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The manuscript “A Comparison of Quantum and Traditional Fourier Transform Computations” discusses a
very important and often overlooked aspect of quantum computing, namely a fair and detailed comparison of
a quantum algorithm, its classical simulation, and its classical counterpart taking into account the complexity
of I/O. Such an article is valuable and worth publishing. The current manuscript, however, still contains
some inaccuracies that should be fixed and I will make suggestion on how the presentation can be improved.

Let me first summarize the main result in my own words: a quantum Fourier transform (QFT) can
calculate the Fourier transform of a vector with time complexity O

(
log2N

)
, compared to the complex-

ity O (N logN) of a classical FFT. However, if one needs to read out the full vector instead, the complexity
becomes O (N polylog(N)) again, without an advantage over the classical algorithm. It is actually worse
than the author discusses, if one also takes into account the complexity of loading the initial state. Loading
an initial classical data vector has complexity O (N), and this has to be repeated at every repetition, giving
a complexity of O

(
N2 polylog N

)
, worse than classical. As the author correctly mentions, the QFT is thus

a useful algorithm if the input data is prepared algorithmically, and limited sampling of the result vector is
sufficient, as is the case for Shor’s algorithm.

This is a valuable observation that deserves a paper in CiSE, since these important considerations are not all
known to people outside the quantum computing community, and are sometimes ignored even by quantum
computing specialists. I thus want to encourage the author to improve the presentation to make it more
accessible to a broader audience and fix a couple of technical flaws.

Before discussing presentation issues, I want to address one technical flaw and a few points where more
clarity is needed:

1. This statement towards the end is too simplistic and needs to be clarified: “. . . if we want to measure
each coefficient, we must redo our operations for each coefficient (since our wave function will collapse
for every measurement).” The manuscript does not explain how to read out a specific coefficient.
If one samples the wave function, one measures the result and gets a certain value (s1, · · · , sN )
with a probability depending on the wave function. More complex amplitude-estimation algorithms
are needed to read out specific coefficients, which then takes time O(N/ε). This needs to be better
explained. This also raises another issue of normalization and precision. The quantum wave function
has to be normalized to have an L2 norm of 1. We thus need to measure to a precision of epsilon
divided by the L2 norm of the classical data, and if that increases with N the scaling is even worse.
For example, if all entries are of order unity, the L2 norm is

√
N .

2. The one technical flaw in the paper is in preparing the input state to the QFT, and the complexity
of the classical simulation of the quantum algorithm. There, the numbers are wrong. The classical
complexity can easily be estimated by realizing that any sparse quantum gate (such as a 1-qubit or 1-
qubit gate) can be simulated in time O(N) = O(2n), where N = 2n. Thus, the overhead is just O(N),
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not O(N2), and the simulation complexity is just O(N) times the complexity of the quantum algorithm.
This will be more apparent if, as I propose below, the author shows the quantum algorithm also through
a sequence of quantum gates. However, note that in the simulation we then have the full vector, and
thus do not incur the overhead of quantum state tomography. We need to simulate the algorithm only
once and not O(N/ε) times. This means the simulation remains at O(N log2N) even if we read out
all entries, which is not bad compared to the classical O(N logN) of the FFT. The reason why the
author seems to end with a different complexity is that his Matlab simulation does not simulate the
quantum algorithm but the computation of the effect of the QFT applied to just one basis state. That
is a suboptimal implementation. I thus propose to replace the Matlab code by a discussion of how a
quantum gate (Hadamard or controlled phase rotation) can be implemented, and that will then nicely
give the scaling discussed above.

3. As mentioned in my summary at the beginning, the value of the paper can be increased if the au-
thor could also discuss the complexity of quantum state preparation from classical input data, e.g.,
following Shende-Bullock-Markov (Shende et al., 2006), which has a complexity of O

(
N log 1

ε

)
. That

means, that if the data is read from a classical vector (and not computed as, e.g., in Shor’s algo-
rithm), then the complexity of state preparation of O

(
N log 1

ε

)
completely dominates the QFT

itself, and if one furthermore wants to read out the full vector instead of sampling it, the complexity
becomes O

(
N2 log2

(
1
ε

))
.

4. In the conclusion the author writes that “QEC research is still in very early development and it is
currently difficult to determine how the required resources for these corrections could scale with qubit
usage.” That is incorrect, as the overhead is pretty well known by now for certain QEC codes, such
as the surface code. The asymptotic scaling of the overhead has long been known, and also detailed
resource costs have been worked out for various algorithms. I suggest to focus the QEC section on the
need for fault tolerance, and the large overhead associated with it. This is definitely not something
that can be done on NISQ devices at an interesting scale. I would also use another reference for QEC
than the Gil Kalai paper.

Now, to suggestions for improved presentation:

1. In the abstract, I suggest to present fewer technical details. “radix-2 DIT case of the Cooley-Tukey
Algorithm” can just be called Fast Fourier transform, the QUBIT4MATLAB package does not need
to be mentioned in the abstract, and neither does the “Master Theorem” have to be mentioned.

2. In the abstract and in the rest of the paper, it is also better to talk about quantum speedup and
not quantum supremacy. The paper is about asymptotic scaling (the author uses the big-O notation
throughout), and not about supremacy, which is a specific size problem that is solved better on quantum
hardware rather than classical hardware. A supremacy claim needs all constants to be worked out,
and assumptions for the specific classical and quantum hardware. Replacing quantum supremacy by
quantum speedup can fix this. The observations are still valuable and correct.

