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Abstract

Populations of invasive species that colonize and spread in novel environments may differentiate both through demographic pro-
cesses and local selection. European starlings (Sturnus vulgaris) were introduced to New York in 1890 and subsequently spread
throughout North America, becoming one of the most widespread and numerous bird species on the continent. Genome-wide
comparisons across starling individuals and populations can identify demographic and/or selective factors that facilitated this
rapid and successful expansion. We investigated patterns of genomic diversity and differentiation using reduced-representation
genome sequencing (ddRADseq) of 17 winter-season starling populations. Consistent with this species’ high dispersal rate and
rapid expansion history, we found low geographic differentiation and few FST outliers even at a continental scale. Despite
starting from a founding population of approximately 180 individuals, North American starlings show only a moderate genetic
bottleneck, and models suggest a dramatic increase in effective population size since introduction. In genotype-environment
associations we found that ~200 single-nucleotide polymorphisms are correlated with temperature and/or precipitation against
a background of negligible genome- and range-wide divergence. Local adaptation in North American starlings may have evolved
rapidly even in this wide-ranging and evolutionarily young population. This survey of genomic signatures of expansion in North
American starlings is the most comprehensive to date and complements ongoing studies of world-wide local adaptation in these
highly dispersive and invasive birds.

INTRODUCTION

Studies of local adaptation have long bridged the interface between ecological and evolutionary questions by
exploring how populations adapt to differing environmental conditions. Traditionally, high degrees of local
adaptation were expected to be present only in fairly isolated populations—those free from the homogenizing
effects of high gene flow—with a long history in those locations, providing the time thought to be necessary
for local adaptation to evolve (Lenormand, 2002). We now know that local adaptation occurs frequently
even in systems with high gene flow (Yeaman & Whitlock 2011; Tigano & Friesen, 2016) and often rapidly
after colonization of a novel environment (Prentis et al. , 2008). We continue to find evidence for rapid local
adaptation in systems as divergent as cane toads (Rollins et al. , 2015), sticklebacks (Lescak et al. , 2015),
honeybees (Avalos et al., 2017), steelhead trout (Willoughby et al.,2018), deer mice (Pfeifer et al., 2018),
and many more. These studies show that many taxa can adapt rapidly to local conditions in response to
the new selection regimes they encounter as they expand their range.

Invasive species that have recently expanded into new locations provide tractable opportunities to investigate
local adaptation as it originates (Colautti & Lau, 2015). Invasions typically expand from the founding
population(s) following a predictable spatial and temporal pattern (reviewed in Excoffier et al ., 2009).
After successful colonization of a new habitat, many invasive species show a demographic boom that may
be facilitated by their ecological release in the new environment; ecological release is the concept that
introduced species are often released from top-down limitations to their population growth, such as predators
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or pathogens in their native range (Riccardi et al., 2013). Theory predicts that this rapid population growth
will plateau as the population approaches carrying capacity in a region, but successful invasive species may
continue to expand their range and thus maintain a high rate of overall population growth.

When population density increases and demographic rates change, introduced species may rapidly evolve
traits that enable them to spread (Szűcs et al. , 2017): for example, invasive cane toads in Australia evolved
a suite of morphological, physiological, and behavioral traits that facilitated their expansion in only 80 years
(Rollins et al., 2015). Increased dispersal may evolve in concert with the demographic boom, such that
certain traits are selected for in successful invasive species. Flexible dispersal strategies can result in gene
flow that counteracts inbreeding depression and increases adaptive potential (Garant et al., 2007; Rius &
Darling, 2014). If particular traits enable individuals to disperse more easily to their preferred habitat, gene
flow may be directional and even adaptive (Edelaar & Bolnick, 2012; Jacob et al., 2017). Invasions thus
allow us to observe interactions between demography and the early processes of selection (Dlugosch et al.,
2015) as populations experience new environments. Importantly, these eco-evolutionary interactions depend
in part on the genetic variation in the established population.

Recent work in invasion genetics aims to tease apart how selection and demography might resolve a paradox
of invasion (Estoup et al. , 2016, Schrieber & Lachmuth, 2017): many invasive species experience genetic
bottlenecks as a result of an initial founder effect, but often thrive and spread despite this loss of standing
genetic diversity. Theory predicts that introductions will typically result in an initial contraction in pop-
ulation size and/or genetic diversity (Dlugosch & Parker, 2008). However, bottlenecks of genetic variation
clearly do not limit the success of many invasive species (Schmid-Hempel et al.,2007; Dlugosch & Parker,
2008; Facon et al., 2011). Invaders might adapt through soft sweeps that reduce genetic diversity while
selecting for adaptive variants from standing or novel genetic variation, which is especially likely in the case
of ecological adaptation (Messer & Petrov, 2013). Furthermore, some invasions may increase rather than
reduce genetic diversity, as when multiple invasions from different source populations introduce previously
isolated alleles and thereby facilitate admixture (Dlugosch & Parker, 2008). The new conditions can also
select among standing variation, where the presence of certain genetic variants in the native range accelerates
adaptation upon introduction (Tsutsui et al., 2000; Schlaepfer et al., 2009; Hufbauer et al., 2011). In sum,
although genetic diversity in introduced populations is often viewed as a pre-requisite to adaptation, changes
in genetic diversity alone do not explain invasiveness (Uller & Leimu, 2011). Regardless, chance may be just
as important as selection in an invasive species’ establishment and spread (Gralka & Hallatschek, 2019).

