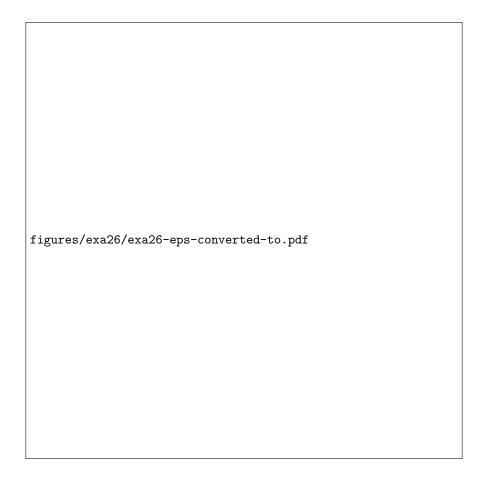
Higher Dimensional Hermite-Hadamard Inequality for Semiconvex Functions of Rate (k_1,k_2,\ldots,k_n) on the Co-ordinates and Optimal Mass Transportation

Ping Chen 1 and Wing-Sum Cheung 2

August 17, 2020

Abstract


In this paper, we give a new higher dimensional Hermite-Hadamard inequality for a function $f:\frac{i=1}^n[a_i,b_{-i}]\setminus B_R^n \leq \mathbb{R}^n$ which is semiconvex of rate (a_i,b_{-i},b_{-i}) on the co-ordinates. This generalizes some existing results on Hermite-Hadamard inequalities of S.S. Dragomir. In addition, we explain the Hermite-Hadamard inequality from the point of view of optimal mass transportation with cost function $c(x,y):=f(y-x)+\sum_{i=1}^n\frac{i-1}{n}\frac{k_{-i}}{2}\sum_{i,j}\frac{k_{-i}}{2}$, where $f(\cdot c):\frac{i-1}{n}\frac{i-1}{n}\frac{i-1}{n}\frac{i-1}{n}$ is semiconvex of rate $c-1,k_{-i}$. Furthermore, by using the higher dimensional Hermite-Hadamard inequality, we compare the transport cost in different transport models on the sphere $c-1,k_{-i}$.

Hosted file

¹Jiangsu Second Normal University

²University of Hong Kong Department of Mathematics

figures/exa1/exa1-eps-converted-to.pdf	

