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Abstract

In this paper, we study blow-up phenomena of the following p-Laplace type nonlinear parabolic equations under nonlinear
mixed boundary conditions and u = 0 on I's x (0,¢*) such that I'y UT's = 992, where f and h are real-valued Cl-functions. To
discuss blow-up solutions, we introduce new conditions:

Foreachz € Q, z € 99, ¢t > 0, u > 0, and v > 0, for some constants «, 81, B2, 71, 2, and ¢ satisfying where pp, := infy >0 p(w),
P() = [y plw)dw, F(z,t,u) = [}’ f(z,t,w)dw, and H(z,t,u) = [;* h(z,t,w)dw. Here, Ag is the first Robin eigenvalue and
As is the first Steklov eigenvalue for the p-Laplace operator, respectively.

Introduction

It is well-known that reaction-diffusion equations can describe lots of natural phenomena such as gravitational
potentials, heat flow, and fluid flow (see (2010)). Especially, nonlinear reaction-diffusion equations have
been attracted the attention of many researchers. The most famous example of nonlinearity, there are the
p-Laplace operator (V - [|[Vu[P=2Vu]) as a diffusion operator and autonomous function f(u) as a reaction
term. i.e.

ug = V- [|VulP2Vau] + f(u).
(1)

Of course, the equation (1) can express a variety of natural and social phenomena and has been studied by
many researchers (see (1985; 1998; 2002) and references therein).

On the other hand, lots of natural and social phenomena can be also affected by external stimuli. Therefore, it
is important to consider various boundary conditions such as the Dirichlet boundary condition, the Neumann
boundary condition, and the Robin boundary conditions, and so on. Especially, p-Neumann boundary
conditions with autonomous function h(u):

ou

VulP~2
|Vl o

= h(u)



have been studied by lots of researchers because of their applicability (see (2014; 2010) and references
therein).

In this paper, we deal with blow-up phenomena of the following p-Laplace type nonlinear parabolic equations
under mixed nonlinear boundary conditions:
For p > 1,

p(|VulP)[VulP=28% + 0(2)p(|ul?) |uP~2u = h(z,t,u), on Ty x (0,t*),

uy =V - [p(|VulP)[Vu|P=2Vu| + f(z,t,u), inQx(0,t%),
B,lu] = h(z,t,u), on I'1 x (0,t%),
u =0, on I'y x (0,t%),
u(+,0) = ug >0, in Q,

where Q is a bounded domain in R (N > 2) with smooth boundary 92, I'; and I'y are disjoint open and
closed subset of 052, respectively, such that I';y UTy = 02, and ¢* is maximal existence time of the solution
u. Here, B,[u] = h(z,t,u) on I'; x [0,t*) stands for the boundary condition

where 6 is nonnegative C(99Q)-function. Moreover, we assume that the function p is a C'(RT)-function
satisfying inf,~q p(w) > 0, the function f is a C* (xR xR¥)-function, the function h is a C*(GQxRT xR*)-
function, where RT = [0, ). Also, the initial data g is a nonnegative nontrivial C!(Q2)-function satisfying
the compatible condition B,[ug] = h(z,0,up) on I'; and ug = 0 on I's.

The equation (??) is generalized version of (1)-(2) which is well-known p-Laplacian parabolic equation
under the nonlinear Neumann boundary condition. The simple versions of the main equation (??) (such as
autonomous functions f(u) and h(u) instead of f(z,t,u) and h(z,t,u), p = 1, and p = 2) were studied by
lots of researchers with respect to the blow-up theory (see (2016; 2016; 2017; 2018; 2018; 2014; 2010; 2014;
2008; 2009; 2016; 2018; 2019)).

Most of blow-up results which discussed nonlinear parabolic equations under nonlinear boundary conditions
considered non-negative functions or non-positive functions in the reaction term and the boundary term (for
example, see (2016; 2014; 2019)). However, we consider real-valued functions f and h instead of non-negative
functions or non-positive functions. Also, we consider the non-autonomous terms f and h include various
types of functions such as k(t) f(u) or b(x) f(u).

Especially, Messaoudi (2002) studied the p-Laplacian parabolic equations with the autonomous reaction

f(u):
For p > 2,

ug = V- [|[VulP72Vu] + f(u), in Q x (0,t%),
(4)



under the Dirichlet boundary condition. In this result, the blow-up solutions to the equation (4) were
obtained when the function f satisfied

)+ [ " f()ds < uf(u), w0,

and the appropriate initial data condition was satisfied.