The European starling (Sturnus vulgaris ) stands out as an exceptionally successful avian colonist and
invasive species. In North America, an estimated 200 million starlings currently range from northern Mexico
to southern Alaska (Linz et al., 2007). Introduced to New York City in 1890, starlings nearly covered the
continent within a few generations by expanding up to 91 km each year (Bitton & Graham, 2014). The
1890 introduction is widely accepted as the first successful establishment of starlings in North America,
but several populations were introduced in Cincinnati, OH (1872), Quebec, Canada (1875), Allegheny, PA
(1897), and Springfield, MA (1897), with the second-most successful having been introduced to Portland,
OR in 1889 (Forbush, 1915; Kalmbach & Gabrielson, 1921). Records indicate that none of the earlier starling
introductions survived more than a few years after colonization, but it is possible that some populations in
the western U.S. persisted without record (Kessel, 1953).

During the starling expansion, ongoing migration and dispersal might have also influenced patterns of genetic
variation. In North America, some—but not all—starling populations migrate (Dolbeer, 1982). Previous
studies indicate that there is considerable variation in migratory distances within flyways (Burtt & Giltz,
1977). Models of molt origin indicate that starlings in the western U.S. may disperse or migrate shorter
distances (Werner, Fischer, & Hobson, 2020). The models used feathers from the same individuals sampled
for this genetic survey, and they initially hypothesized that starlings in the south may be less likely to
migrate long distances. Instead, they found that longitude better explains the differences in molt origin
among starling populations: starling feathers collected west of -90° longitude were more likely to have
originated nearby. In other words, starlings that migrate in eastern North America likely experience greater
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gene flow among sampling locations (states, in our study), but overall starlings tend to move only regionally
and not continent-wide.

Early genetic work based on a small set of allozyme markers indicated near-random mating at a continental
scale in North American starlings, with large demes (subpopulations) and high dispersal rates (Cabe, 1998;
Cabe, 1999). Here we use robust genomic markers to explore the genomic and demographic patterns of range
expansion in North American starlings with three specific aims: (1) to characterize genome-wide levels of
diversity and differentiation among starlings; (2) to examine how genetic variation changes across the conti-
guous United States; (3) to test for a genetic bottleneck; and (4) to test for signatures of selection associated
with environmental gradients. We also interpret our results in the context of range-wide data on starling
migration and dispersal (Werner, Fischer, & Hobson, 2020), as this movement certainly influences population
structure. Recent developments in genotype-environment association methods can identify polygenic traits
which are locally adapted to overlapping environmental gradients (Forester et al., 2018; Capblancq et al.,
2018), whereas traditional outlier-based methods may not recover evidence of local adaptation in a species
that likely has low overall levels of genetic diversity. Especially with these more sensitive methods, the same
low genetic diversity resulting from a founder effect upon colonization could improve our ability to discrimi-
nate signatures of selection from low background divergence across the genome (Dlugosch et al.,2015). This
work employs modern genomic and analytical tools to examine the evolutionary history of this remarkably
successful avian invasion.

METHODS

Sample collection and processing

All starlings sampled were collected during the non-breeding season, when large flocks aggregate at high-
quality food sources. These samples therefore do not represent discrete breeding populations but rather a
mixture of birds from the surrounding region, potentially including migrants from more northerly areas.
Starlings (N = 166) were collected in January-March 2016 and 2017 from 26 dairies and feedlots by the U.S.
Department of Agriculture’s Wildlife Services personnel in Arizona, California, Colorado, Idaho, Illinois,
Iowa, Kansas, Missouri, Nebraska, Nevada, New Hampshire, New Mexico, New York, North Carolina, Texas,
Washington, and Wisconsin. USDA Wildlife Services personnel collected birds from 2-5 sites in each state,
where each collection site was >5 km apart. USDA personnel then euthanized whole adult males by lethal
gunshot, avicide, or live traps, stored at these birds at 0°C until tissue sampling, and recorded the latitude
and longitude of each collection site using a handheld GPS. The collection and use of starlings for this and
related studies were approved by the U.S. Department of Agriculture, National Wildlife Research Center’s
Institutional Animal Care and Use Committee (QA-2572, S.J. Werner - Study Director; Werner, Fischer, &
Hobson, 2020; Table S1).

