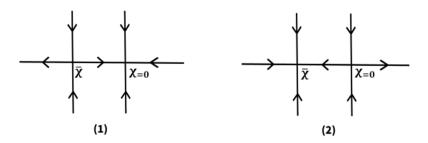
Dynamical transition for a 3-component Lotka-Volterra Model with Diffusion

Ruili Wu¹, Limei Li², and Junyan LI³

August 13, 2020

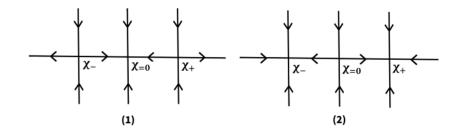
Abstract


The main objective of this article is to investigate the dynamical transition for a 3-component Lotka-Volterra model with diffusion. Based on the spectral analysis, the principle of exchange of stability conditions for eigenvalues are obtained. In addition, when α_0 delta_0<\delta_1\$, the first eigenvalues are complex, and we show that the system undergoes a continuous or jump transition. In the small oscillation frequency limit, the transition is always continuous and the time periodic rolls are stable after the transition. In the case where α_0 delta_1\$, the first eigenvalue is real. Generically, the first eigenvalue is simple and all three types of transition are possible. In particular, the transition is mixed if α_0 delta_{\omega}e_{k_0}^3dx/neq 0\$, and is continuous or jump in the case where α_0 delta_1\$ as α_0 . In this case we also show that the system bifurcates to two saddle points on α_0 delta_1\$ as α_0 delta_1\$ delta_

Hosted file

Wu_LI_LI.pdf available at https://authorea.com/users/310868/articles/475466-dynamical-transition-for-a-3-component-lotka-volterra-model-with-diffusion

Hosted file


 $\label{local_variable} \begin{tabular}{ll} Wu_LI_LI.tex & available & at & https://authorea.com/users/310868/articles/475466-dynamical-transition-for-a-3-component-lotka-volterra-model-with-diffusion & for the component-lotka-volterra-model-with-diffusion & for the component-lotka-volterra-with-diffusion & for the component-lotka-volterra-with-diffusion & for th$

¹Jincheng College of Sichuan University

²Sichuan Normal University

³Jincheng college of Sichuan University