In 2016, Ding and Shen (2016) studied blow-up phenomena to the p-Laplacian parabolic equations under
nonlinear boundary conditions

(b(u))e = V - [|[Vu|P~2Vu] + k(t) f(u), in Q x (0,t*),
[Vul|P~29% = h(u), on 0 x (0,t*),
u(70) =wuy >0, on 97

where p > 2. In their blow-up conditions, the functions b and k satisfied the condition (??) and the
nonnegative functions f and h satisfied

In 2018, Zhang, Wang, and Wang (2018) obtained the blow-up solutions to the p-Laplace type nonlinear
parabolic equation:
For p > 2,

(b(w)e = V - [p(IVul")[VulP "2 Vu] + a(2)k(t) f(u), in Q@ x (0,7),
(6)

under the Dirichlet boundary condition, where the functions b, p, a, k, and f were some appropriate functions
to construct the nonnegative solutions. In their assumptions for the blow-up phenomena, the functions b, a,
and k satisfied



()5 o+ [ F6)ds < ufu), >0,

(B,) s vpl0) < (4 ) [ plolds, w0

lim 5%V (s) =0,
s—0+

b'(s) >0, V'(s) <0, k(0) >0, k'(s) >0, a(s) >0,

for s > 0 and the functions p and f satisfied

where €; and ey are positive constants with ¢; > %“.

(b(w)e =V - [p(IVIP)|[VulP=Vu] + a(2)k(t) f(u), inQx(0,t%),
p(IVIP)[VulP~2 3% = h(u), on 99 x (0, %),
u(+,0) = ug > 0, on £,

In 2019, Zhang and Tian (2019) obtained the blow-up solutions to the p-Laplace type parabolic equations
under nonlinear boundary conditions:
For p > 2,

when the nonnegative functions b, a, and k satisfy the condition (??), the functions f and h satisfy the
condition (A4,)’, and the function p satisfies

(D 1) . aF(xatvu) §uf(m7t,u)+ﬁ1up+'yl,
Pl aH(z,t,u) <uh(z,t,u) + Bou® + 72,
(Dy2) : dup(v) < P(v),



a>2,8>0, B+ 258 < (%~ 1) pudn,

0< B> < (% = 1) pmAs,

Now, we introduce new blow-up conditions for the functions p, f, and h to obtain the solutions to the
equation (?7) as follows:
Foreachxz € Q, 2€ 9Q,t>0,u>0,and v > 0,

for some constants «, 51, [2, 71, V2, and § satisfying
and

where F(z,t,u) = [ f(z,t,w)dw, H(z,t,u) := [ h(z,t,w)dw, and P(v) = [’ p(w)ds. Here, pp, =
inf,~0 p( ), Ar is the ﬁrst eigenvalue of the Robln eigenvalue problem, and )\5 is the ﬁrst eigenvalue of the
Steklov eigenvalue problem (which were introuced in Section 2).

(Cp) = (p+e€) fy f(s)ds < uf(u)+ BuP +v, u>0,

There were several results that used the first eigenvalue to the blow-up conditions (see (2017; 2018; S. -Y.
Chung & J. Hwang, 2019)). Especially, the authors (2018) obtained blow-up solutions to the equation (4)
for p > 2, under the Dirichlet boundary condition, by using a condition

for some constants € > 0,0 < 8 < é)\ D, and v > 0, where Ap is the first Dirichlet eigenvalue of the p-Laplace
operator.

Using the blow-up conditions (D, 1) and (D, 2), we obtain the main theorem as follows:

Suppose that the functions f, h, and p satisfy the conditions (D, 1) and (D, 2). Also, the functions F' and
H are nondecreasing in ¢. If the initial data ug satisfies

1

—f/QP(|Vuo(x)|p)dx+/Q [F(2,0,u0) ~ 2] o —5

- 0(=)P(Juo(2)/")dS + /

[H(zOuo)——}dS>O

ry

(8)

then every nonnegative solution u to the equation (??) blows up in finite time 0 < t* < T.



It is worthwhile to notice that the condition (D, 1) depends on the domain Q and the boundary conditions,
since f; and 2 depend on the first eigenvalues Arp and Ag. In fact, it is natural for blow-up conditions to
depend on the domain and the boundary conditions.

It is easy to see that the conditions (A,) and (A,)" cannot be unified because of the constant € and the
parameter p. From this point of view, our condition (D, 1), which includes the conditions (A,), (A4p)’, and
(Cp), is the most generalized blow-up condition known so far.