Breast muscle tissue was sampled using biopsy punches (Integra Miltex, York, PA) and frozen in 95%
ethanol. Samples were shipped on dry ice, and DNA was extracted using a Qiagen DNeasy kit following the
manufacturer’s protocol (Qiagen, New York, NY). DNA concentration of each sample was quantified using
a Qubit 2.0 fluorometer (Thermo Fisher Scientific, New York, NY). Following the protocol of Peterson et al.
(2012), we generated a reduced-representation genomic dataset of double-digested, restriction-site associated
DNA markers as described in Thrasher et al. (2017) using the restriction enzymes SbfI and MspI and
adaptors P1 and P2. We sequenced 100bp, single-end reads on an Illumina HiSeq 2500. We trimmed and
filtered for quality using the FASTX-Toolkit (http://hannonlab.cshl.edu/fastx_toolkit). We then used the
process_radtags commands in stacks v 1.19 (Catchenet al., 2013) to demultiplex the remaining sequences.
In subsequent filtering steps, we retained reads only if the following conditions were met: reads passed the
Illumina chastity filter, contained an intact Sbf I RAD site, contained one of the unique barcodes, and did
not contain Illumina indexing adaptors.

We assembled sequences to an S. vulgaris reference genome (Hofmeister, Rollins et al., in prep ) using the
ref-map option in stacks. Individual reads were mapped to the reference genome using bowtie2 version 2.2.8
(Langmead & Salzberg, 2012) using the “very sensitive local” set of alignment pre-sets. The bioinformatics
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pipeline used for the reference-based assembly has the advantage of using fewer similarity thresholds to build
loci. We required that a SNP be present in a minimum of 80% of the individuals (-r 0.8) with a minimum
stack depth of 10 reads at a locus within an individual (-m 10) for it to be called. We removed two individuals,
one with >50% missing data and one with >50% relatedness (measured using the unadjusted AJK statistic
and calculated within vcftools ), leaving 158 individuals remaining in the study. We also used vcftools –hwe
option to remove any SNPs out of Hardy-Weinberg equilibrium (e.g., an exact test that compared expected
and observed heterozygosity gave a P-value less than 0.001). About 6% of sequenced variants were out of
HWE, and this filter left 14,134 variants remaining. For all genotype-environment analyses we used all SNPs
in a given stack, but for STRUCTURE and other analyses sensitive to linkage disequilibrium we used only
the first SNP in each stack; for unphased genomic data like the RAD loci analyzed here, this strategy of
exporting one SNP per stack is often used as an indirect method of controlling for linkage.

Patterns of genetic diversity and differentiation

We estimated per-locus measures of genetic diversity and genome-wide differentiation using the populations
option in Stacks (Catchenet al ., 2013). We used vcftools to calculate FST among population pairs and he-
terozygosity and nucleotide diversity (π) within populations (Danecek et al.,2011). We determined expected
heterozygosity at the population level using the Hs() function in the R package adegenet (Jombart ,2008),
and tested for differences in observed and expected heterozygosity of each locus using a paired t-test in base
R (R Core Team, 2019). We investigated genetic structure within North American starlings using an analysis
of molecular variance (AMOVA) in the R package poppr (Kamvar et al., 2014). We tested whether most
genetic variation was observed among individuals or among sampling sites (“populations”). To determine
significance, we compared observed variation at each hierarchical level to the randomly permuted distance
matrices for that particular level using 1000 simulations in the function randtest() in the R package adegenet
(Jombart, 2008), hypothesizing that the observed variance is greater than expected within individuals and
less between individuals and between populations.

We tested for isolation by distance (IBD) using a simple Mantel test inadegenet (Jombart, 2008): for
these data, the assumption of stationarity likely holds, given that North American starlings appear to be
in mutation-migration-drift equilibrium (Guillot & Rousset, 2013). Geographic distances among sampling
locations follow a bimodal distribution where locations are either very near or far from each other, and thus
we caution that the Mantel test may not be an appropriate test of isolation by distance (Supplementary
Information). Nevertheless, we report the results of a Mantel test with a Spearman correlation and 10000
permutations. Finally, we test for isolation by environment (IBE) using the R package vegan to compare
environmental, geographic, and genetic distances (Oksanen et al.,2019). Controlling for geographic distance,
we ran partial Mantel correlograms using Euclidean environmental distance matrices built from all bioclimatic
variables retained in the Selection analysesdescribed in Section 4 below.

Population structure

We first used non-parametric approaches to determine whether starlings clustered by sampling location, using
principal components analysis inSNPRelate (Zheng et al. , 2012) and discriminant analysis of principal com-
ponents (DAPC) in adegenet (Jombart, 2008). We then tested for population structure using STRUCTURE
(Pritchard et al., 2000) by simulating 10 runs of each K . Although we sampled starlings from 17 locations,
we hypothesized that North American starlings would cluster into at most eight populations (K =1-8) based
on the non-parametric tests described above. To select the best-supported K, we used the Evanno method
implemented in STRUCTURE HARVESTER v0.6.94 (Earl & vonHoldt, 2011). We averaged results across
the 10 runs using the greedy algorithm in the program CLUMPP v1.1.2 (Jakobsson & Rosenberg, 2007), and
visualized results using DISTRUCT v1.1 (Rosenberg, 2003). Given that evidence of population structure
depends on the filtering thresholds selected, we ran this model-based approach using a very strict minimum
minor allele frequencies (MAF=0.3) and a more relaxed minimum frequency (MAF=0.1) (Linck & Battey,
2017). STRUCTURE results did not differ substantially among MAF thresholds, and we used a filtered
dataset with a minimum minor allele frequency of 0.1 in the demographic analyses below.
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Demographic modeling