3. The first section is called “The shortcomings of classical computing and the early developments of
quantum computing”. That title sounds strange to me. What are the shortcomings? The author may
rather want to stress the additional capabilities of quantum computers.

4. Given that most readers will not be physicists and have no experience with quantum mechanics, it
would be valuable to expand this first section. Discuss equation (3) before equation (1), and then
introduce equation (1), to show that this means that the state of a qubit is actually a two-dimensional
complex vector, After that only go to the many-quit state. After equation 4 it may be good to talk
about amplitudes first, and then probabilities. Saying that the state is determined by “the qubit simply
has a probability. . . ”, ignores the all important phases that are the crucial difference between quantum
computing and probabilistic classical computing.

5. “Quantum gates, unlike classical gates, do not delete information and are fully reversible.” Needs
further explanation. This comes from the reversibility of the microscopic laws of physics. Here it may
be worthwhile to mention that, as quantum gates are time evolution of a quantum system, they are

2
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unitary operators on the Hilbert space that was introduced above. The discussion in the next sentence
about them not using energy is misleading as well. In fact, the control and operation of the quantum
gate always needs energy. It is only the free evolution of a quantum system that conserves energy.
The part on ” subatomic systems such as a superposition of quantum states. ” would also need more
explanation. Does the author here want to describe specific implementations of qubits? If so, more
detail is needed. If not, I propose to drop this part.

6. “The definition and use of the classical discrete Fourier transform”: here is an abrupt jump from Shor’s
algorithm to the DFT. Since Shor’s algorithm again gets mentioned later on as a case where the QFT
is better than a classical DFT, it make sense to discuss more details of Shor’s algorithm, and that
in essence it solvers the factor problem by using a QFT to find the period of a function. In light of
the above complexity discussion this is important: we don’t deal with classical data that one has to
load but with a state that is computed (the function f(x) = aˆx mod N ), and one is not interested
in the full vector but just in finding the period. This can be done just by measuring the result of the
QFT, which in this particular case will return a random multiple of the base frequency, and with a few
repeated measurements one can then extract the period).

7. The Fourier transform should be well known to the reader, and it is thus not obvious to me that
equation 6 is needed. I would instead introduce \omega in equation 5. For the discussion of the
implementation I suggest to mention that the rest of the paper limits itself to the case of powers of 2,
i.e. N=2ˆn, for which the radix-2 version applies. Since the implementation is well known for most
computational scientists, it could be moved from to supplementary material, as can be the derivation
of the O(N log N) complexity, which is also well known.

8. In the discussion of the QFT, unfortunately the quantum algorithm is not presented. What is presented
is the mathematical unitary operation. It would be very valuable for the reader to see an actual
implementation of the quantum algorithm, i.e. the sequence of O(nˆ2) Hadamard gates and controlled
rotations – either as a circuit drawing, or more useful as quantum code, either using a quantum
programming language that allows loops (such as Q#), or as some quantum pseudo code with loops.
Then the reader will see the sequence of O(nˆ2) operations and how it creates the unitary operation
of the QFT.

9. “The implementation of the QFT in MATLAB. . . ”. This section can be improved as well., As dis-
cussed above, the Matlab code does not implement the quantum algorithm but rather implements
the application of the unitary operation to one of the basis states. It would be more useful for the
reader to instead get implementations of the Hadamard and controlled phase gates, which could then
be combined with the above quantum algorithm (maybe all in Matlab even?) for a full simulation of
the algorithm – and in time O(N nˆ2), not O(Nˆ2 nˆ2).

10. “Evaluating the complexity of the QFT Implementation” – I discussed the issues with the complexity
estimates already above. If one replaces it by an estimate of the complexity of simulating the H
and controlled phase gate each in O(N) operations then it both becomes simpler and the complexity
becomes just O(N) times that of the quantum version

11. “Evaluating the complexity of the theoretical form of the QFT Implementation”. I assume that by
“theoretical” the author means the actual quantum operation? The comparison section needs to be
fixed, since that’s where there is the mentioned flaw based on the suboptimal Matlab code, and that
will also change table 1. I suggest that table 1 could have three cases: A) ignoring state preparation
and one only wants to sample the output a constant number of times; B) ignoring state preparation
but one wants to read the full vector; C) including state preparation from classical data and one only
wants to sample the output a constant number of times; D) including state preparation from classical
data and one wants to read the full vector

12. The reader will then see that only case A has a speedup, and that in the other cases even the simulation
of the quantum algorithm is faster than the quantum algorithm on a quantum computer.

The conclusions should then be updated, taking these slightly modified comparisons into account. The case of
Shor’s algorithm, which falls into category A) above, is indeed interesting but deserves a deeper explanation
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so that the reader understands that Shor’s algorithm can compute the input with complexity O
(
N3

)
(up

to log factors), and why only a few samples of the output are needed. That way, the exponential speedup
over the FFT remains, and the super polynomial speedup over the name sieve. However, if classical data
has to be loaded or should be returned then there is no speedup. I call this the I/O problem of quantum
algorithms, which indeed—as the author writes—means that in these cases quantum computing is no better
than classical computing.

This is an important observation that the paper beautifully works out. Fixing the flaw in the simulation
section and improving the presentation will make this a very nice paper.
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