We investigate the case p > 1, one of our crucial points. As far as the authors know, the case 1 < p < 2
wasn’t discussed concerning the conditions introduced.

Our main results with p > 2 improve the results known so far. More precisely, the blow-up conditions (D, 1)
and (D, 2) are the generalized version of the conditions introduced in this section such as (4,), (4,)’, (Bp),
(Bp)', and (Cp). We investigate this in Remark 2.4.

Blow-up phenomena

In this section, we deal with the blow-up phenomena of the equation (??). From now on, we assume that
the solution w is nonnegative on £ x [0,t*). In order to discuss the blow-up solutions to the equation (?7),
we introduce the definition of blow-up solutions as follows:

hmt_w_ fQ Uz(l',t)dl' = Q.

We say that a solution u to the equation (??) blows up in finite time ¢t* > 0, if u satisfies

The blow-up condition (D, 1) depends on the first eigenvalues Ag and Ag. These eigenvalues were introduced
in the following lemmas.

=V - [[Vgo|P~2Vo] = Ar|doP2¢g, in Q,
|V¢O|P*2% + 9(2)|¢0|p72¢0 = 07 on Fla
(250 = O7 on FQ.

Jo IVw|Pda+ [1. 0(2)|w]?dS
[Q |w\1’dm ’

AR = inf,ca
wZ0

[See (2002; 2006)] Let p > 1. Then there exist Az > 0 and a nonnegative function ¢g € W?(£2) such that

Moreover, Ag is given by



where A := {w € W'P(Q) |w =0 on Is}.

V - [[Vo|P~2V o] = |polP 2o, in €,
Vo [P=2220 4 0(2)|¢ho|P 20 = As|do|P 2o, on Ty,
¢o =0, on I's.

Ao = inf fQ[|Vw|”—',-|u;\1’]dr+fFl 0(z)|w|PdS
5 Z}E{(L)‘ fFl |wlPdS '

[See (2009; 2006)] Let 'y # () and p > 1. Then there exist Ag > 0 and a nonnegative function ¢o € W1P(Q)
such that

Moreover, Ag is given by
where A := {w € W'P(Q) |w =0 on Is}.

Now, we prove Theorem .

A(t):= [, u?(x, t)dx

B(t):=-1

p [ P(IVu(z,t)|P)de+ [, [F(z,t,u(z,t))—%]dr—% fF1 0(2)P(|u(z,t)|P)dS-‘,-fF1 [H(z,t,u(z,t))—%z]ds

[Proof of Theorem | For a solution u(x,t), we define functions A and B on [0,t*) by
and

for t > 0. Firstly, we consider a case I'y # (). We note that I'; is open subset of 9Q. By the boundary
condition, we have



B'(t) :/ [—p(Vup)|Vu|p_2VuVut + f(z, t,u)us + ;F(Js,t,u)} dz
Q

+ / [—O(z)p(u|l’)|u|p—2uut + h(z, t,u)us + ;H(z,t,u)} ds
Iy

Z/ fp(|Vu\p)|Vu|p72VuVutdx+/ p(|Vu|p)\Vu|p*2g—ZutdS+/f(x,t,u)utdx
Q o Q

Q

for all t € (0,t*). Now, using integration by parts, it follows from (9) and the equation (??) that

B'(t) > /Q [f(z,t,w)u + V- [p(|VulP)|VulP > Vu] w] do = /Quf dz >0

(10)

for all ¢ € (0,¢*). On the other hand, we have

A1) =2 [ [uf(x,t,u) — p(Vul)[VaulP)da +2 | [uh(z,t,u) - 0)p(ul?)ul?] dS
Q

I

22/ [aF(x,t,u) — fruP — y1] dz + 2/ [aH (z,t,u) — BauP — 5] dS
Q r

1

-2 /Q p(|Vul?)[VulPdz — 2/F1 0(2)p(|ul”)|ul” dS

uug dx

p—20U

on

/,
:2/Qu [f(x,t,0) + V- (o[ Vul?) | VulP~2Va)] de
/Q ds

[uf(@,t,u) = p(|Vul?)[Vul]dz + 2 /69 up([Vul?)[Vu|

for all ¢t € (0,¢*). Making use of the condition (D, 1), we obtain from the boundary condition that
for all ¢ € (0,t*). It follows that