We used a traditional model-based approach (fastsimcoal2) to explicitly test for a bottleneck in North
American starlings (Excoffier et al., 2013). We first estimated the folded SFS using a Python script from
Simon Martin (available at https://github.com/simonhmartin/genomics general). We modified the simple
1PopBot20Mb.tpl and .est files provided with the software as follows: the size of the bottleneck (NBOT: 10-
1000), start of bottleneck (TBOT: 10-300), ancestral size (ANC: 1000-100000), current size of the population
(NCUR: 100-100000), and end of bottleneck (TENDBOT: TBOT + 500). We performed 100 runs of this
model and assessed model fit using delta-likelihood for each run of the model; since all models use the
same numbers of parameters, the Akaike information criteria do not change between models. We also ran a
demographic model that takes linkage into account, the Stairway plot method, but given that this method
does not explicitly test for a genetic bottleneck, we describe the method and results in the Supplementary
Information.

Selection analyses

We first identified environmental variation at each sampling location using the R package raster (Hijmans &
van Etten, 2012), extracting all 19 bioclimatic variables for each set of sampling coordinates from WorldClim
2.0 at a resolution of 5 min on June 16, 2018 (Fick & Hijmans, 2017). We recognize that these environmental
conditions represent those experienced during the non-breeding season, and therefore they do not represent
the full range of conditions experienced by the starlings sampled; see the Supplementary Information for
a discussion of our assumptions about this environmental sampling. We used redundancy analysis (RDA)
to examine how loci may covary across multiple environmental gradients (Forester et al., 2018). RDA is
especially powerful when testing for weak selection, and detects true positives in large data sets more reliably
than other multivariate methods like Random Forest (Forester et al., 2018). Because RDA requires no missing
data, we first imputed genotypes where missing sites were assigned the genotype of highest probability across
all individuals—a conservative but quick imputation method. Before imputation and after filtering, about
31% of genotypes were missing from the dataset of 15,038 SNPs (not filtered for MAF), and we required that
all imputed SNPs were present in at least 80% of individuals. We then used the R package vegan to run the
RDA model (Oksanenet al. , 2019); for a full description of this method, see Forester et al., 2018. Briefly,
RDA uses constrained ordination to model a set of predictor variables, and unconstrained ordination axes to
model the response (genetic variation). RDA infers selection on a particular locus when it loads heavily onto
one or more unconstrained predictor axes, and we retained five variables with relatively low variance inflation
factors: BIO1 or Annual Mean Temperature (VIF=3.54), BIO7 or Temperature Annual Range (4.55), BIO12
or Annual Precipitation (8.69), BIO16 or Precipitation of Wettest Quarter (7.91), and elevation (2.19). We
tested for significance using the anova.cca function within the vegan package, and also permuted predictor
values across individuals to further check significance of the model. We identify candidate loci as those that
are 3 or more standard deviations outside the mean loading. The R scripts for all RDA analyses and figures
were written by Brenna Forester (available at https://popgen.nescent.org/2018-03-27 RDA GEA.html).

RESULTS

Patterns of genetic diversity and differentiation

We identified 15,038 SNPs at a mean of 27X sequencing depth across 17 sampling locations. Using a
dataset filtered by a minor allele frequency of 0.1, we find that genome-wide FST is extremely low (0.0085),
and measures of genetic diversity do not vary substantially among sampling locations (Table 1). Across
all of these wintering starling populations, the highest pairwise FST was 0.0106 between birds from the
adjacent states of Arizona and New Mexico. Using a haplotype-based statistic of differentiation, φST among
populations shows an absence of genetic structure (φST = 0.0002). Hierarchical AMOVAs reveal that 94%
of the observed genetic variance is explained by variation within individuals, and the remaining variance
reflects differences among individuals in the same population, with negligible variation explained at the
between-population level (Figure 1C-D). Across the genome, FST and nucleotide diversity are exceptionally
low (Table 1,2). Genome-wide heterozygosity is moderate at 0.339, and across loci observed heterozygosity
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differs significantly from expected (t = 66.6, df = 3569, P<0.001, Table 1).

Population structure

FST among populations is relatively low overall (Table 2): starlings sampled in Arizona show the highest
differentiation from other sampling locations (FST = 0.008-0.011), and only a few other pairwise compar-
isons (NM-IL, NM-CO, and CO-WI) show an FST of 0.009 or higher. However, we do not recover clear
population structure. The first two principal components each explain about 1% of variation among indi-
viduals (Figure 1A), and although STRUCTURE identified three populations at the best-supported value of
K, these predicted populations do not show obvious differences in ancestry proportions (Figure 1B, Figure
S1). Controlling for shared ancestry does not resolve population structure, and instead provides support for
uniform gene flow among individuals (Figure S2). K-means clustering within DAPC also does not identify
biologically relevant clusters.

