptors, such as programmed cell death 1, T cell immunoglobulin
and mucin-do-main-containing molecule 3, Lymphocyte-activation gene 3, T cell immunoglobulin and ITIM
domain, and 2B4 [40]. Tregs mediate immunosuppression through several mechanisms, including CD39-
dependent production of ADO. Transcriptional profiling of Tregs revealed a substantial number of candidate
genes with the potential to mediate suppression, including the highly expressed CD39 [36]. CD39 was found
expressed in CD8+ Tregs, and CD39 expression correlated with suppression activity mediated by CD8+Tregs
[179]. Hu et al. identified a novel CD39+ γδTreg in human colorectal cancer patients[35]. Furthermore, the
CD39+γδTregs are the predominant regulatory T-cells observed in colorectal cancer patients, with a more
potent immunosuppressive activity than CD4+ or CD8+ Tregs, and acting through the ADO-mediated path-
way [35]. Tumor-infiltrating CD39+ Tregs accumulate in colon tumors and exhibit high expression of surface
molecules related to immunosuppression, such as inducible co-stimulator, programmed cell death protein
ligand 1, and cytotoxic T lymphocyte associated antigen 4. CD39+ Tregs also show potent suppressive
capacity on proliferation and IFN-γ secretion by conventional T-cells [37]. In patients with colon cancer,
circulating Tregs express high levels of CD39, which contributes to the reduced transendothelial migration
of effector T-cells into tumors [180]. Lower baseline levels of circulating Tregs (CD4+CD25highCD39+) in
melanoma patients were associated with better relapse-free survival[181]. There are few studies on the role
of CD39 in anti-tumor immunity mediated by NK cells. Zhang et al. found that CD39 was expressed
in tumor-infiltrating NK cells. Furthermore, POM-1 suppressed experimental and spontaneous metastases
in four tumor models, and its anti-metastatic activity was completely abrogated in NK-cell-depleted mice
[72]. The proportion of NK cells significantly decreased, but CD39 was obviously up-regulated in NK cells
from cancerous tissues compared to paired peripheral blood in esophageal squamous cell carcinoma patients.
Furthermore, tumor-infiltrating CD39+ NK cells exhibited a phenotype of functional impairment and were
correlated with poor prognosis [182]. Myeloid-derived suppressor cells (MDSCs) have been recognized as one
of major contributors to tumor-induced immunosuppression [183]. MDSCs in peripheral blood and tumor
tissues from patients with non-small cell lung cancer were shown to express CD39. Tumor TGF-β stimulated
CD39 and CD73 expression in MDSCs, thereby inhibited T cell and NK cell activity, and protected tumor
cells from the cytotoxic effect of chemotherapy through ectonucleotidase activity [184]. Compared to other
myeloid cells present in the blood of patients with colorectal cancer, gMDSCs that expressed high levels of
PD-L1, CD39, and CD73 exerted a robust immunosuppressive activity,[185]. Metformin treatment blocks
the suppressive function of MDSCs in patients with ovarian cancer by down-regulating the expression and
ectoenzymatic activity of CD39 and CD73 on monocytic and polymononuclear MDSC subsets [186]. In ad-
dition, the growth of multiple syngeneic tumors is reduced in global CD39 gene-targeted mice [95, 187, 188].
Similarly, CD39-deficient mice are resistant to the formation of metastasis in models of disseminated disease
or spontaneous metastasis[72, 189]. In a dissemination liver metastasis model, MC-26 cell line-derived hepatic
metastases grew significantly faster in CD39 over-expressing transgenic mice when compared to those in
CD39-deficient mice [190]. Additionally, pharmacological blockade of CD39 activity with an antagonistic
antibody or the inhibitor POM-1 was shown to significantly limit tumor growth and improve anti-tumor
immunity [187, 189, 191, 192].

Perspectives

CD39 has correlation to various immune cells and plays vital roles in multiple physiological and pathological
processes. In particular, CD39 is considered to be a new marker of T-cell exhaustion and an immune
checkpoint target for cancer treatment. Targeting of both the A2aR and CD73 has been shown to be
efficacious in preclinical cancer models. However, unlike treatment targeting the downstream production or
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function of ADO, inhibition of CD39 not only limits the production of ADO, but also prevents the degradation
of eATP. So CD39 is uniquely positioned in ATP-adenosine axis. Monoclonal antibodies targeting CD39 have
been developed and were demonstrated to significantly reduce tumor growth in preclinical cancer models,
including as single agent[64]. Furthermore, targeting CD39 in combination with other anticancer strategies,
including immunotherapies, and chemotherapy is another promising combination. It was shown recently
that anti-CD39 turns “cold” anti-PD1 resistant tumors “hot” and sensitive [192], so the combination therapy
of CD39 and PD-1 is expected. However, not all extracellular ADO was inhibited by anti-CD39, and other
adenosine production pathways may also be involved in this process. Actually, AMP can be also obtained
through the transformation of NAD+ by CD38 and CD203a[9-12]. So combination therapy targeting multiple
adenosine-generating enzymes may be more effective. Furthermore, CD39 has vast therapeutic potential in
a wide variety of disorders. However, considering the extensive physiological effects of eATP and ADO and
the opposite effect of CD39 in some diseases, therapy targeting CD39 requires more in-depth research and
individualized treatment.
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