A'(t) 22043()—&—2(;—1) [/ |[VulPdx + N G(Z)updS] — 20 /Qupdx—2ﬁ2 /1“1 uPdS
20
A’ 20B(t — Vul|P)dx — VulP)|VulPdr — 2 Pd
() >20B(t) + / P(IVul?)dz /<| uf?)|VulPdz m/zux
9 p dS—2 0 p PdsS —2 PdS
/ P(jul?) / p(lul?)ul 8 / K

Thanks to the condition (D, 2), (??) implies that

for all ¢t € (0,t*), where p,, := inf,~0 p(w). Applying Lemma and , we obtain that

a2A'(t)B( t) <A ®)2<( [ uldz) ([, uZdz)<A(t) B (1)

dt [A—% (t)B(t)} >0

1052002 (3 +2) [ wars2[(2 1) - 2] [ v [ onras]

08052 [[(% 1) 2] (314 2)] [ s

>2aB(t)

for all t € (0,t*). Considering (10), (??), and the initial condition B(0) > 0, it is easy to see that A’(t) > 0

and B'(t) > 0 for all t € (0,¢*). Therefore, we obtain A(t) > 0 and B(t) > 0 for all ¢ € (0,¢
the Schwarz inequality and (?7?) to get

for all ¢ € (0,¢*). Then it follows that
for all t € (0,t*). Then we have

*). Now, we use



AD)> | —== !

T=A(0) a(a—2)B(0).

AT () A (t) > 20A™ 2 (t)B(t) > 20.A~ 2 (0)B(0).
(14)

Integrating (14) from 0 to ¢, we finally obtain

Hence, the solution uw blows up at finite time 0 < t* < T'. Furthermore, the upper bound 7' of the blow-up
time satisfies

For a case I'y = (), we easily obtain the blow-up solution u because all integral with respect to I'; are 0.

a>2 i+ 250 < (2 1) An,

0< B < (2~ 1) As.

fi(z,t,u) >0, 2€Q, t>0, u>0,

(i) Local existence and regularity of the solutions to the equation (??) were discussed in (1993) with some
conditions for the functions f, h, and p.

10



(ii) If o = 2, then we obtain from (14) that T = co. i.e. the solution u blows up at t = co.

(iii) The constant p depends on the function p, but can be any positive number. If we put p = 1, then we
can choose § = 1. Then the conditions for the constants «, 81, and 2 should be

and

These imply that the condition (D, 1) and (D, 2) are the generalized version of the conditions (A,),
(Ap)'s (Bp), (Bp)', and (Cy).

(iv) We assumed that F' and H are nondecreasing in ¢. This condition is an improvement condition than
the following condition:

which was assumed in (2016; 2017; 2018; 2016; 2018). We illustrate this fact in Example .

(v) If we can choose the constants 77 and 72 of negative values while satisfying the conditions (D, 1) and
(D, 2), then blow-up may occur even in small initial data.

Next, we introduce simple versions of the equation (??) and corresponding blow-up results. Firstly, we
introduce the following p-Laplacian parabolic equations:
For p > 1,

ug =V - [|Vu|p72Vu] + fz,t,u), in Qx(0,t%),

VulP=2e + 0(=)lulP*u =0, onTyx(0,t),
u =0, onfg x (0,t%),
U(,O) =ug > 07 in Q.

(15)

We obtain blow-up solutions to the equation (15) as follows:

(DP 1) : OéF(:L‘Jf,U) < uf(:c,t,u) + 5111‘17 + 7,

-1
pr |Vuo(w)|?’d:v7% frl 6’(z)\u0(z)|”d5+f9 [F(z,O,uo)f%]dw>0,

Suppose that the function f satisfies the condition (D, 1):
For each x € Q, t > 0, and u > 0,

11



for some constants «, 51, and y; satisfying a > 2 and 81 < (% — 1) Ar. Also, the function F' is nondecreasing
in t. If the initial data ug satisfies
then every nonnegative solution u to the equation (15) blows up in finite time 0 < t* < T.

Next, we introduce p-Laplace type parabolic equations under mixed boundary conditions:
Forp > 1,

u =V- [p(|Vu|p)|Vu\p_2Vu] + f(l‘,t,u), in 2 x (07t*)7

B,u] =0, on I'y x (0,t*),
u =0, on 'y x (0,t%),
u(-,0) =ug >0, in Q.

(16)

_1pf9 P(\Vug(a:)|1’)d17% frl 0(2) P(Juo(2)|P)dS+ [ [F(w,O,uo)f%]dw>O,

Suppose that the functions f and p satisfy the conditions (D, 1) and (D), 2):
Foreach x € Q, t >0, >0, and v > 0,

for some constants «, (1, v1, and § satisfying a > 2, § > 0, and £, < (%s — ) pPmARr. Also, the function F
is nondecreasing in t. If the initial data wug satisfies
then every nonnegative solution u to the equation (16) blows up in finite time 0 < t* < T.