Starling populations follow a clear pattern of isolation-by-distance (Mantel r = 0.139, P < 0.0001). Spatially
explicit models of isolation-by-distance suggest a fairly uniform rate of migration range-wide, where local
increases in migration rate are likely a model artifact (Supplementary Information). However, models of
isolation by environment (IBE) show that the relationship between environmental and genetic distances
is stronger than the simple geographic-genetic distance model. After controlling for geographic distance,
we find that all bioclimatic variables tested show non-zero correlations between environmental and genetic
distances (Supplementary Information). There is a strong positive relationship between genetic distance and
both precipitation in the wettest quarter (BIO16, Mantelr = 0.282, P = 0.001) and elevation (Mantel r =
0.146, P = 0.001).

(3) Demographic modeling

A traditional SFS-based model recovers a bottleneck in population size, as expected: the estimated effective
population size during the bottleneck is ˜16,000 individuals (1% of the ancestral population size). However,
our demographic model suggests that the current population size of North American starlings is nearly
identical to its pre-bottleneck size (Supplementary Information). In fact, every run of the model finds that
starlings’ current effective population size (1.6 million individuals) is considerably higher than the estimated
Ne of the founding population. This model suggests that starlings experienced rapid population growth after
the initial founder effect, which may contribute to the overall lack of evidence for inbreeding. We do detect
very low levels of inbreeding within some populations (Table 1, highest FIS = 0.082 in Washington). Taken
together, these models do not suggest a classical founder effect, whereby effective population size remains
very low for many generations post-bottleneck.

(4) Selection analyses

Starlings encounter a range of precipitation, temperature, and elevation across their range and redundancy
analyses revealed the strongest signatures of local adaptation, showing that 178 variants are correlated
with environmental differences among populations (F = 1.022, P = 0.002, Figure 2). Populations living in
warmer climates tend to cluster more closely in the left quadrant and high elevation populations cluster in
the middle right quadrant. However, populations do not cluster based on geographic distance: for example,
starlings from TX and WA cluster closely due to shared genetic variants, even though the two populations
differ substantially in precipitation and temperature and are geographically separated. After controlling
for population structure, candidates for selection are equally distributed among elevation, temperature-
and precipitation-associated predictors. Importantly, when environmental predictors are randomly shuffled,
the RDA model is not significant. Mean annual temperature (BIO1) opposes selective pressure related to
the range of temperatures experienced each year (BIO7), annual precipitation (BIO12), precipitation in the
wettest quarter (BIO16) and elevation (Figure 2). Genes under selection tend to have lower allele frequencies,
and function in several biological processes (Table S2).

DISCUSSION

Our whole-genome data reveal that invasive starling populations show moderate genetic diversity across
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North America, rapid population growth after a genetic bottleneck, negligible geographically structured ge-
netic differentiation, significant but quite weak isolation-by-distance, and intriguing associations of genetic
variation with environmental parameters that might result from adaptive processes. Genetic diversity is
typically predicted to be low in invasive populations (Dlugosch & Parker, 2008), and although RADseq
tends to estimate lower genetic diversity than the true diversity, this bias is minimal for taxa known to
be genetically depauperate (Cabe, 1998; Cariou et al., 2016). Within invasion genetics, one area of recent
focus involves the spatial dynamics of invasion, and we can explore how genetic variation varies across the
post-invasion range of starlings in North America. Although there is a significant (but low magnitude) signal
of isolation-by-distance, hierarchical AMOVAs find that variation within and among individuals explains ob-
served differentiation better than variation among populations. There is no evidence of population structure,
and while models indicate some subtle spatial patterns of genetic variation, these model-based inferences
likely reflect sampling artifacts (Supplementary Information). Finally, after the initial founder effect, the
effective population size has grown by a ratio of 1:100. These patterns are consistent with the expectation
that extensive gene flow—as shown by extremely low FST among populations (Table 2)—maintains high
connectivity across North American starling populations. When interpreted within the context of a comple-
mentary exploration of movements inferred from feather isotope assays, this genomic survey confirms that
dispersal and migration continue to influence the genetic variation generated in just over a century of range
expansion.

Long-distance dispersal may be common in introduced starlings on multiple continents, where rates of
dispersal are determined by demographic changes and environmental quality. In South Africa, invasive
starlings disperse when their natal environment becomes crowded or unsuitable, as at the leading edge of
their range expansion (Huiet al., 2012). In North America, the effective population size (Ne) of the present-
day invasive population has expanded dramatically, with models indicating that current Ne is even larger
than the Ne of the founding population. This explosive population growth from hundreds to millions of
individuals may have encouraged long-distance dispersal away from the dense populations in eastern North
America. In general, multiple lines of evidence have shown that the dispersal rates and distances of juvenile
starlings in North America are remarkably high (Dolbeer, 1982; Cabe, 1999; Werner, Fischer, & Hobson,
2020). Considered in concert with similar findings in the invasive South African and Australian starling
populations (Huiet al., 2012; Phair et al., 2017), it is clear that dispersal similarly plays an ongoing and
major role in the connectivity of North American starling populations.

Although it is generally important, dispersal has not been uniform across time or space in North American
starlings. One open question in invasion genetics is whether expanding populations maximize spatiotempo-
ral fitness via spatial sorting and incipient adaptation (Williams et al. 2019). Empirical studies of some
invasions suggest that spatial sorting is common, including in common mynas (Berthouly-Salazaret al. ,
2012), pumpkinseed fish (Ashenden et al., 2017), and cane toads (Brown et al. , 2014). More empirical work
is needed to verify the conditions in which spatial sorting can lead to lasting shifts in fitness (Lee, 2011;
Phillips & Perkins, 2019; Williams et al. , 2019). However, we do know that adaptive dispersal strategies
can facilitate range expansion in Western bluebirds (Duckworth, 2008) and invasive beetles

(Lombaert et al., 2014; Ochocki & Miller, 2017) among other species. For North American starlings, we can
combine historical records, isotopic and genetic evidence to make inferences about the possibility of spatial
sorting.

Feather isotope data from the same starlings sampled in this genetic survey suggests that movements are
not uniform continent-wide, and that both juvenile dispersal and regional differences in migration could
influence genetic variation (Werner, Fischer, & Hobson, 2020). If starling movement was the primary driver
of differentiation, then we would expect FST among populations to be directly related to the number of
birds collected and assigned to that population. Starlings in the western U.S. appear to have differentiated
subtly from their eastern counterparts based on the higher FST between Arizona—and to some degree, New
Mexico and Colorado—and all other sampling locations (Table 2). Birds collected in these southwestern
states are also assigned to those states by discriminant function analysis (Werner, Fischer, & Hobson, 2020);
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for example, 67% of starlings collected in New Mexico were also assigned to that state (Table 2). We suggest
that birds assigned to the same state where they were collected may reside in that state year-round, but
we note that collecting feathers once in the lifespan of the bird does not allow us to determine the bird’s
lifelong migration and dispersal. The highest rates of pairwise differentiation occur between states where
one of those “populations” shows a relatively high collection-state assignment, which suggests that starling
movement among sampling locations does impact the genetic variation. This comparison is further supported
by the low but significant isolation-by-distance across the North American range; however, environmental
pressures explain genetic variation better than a simple model that accounts for geographic distance. In
addition, assignment to a state other than the collection state seems to have only a minor effect on FST,
even though we might expect that movement among geographically distant sampling locations might lead
to gene flow among those locations. In Arizona—where FST is highest but still relatively weak—Werner et
al.’s model suggests that 25% of birds originated in New Hampshire, which is approximately the percentage
of birds assigned to Arizona (28%, Table 2). Unsurprisingly, geography, environment, and demography all
appear to influence genetic variation within North American starling, and explicit tests for selection can help
to clarify the relative weight of each factor.

This species’ general genome-wide panmixia across the continent allows for tests of selection on loci that
may be involved in local adaptation. Because genetic diversity and differentiation are exceptionally low,
it is relatively easy to identify sites that have differentiated against this background of low genome-wide
or population-specific divergence (Dlugosch et al., 2015). We find that almost 200 of the 15,038 RAD loci
appear to be under selection using a redundancy analysis. Only 13 of these SNPs overlap with the SNPs
identified by a latent-factor mixed model, and there is no overlap between the RDA candidates and the
differentiation-based scans (BayeScEnv and Bayescan). It is unsurprising that each test identifies different
candidates for selection, because the assumptions underlying each are very different (for more details on our
approach to selection testing, see Supplementary Information). Rather than making inferences based on the
genes identified by these scans, we instead propose that genotype-environment associations show that changes
in precipitation and temperature can explain genetic variation in North American starlings. However, we do
suggest that rapid evolution in genes underlying key physiological processes may have supported the starling’s
spread across North America (Supplemental Information). Specifically, we hypothesize that aridity and cold
temperatures that are not experienced in the starling’s native range exert enough selective pressure on North
American starlings to result in incipient local adaptation. While this finding suggests that local adaptation
may explain genetic variation within the North American starling invasion, there are several relevant caveats
to this approach.