In order to understand the nonlinear mixed boundary conditions, we introduce the following p-Laplace type
equations under the nonlinear mixed boundary conditions:
For p > 1,

12



uy =V - [p(|VulP)|[VuP=2Vu],, in Q x (0,t%),
B,lu] = h(z,t,u), on I'1 x (0,t%),
u =0, on I'y x (0,t%),
u(-,0) = up >0, in Q.

(17)

We obtain blow-up solutions to the equation (17) as follows:

(Dpl) @ aH(z,t,u) <uh(z,t,u) + fouP + 72,

-1
p fo P(IVuo(@)[P)dz—1L [r. 0(2)P(Juo(2)[P)dS+ [, [H(2,0,u0)—22]dS>0,

Let I'y # (. Suppose that the functions h and p satisfy the conditions (D), 1) and (D) 2):
For each z € 992, t > 0, and u > 0,

for some constants «, B2, and ~s satisfying a > 2 and 0 < 8y < (% — 1) Pm i‘gi‘j Also, the function H is

nondecreasing in ¢. If the initial data ug satisfies
then every nonnegative solution u to the equation (17) blows up in finite time 0 < t* < T.

Now, we consider non-negative functions or non-positive functions, since there were improved blow-up results
when f < 0and h > 0 (see (2014)). We also improve the blow-up condition (D, 1) when F <0 or H <0 in
Theorem and Theorem .

uf(x,t,u) + fruf + 1,
U/h(Z, t7u) + BQUP + Y2,

13



Bt 2808, < (220 1) pdn, 0< B < (225 —1) puds,

2< ap < ap with as > 2.

Let the function F' be non-positive. Also, we suppose that the functions f, h, and p satisfy the following
conditions

forallz € Q, 2 € 9Q,t >0, u >0, and v > 0, for some constants «ay, oz, 51, B2, 71, and s satisfying
and

Also, the functions F' and H are nondecreasing in ¢. If the initial data ug satisfies

—%/QP(|Vuo(x)|p)dz+/Q [F(x,o,uo)—m o1 9(z)P(|u0(z)|p)dS+/

[H(z, 0,u0) — 2| dS >0,
P Jr, Iy

Q2

then every solution u to the equation (??) blows up in finite time 0 < t* < T

B(t) == 75/§2P(|Vu(x,t)|p)d9:+/ﬂ [F(I,t,u(x,t))ﬂ da:l/rl o(z)p(|u(z,t)\1’)ds+/

a2 p Ty

B'(t)=[,uidx >0

14

{H(z, t,u(z,t))



A0 =2 [ [ufletn) = p(Vul?)VuP)do+2 [ p(Vul)Vul 25 huas
Q 9 on

A1) >2 /Q fuf () — p([VulP) [ V] i + 2 / uh(z t,u) — 6(=)p(ul?)|ul?] dS

I

22/ [ar F(z,t,u) — fruPl —y]dx + 2/ [aoH (z,t,u) — fouP — v2] dS
Q r

1

—2 / p(|Vul?)|VulPdz — 2 / o)l ds

The proof is basically similar to the proof of Theorem . Therefore, we state the main difference of the proof.
For a solution u(z,t), we define functions A and B on [0,¢*) by

and

for each ¢ > 0. Then it follows from (9) and (10) that

for all t € (0,t*). On the other hand, we have from (11) that

for all ¢t € (0,¢*). Making use of the condition (D, 1), we obtain from the boundary condition that

for all t € (0,t*). Since F' is non-positive, we have

0425

A'(t) > 200 B(t) + 2 < - 1) Pm [/ |Vul|Pdr + Q(Z)UpdS:l — 26 / uPdr — 262/ uPdS
p Q Fl Q I‘1

A'(t) >200B(t) — 2 (ﬁl + f;) /Qupdx +2 [(a;é - 1) Pm — fz] [/Q |VulPdz + g H(Z)updS}

>200B(t) + 2 H(a;é — 1) Pm — :ij AR — (ﬁl + fi)} /Qupdx
ZQC{QB(t)

15



ag—2

T:A(O) az(a2—2)B(0).