Because there is evidence of a genetic bottleneck in the North American starling invasion, it is possible that
artifacts resulting from genetic drift could mimic these patterns of local adaptation. We cannot rule out
allele surfing during range expansion as an explanation based on the methods currently available for testing
genotype-environment associations in a young and expanding system like this one. However, given how
short the timescale of divergence is in North American starlings, such drift effects are more likely if genetic
variation is (1) ancestral and (2) structured among populations. Gene flow among starling populations is
remarkably high, but we do not know if variants putatively under selection were present in the ancestral
population. These alleles under putative selection do not approach fixation, as no putative outlier has an
allele frequency greater than 0.28. We note that concordance among environmental and genetic distances
(e.g., partial Mantel tests) indicate that spatial autocorrelation complicates our selection inferences. Under
these conditions, any evidence for selection is likely to be weak, and as always these selection scans can
generate false positives. However, RDA has the highest rate of true positives and lowest of false positives,
and although this method has not been tested in such recent expansions, RDA is well-suited to systems
where FST is very low (Meirmans, 2015, Forester et al. , 2018, Supplementary Information). Finally, we do
not explicitly control for linkage, and some allele frequency shifts could be explained by recombination or by
genetic hitchhiking.

Our study focuses on birds collected during the winter, which may limit our inferences about population
structure and selection to these wintering populations. As discussed above, isotopic evidence suggests that
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starlings in the western U.S. tend to move only regionally whereas birds sampled in the eastern U.S. un-
dertake longer movements (Table 2). This in turn suggests that starlings overwintering in the western U.S.
are more likely to breed nearby, and thus the environmental conditions may not change as dramatically
among wintering and breeding ranges. In addition, the environmental conditions that we expect to drive
selection—precipitation and temperature—vary most substantially in the southwestern region: for example,
the sampling location in Arizona is consistently warmer (BIO1) and drier (BIO12 and BIO16) than other
locations (Figure 2, Supplementary Information). Western populations experience these environmental con-
ditions year-round, which could allow selection to drive advantageous alleles toward fixation. Elsewhere in
the U.S., starlings move more freely among states: individuals within each sampling location may come from
different breeding populations, and additional sampling could reveal stronger population structure among
true breeding populations. However, if our sampling overlooked some true populations, we would expect
some signal of population structure. Individual-based tests of population structure—e.g., those that do not
define possible populations a priori —do not recover any signals of population structure. This sampling
strategy uses the more vagile eastern populations as a comparison to more-resident western populations
that may also be under stronger selection. This framing may suggest that population structure in the west-
ern U.S.—of which we find no evidence—could explain allele frequency shifts that we infer to be selection,
but when we compare the relative importance of geographic and environmental distances in partial Mantel
tests, we find that environmental conditions better explain genetic variation. This evidence supports our
interpretation of selection as a major driver of genetic variation in North American starlings.

A similar project on starlings in the Australian invasion—which colonized that continent nearly concur-
rently with the North American invasion—found that geographic but not environmental distance explains
genetic patterns there (Cardilini et al., 2020). Starlings in the Australian range show substantial popula-
tion structuring and significant patterns of isolation-by-distance. Earlier work had shown that gene flow
among Australian starling populations is low (Rollins et al.,2009), and phylogeographic patterns of mito-
chondrial sequence variation confirm that starlings on the edge of the expansion front in Western Australia
have differentiated from those still living in the introduction site (Rollins et al., 2011). In fact, starlings
at the expansion front may have rapidly adapted during the Australian invasion (Rollins et al., 2016): the
proportion of adult starlings in Western Australia carrying a novel mitochondrial haplotype has increased
rapidly only at this range edge. A genotyping-by-sequencing survey employing a much greater number of
SNP markers indicates three population subdivisions in Australia, where geographic distance explains ge-
netic differentiation in starlings better than does environmental variation (Cardilini et al. , 2020). Global
FST across all Australian populations is an order of magnitude higher than the equivalent FST index across
North America, despite similar areas sampled. In Australia, the strong evidence for isolation-by-distance
and founder effects complicate attempts to disentangle selection from drift, yet despite their differences in
invasion dynamics, genotype-environment associations reveal signatures of selection in both invasions. On
both continents, starling genetic variation can be explained by extremes in temperature and precipitation,
and preliminary results of whole-genome resequencing of native and introduced populations confirm that
variability in temperature and precipitation may shape observed genetic variation in starlings world-wide
(Hofmeister et al., in prep ).

Our results contribute to the growing evidence of rapid adaptation in some expanding populations, even in
extremely young systems. Some studies of rapidly expanding invasions find little evidence that adaptation
may facilitate this expansion, as in corals (Leydet et al. 2018). However, other work suggests a role
for selection in supporting rapid range expansion, such as in experimental studies of flour beetles (Szucs
et al., 2017) and empirical work in guppies (Baltazar-Soares et al., 2019). Invasion biologists have long
highlighted propagule pressure as a driver of invasion success, but the genetic composition may be just as
important as the size of the establishing population (Briski et al., 2018). For example, genetic bottlenecks in
monk parakeets, another avian invader now distributed world-wide, do not seem to inhibit invasion success
(Edelaaret al., 2015). Pre-adaptation in the native range or selection during transport may facilitate the
spread of invasive species, and human commensalism may support establishment and spread, as shown in
house sparrows (Ravinet et al., 2018) and common mynas (Cohenet al., 2019), and reviewed across alien
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bird species (Cardador & Blackburn, 2019). Empirical studies of invaders like the ones described here also
show how, in addition to genetic variation, epigenetic shifts and/or plastic changes in gene expression may
support the establishment and expansion of invasive species (Marin et al., 2019). In the well-studied house
sparrow—a system quite similar to starlings—epigenetic shifts may have supported invasions in Africa (Liebl
et al., 2013) but not necessarily in Australia (Sheldonet al., 2018). Taken together, recent work suggests
that we should consider a much wider range of demographic and ecological processes that lead to adaptive
evolution in invading populations.