A'(t) >202B(t) + 2i/QP(|Vu|p)d:r - 2/ p(|VulP)|Vu|Pdx — QBl/Qupd:r
20é2
0(z

VP(|ulP)dS — 2/ 0(2)p(Jul?) |u\pd5’—252/ uPdS
Iy

Iy

for all ¢t € (0,¢*). Thanks to the condition (D, 2), (??) implies that
for all ¢t € (0,t*), where p,, := inf,,~0 p(w). Applying Lemma and , we obtain that
for all ¢ € (0,t*). Hence, by similar way to the proof of Theorem , we can easily obtain

Hence, the solution uw blows up at finite time 0 < t* < T. Furthermore, the upper bound T of the blow-up
time satisfies

uf(x,t,u) + ﬁlup + 1,
Uh(Z, ta U) + BQ’U/p + Y2,

B+ 2atlp, < (0‘15 1) pmAR, 0< P2 < (QTI(; - 1) PmAs,

16



2< ag < a1 with a3 > 2.

Let the function H be non-positive. Also, we suppose that the functions f, h, and p satisfy the following
conditions

forall x € Q, 2 € 0Q,t >0, u >0, and v > 0, for some constants a1, as, 81, B2, V1, and o satisfying
and

Also, the functions F' and H are nondecreasing in ¢. If the initial data ug satisfies

aq

> [ Pvuspe+ [ [P0 - 2] o
_ 1 0(2)P(|uo(z)|p)ds +/

[H(z,07u0) — 72] ds >0,
p I I

aq

then every solution u to the equation (??) blows up in finite time 0 < t* < T.

The proof is basically similar to the proof of Theorem and Theorem . Therefore, one can easily complete
this proof by following the proof of Theorem and Theorem .

It is trivial that if f <0, then F' < 0. However, F' < 0 does not imply f < 0.
The following example is given to demonstrate the application of Theorem .

Let a function u be a nonnegative solution to the equation

w =V - ((W—lu| + 1) Vu) + 12803 + 6u?|zt

+(72 = Nu + uemax{0=(=9°=11"} in O x (0,¢%),
u=0, on 0 x [0,t*),
u(z,0)=1-— Z?:l x?, in Q.

(19)

Here, the domain € is {ac = (21,2, 23, 24) | Zf‘zl 1?2 < 1} which is a unit ball of R*. Let us consider p = 2,

then it is known that the first eigenvalue Ao o is 72 — 1 when the dimension of the unit ball is 4, under the
Dirichlet boundary condition (see (1976; 1987)). It follows that 0 < 8 < (%2 —1) (72 — 1)p,,. From the
equation (19), we have

17



1
p(’U) = 1 + 1)

V2
fz,t,u) = 128u® + (7 — 1)u + 6u?|z|t + y2emax{0,—(1-9)*(t-11)%}
h(z,t,u) =0.

Moreover, we can easily see that the functions p and f satisfy the conditions (D, 1) and (D, 2), by choosing
a=3,p="=r _1, v =0, and 6 = 1. Also, the functions b and p satisfy the conditions which we assumed.
Now, we obtain by simple calculations that

A(0) :/ uddx
Q
1
:27r2/ [(1=r*)?]rPdr
0
=0.822

and
1 2 4 3 -1 2
= | [IVuol® +2|Vuy|] dz + 32uy + uy + ug| dx
"2/, 0 2
1
7T2/ (4r +4r 7’ 3dr
0
! w2 -1
—|—27r/ (321—r (1= + 5 (1—r2)2)r3dr
=0.193,

since we have from the functions b, p, and f that

. . 2
F(x,t,u) = 32u* +u® |2|x|t + emax0.—(t=9° -1} | | T Z 2y ,

Pv) = 207 + 0.

18



It follows from Theorem that u blows up in finite time 0 < t* < T and

T= ﬂ = 1.420.

Differentiating the reaction term f(z,¢,u) in Example with respect to u, we can obtain by simple calculation
that

folx, t,u) = 6u?|z|

for0<t<9ort>11, and

Folm t,u) = 3u? |2z] — 6(t — 9)2(t — 10)(t — 11)2e~ (=9 (=11)°

(20)

for 9 <t < 11. Then (20) follows that f:(x,t, u) is negative when u > 0 and ¢ satisfies

(t—9)2(t — 10)(t — 11)2e~ t=9°(=11)° 5 %
In fact, if we put ¢ = 10.5, then we have from the fact |z| < 1 that

]

(t—9)2(t — 10)(t — 11)2e =911 _ = = 0.428 > T

which implies that f;(x,t,u) is not nonnegative for all x € , ¢ > 0, u > 0.
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