Invasive populations allow us to explore the genetic consequences of colonization and establishment in novel
environments. On a background of low genetic differentiation and diversity, we find evidence of incipient
genotype-environment associations in North American starlings. Here we explore how genetic variation
changes across the landscape, but we cannot fully understand gene flow without studies of dispersal and
migration of the individuals that carry genes. Our results complement other recent studies that reveal
associations between climate variables and particular loci in North American vertebrates (Schweizer et al.,
2015; Bay et al., 2018). Finally, we suggest that our study adds to those suggesting that rapid local
adaptation can evolve even in dispersive and young populations.
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Szűcs M, Vahsen ML, Melbourne BA et al. (2017) Rapid adaptive evolution in novel environments acts
as an architect of population range expansion. Proceedings of the National Academy of Sciences ,114 ,
13501–13506.

Thomas PD, Campbell MJ, Kejariwal A et al. (2003) PANTHER: A Library of Protein Families and
Subfamilies Indexed by Function.Genome Research , 13 , 2129–2141.

Thrasher DJ, Butcher BG, Campagna L, Webster MS, Lovette IJ (2017) Double-digest RAD sequencing
outperforms microsatellite loci at assigning paternity and estimating relatedness: a proof of concept in a
highly promiscuous bird. 1–34.

Tigano A, Friesen VL (2016) Genomics of local adaptation with gene flow.Molecular Ecology , 25 , 2144–2164.

Tsutsui ND, Suarez AV, Holway DA, Case TJ (2000) Reduced genetic variation and the success of an invasive
species. Proceedings of the National Academy of Sciences , 97 , 5948–5953.

Uller T, Leimu R (2011) Founder events predict changes in genetic diversity during human-mediated range
expansions. Global Change Biology , 17 , 3478–3485.

Werner SJ, Fischer JW, Hobson KA (in press) Multi-isotopic (δ2H, δ13C, δ15N) tracing of molt origin for
European starlings associated with U.S. dairies and feedlots. PLoS One .

Willoughby JR, Harder AM, Tennessen JA, Scribner KT, Christie MR (2018) Rapid genetic adaptation to
a novel environment despite a genome-wide reduction in genetic diversity. Molecular Ecology , 17 , 675.

Yeaman S, Whitlock MC (2011) The genetic architecture of adaptation under migration-selection balance.
Evolution , 65 , 1897–1911.

Zheng X, Levine D, Shen J et al. (2012) A high-performance computing toolset for relatedness and principal
component analysis of SNP data. Bioinformatics , 28 , 3326–3328.

Figure Captions

15



P
os

te
d

on
A

u
th

or
ea

14
A

u
g

20
20

—
T

h
e

co
p
y
ri

gh
t

h
ol

d
er

is
th

e
au

th
or

/f
u
n
d
er

.
A

ll
ri

g
h
ts

re
se

rv
ed

.
N

o
re

u
se

w
it

h
ou

t
p

er
m

is
si

on
.

—
h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
59

74
15

48
.8

81
79

47
7

—
T

h
is

a
p
re

p
ri

n
t

an
d

h
a
s

n
o
t

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

a
ta

m
ay

b
e

p
re

li
m

in
a
ry

.

Table 1. Population genetic summary statistics. For each sampling location, the table shows the number
of private alleles, observed and expected heterozygosity, nucleotide diversity, and the inbreeding coefficient
FIS.

Table 2. Differentiation and movement among sampling locations. This table shows the percentage of birds
assigned to each sampling location from every origin. Note that these values are directional: although 12
starlings that were collected in AZ originated in KS, only 2 starlings collected in KS originated in AZ. The
black diagonal indicates the percentage of birds assigned to that collection state according to a discriminant
function analysis of molt-origin presented in Werner et al. For example, 28% of birds collected in Arizona
originated in that location. FST among locations is presented above the diagonal, and darker gray colors
indicate higher FST.

Figure 1. Population structure. A) Principal components analysis on 6,287 SNPs, explaining 1.03-1.08%
of genetic variation observed. B) STRUCTURE analyses with K=2 and K=3 (best supported). C) Signif-
icance testing of hierarchical AMOVAs: the histogram shows expected variance components based on 999
simulations, and the black diamond is the observed variance component. D) AMOVA results.

Figure 2. Evidence for incipient local adaptation. Redundancy analyses indicate that 191 SNPs (small
gray points) are associated with bioclimatic predictors (vectors). BIO1: mean annual temperature; BIO7:
temperature annual range; BIO12: annual precipitation; BIO16: precipitation of wettest quarter.
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